2化工原理2013——2015
- 格式:pdf
- 大小:527.95 KB
- 文档页数:14
目 录第一部分 名校考研真题第6章 蒸 馏第7章 吸 收第8章 蒸馏和吸收塔设备第9章 液-液萃取第10章 干 燥第11章 结晶和膜分离第二部分 课后习题第6章 蒸 馏第7章 吸 收第8章 蒸馏和吸收塔设备第9章 液-液萃取第10章 干 燥第11章 结晶和膜分离第三部分 章节题库第6章 蒸 馏第7章 吸 收第8章 蒸馏和吸收塔设备第9章 液-液萃取第10章 干 燥第11章 结晶和膜分离第四部分 模拟试题夏清《化工原理》(第2版)配套模拟试题及详解第一部分 名校考研真题第6章 蒸 馏一、填空题1.某连续精馏塔,进料状态q=1,D/F=0.5(摩尔比),进料组成(摩尔分率),回流比R=2,且知提馏段操作线方程的截距为零。
则提馏段操作线方程的斜率为,馏出液组成为。
[清华大学2001研]【答案】1.33 0.8【解析】根据物料衡算可得:提馏段操作线方程截距为零,则,因此上式可整理得:精馏段操作线方程为精馏段操作线与q线的交点为(0.4,0.533),因此可求得提馏段操作线方程的斜率为2.在设计连续精馏塔时,欲保持馏出液组成x D和易挥发组分的收率不变,试定性判断,分别改变如下参数(其他参数不变)时所需的理论板数将如何改变。
(1)加大回流比R时,理论板数将 。
(2)提高加料温度t F,理论板数将 。
[浙江大学2006研]【答案】减小增大【解析】由图6-1(虚线为变化后的情况)可以看出,根据越靠近曲线则理论板数越大的定理,加大回流比R时,则理论板数减小;提高加料温度t F,则理论板数增大。
图6-1二、选择题精馏操作时,若进料状况(F、x F、q)和回流比R均不变,而将塔顶产品量D增加,其结果是( )。
[浙江大学2005研]A.x D下降,x w下降B.x D下降,x w上升,C.x D下降,x w不变D.x D不变,x w下降【答案】A【解析】图形法:图6-2由图6-2可知x D、x W都下降(虚线所示)。
2015~2016学年第一学期《化工原理》(上册)试题(A)年级:2013级专业:化学工程与工艺、制药工程、应用化学一、填空题(30分,每空1分)1.牛顿粘性定律的表达式为,牛顿型流体在圆形直管内作层流流动时,其速度分布呈形曲线,中心最大速度为平均速度的倍。
此时摩擦系数λ与无关,只随加大而。
2.流体以层流流动状态流经平直串联管段1和2,已知两管长度相同,管段1的内径是管段2的两倍,则流体流过两管段的阻力损失之比h f1/h f2=,若两管段并联,则阻力损失之比h f1/h f2=,若两管段串联,且流动处于完全湍流区,两管段的相对粗糙度相同,则此时阻力损失之比h f1/h f2=。
3.测流体流量时,随着流体流量增加,孔板流量计两侧压差值将,若采用转子流量计,当流量增大时,转子两端的压差值将。
4.如下图所示,液体在等径倾斜管中稳定流动,流速为u,管内径为d,管内流体的密度为ρ,指示剂的密度为ρ0,则阀的局部阻力系数ζ与压差计读数R的关系式为。
5.边长为a的正方形管道,其当量直径de为。
6.离心泵开车前必须灌泵,其作用是为了防止,而后需关闭出口阀再启动,目的是。
离心泵的安装高度过高,可能会发生。
7.若单台离心泵的特性曲线方程可以表示为H=A-BQ2,则此型号泵两泵串联时的特性曲线方程为,两泵并联时的特性曲线方程为。
8.当颗粒与流体的相对运动属于层流时,旋转半径为1m,切线速度为20m/s,同一颗粒在上述条件下的离心沉降速度等于重力沉降速度的倍。
9.导热系数的单位为,对流传热系数的单位为。
10.327℃的黑体辐射能力为27℃黑体辐射能力的倍,在同一温度下物体的发射率与数值上相等。
11.一套管式换热器,管内走空气,环隙为水蒸汽冷凝,为强化传热,在管表面加翅片,则翅片应加在管侧(填“内”或“外”),加装翅片对传热有两方面的作用:和。
12.工业上,大容积沸腾传热应在沸腾状态下操作,蒸汽冷凝有和两种方式,设计冷凝装置时一般都按冷凝来处理。
武汉科技大学
2004年硕士研究生入学考试试题
课程名称:化工原理总页数:5 第 1 页
说明:1.适用专业:化学工程,化学工艺,环境工程
2.可使用的常用工具:计算器、三角板等文具
3.答题内容,请写在答题纸上,写在试卷上一律无效
、、填空题(每空2分共46分)
1.
