现代无机合成
- 格式:doc
- 大小:102.00 KB
- 文档页数:11
无机化学合成方法无机化学合成方法指的是通过化学反应将原材料转化成所需的无机化合物的方法。
在实验室中,无机化学合成方法是一种常用的手段,广泛应用于材料科学、催化剂制备、功能材料设计等领域。
本文将介绍几种常见的无机化学合成方法。
1. 沉淀法沉淀法是一种常见的无机化学合成方法,通过控制反应条件,使溶液中的溶负离子与溶正离子发生反应生成沉淀。
沉淀法常用于合成无机盐类、氧化物和氢氧化物等无机化合物。
例如,制备氢氧化铜的实验中,可以将铜盐加入氢氧化钠溶液中反应生成深蓝色沉淀。
2. 水热合成法水热合成法是利用高温高压水溶液中的热力学参数,以及水分子的溶剂能力进行合成的方法。
该方法广泛应用于制备陶瓷材料、纳米颗粒、多孔材料等。
水热合成法具有简单、环境友好等优点。
例如,通过水热合成方法可以制备出具有特定形状和尺寸的二氧化钛纳米颗粒。
3. 气相合成法气相合成法是一种将气体反应物在高温条件下进行化学变换的合成方法。
气体反应物经过一系列反应,形成所需的无机化合物。
常见的气相合成方法包括化学气相沉积(Chemical Vapor Deposition,CVD)和物理气相沉积(Physical Vapor Deposition,PVD)。
气相合成法广泛应用于薄膜的制备、纤维材料的合成等领域。
4. 溶胶-凝胶法溶胶-凝胶法是一种将溶液转变为凝胶或固体的合成方法。
通过溶胶-凝胶法可以合成出具有特定形貌、结构和功能的无机材料。
该方法具有制备复杂形态材料的能力,广泛应用于催化剂的制备、光催化材料的合成等。
例如,通过溶胶-凝胶法可以制备出二氧化硅凝胶材料,具有高