流体在圆管中流动,并处于阻力平方区(完全粗糙区),若其他条件不变,
流速增大,则摩擦系数λ;阻力损失。
2.工程上离心泵的流量调节是通过调节阀门来进行,
而往复泵的流量调节则是通过来进行;
当离心泵入口处压力低于同温度下输送液体的饱和蒸汽压时,则会发生
现象;当流体为理想流体,叶轮为理想叶轮时,流体通过叶轮所获得的能
量,称离心泵的扬程。
3.
某单级萃取过程中,若已知萃取液中溶质A的含量为y A′=0.6(质量分率,
下同)萃余液中原溶剂B的含量为x B′=0.8,则选择性系数β为;
4.
两流体通过换热器进行换热操作,已知热流体温度由80℃降至40℃,冷流体温度相应由20℃升至50℃,则此两流体的换热操作为操作
1。
北京化工大学化工原理实验报告实验名称:流体阻力实验班级:化工1305班*名:***学号:********** 序号:11同组人:宋雅楠、陈一帆、陈骏设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第4套实验日期:2015-11-27一、实验摘要首先,本实验使用UPRS Ⅲ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。
确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re 和相对粗糙度的函数。
该实验结果可为管路实际应用和工艺设计提供重要的参考。
结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis 关系式:0.250.3163Re λ= 。
突然扩大管的局部阻力系数随Re 的变化而变化。
关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度二、实验目的1、掌握测定流体流动阻力实验的一般实验方法:①测量湍流直管的阻力,确定摩擦阻力系数。
②测量湍流局部管道的阻力,确定摩擦阻力系数。
③测量层流直管的阻力,确定摩擦阻力系数。
2、验证在湍流区内摩擦阻力系数λ与雷诺数Re 以及相对粗糙度的关系。
3、将实验所得光滑管的λ-Re 曲线关系与Blasius 方程相比较。
三、实验原理1、 直管阻力不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。
由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。
为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。
利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。
化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。
(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。
2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。
3.熟悉压差计和流量计的使用方法。
4.认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
化工原理第二版下册化工原理是化学工程专业的重要基础课程,它涉及到化学工程领域的基本理论和知识,对于培养学生的工程思维和解决实际问题的能力具有重要意义。
本文将就化工原理第二版下册的内容进行介绍和解析,希望能够对学习化工原理的同学们有所帮助。
第一章,传质过程。
传质过程是化工过程中非常重要的一部分,它涉及到物质在不同相之间的传递和分布。
在本章中,我们将学习到各种传质过程的基本理论和计算方法,包括扩散、对流、质量传递系数等内容。
通过学习本章,我们可以更好地理解化工过程中的传质现象,并能够进行相应的传质计算和设计。
第二章,传热过程。
传热过程是化工过程中不可或缺的一部分,它涉及到热量在不同物质之间的传递和分布。
在本章中,我们将学习到各种传热过程的基本理论和计算方法,包括导热、对流、辐射传热等内容。
通过学习本章,我们可以更好地理解化工过程中的传热现象,并能够进行相应的传热计算和设计。
第三章,化工流程。
化工流程是化工工程中的核心内容,它涉及到物质在设备和管道中的流动和转化。
在本章中,我们将学习到各种化工流程的基本原理和计算方法,包括流体力学、动量平衡、能量平衡等内容。
通过学习本章,我们可以更好地理解化工过程中的流动现象,并能够进行相应的流程设计和优化。
第四章,化工反应工程。
化工反应工程是化工工程中的重要组成部分,它涉及到物质在化学反应中的转化和产物的选择。
在本章中,我们将学习到各种化工反应的基本原理和计算方法,包括反应动力学、反应速率、反应器设计等内容。
通过学习本章,我们可以更好地理解化工过程中的化学反应过程,并能够进行相应的反应工程设计和优化。
总结。
化工原理第二版下册涵盖了化工工程中的传质、传热、流程和反应等重要内容,通过学习本书,我们可以更好地掌握化工工程的基本理论和方法,为将来的工程实践打下坚实的基础。
希望同学们能够认真学习本书,并将所学知识运用到实际工程中,不断提高自己的专业能力和素质。
化工原理是一门综合性强、理论性强、实践性强的学科,希望同学们能够在学习过程中保持好奇心,不断探索和创新,为未来的化工工程事业做出更大的贡献。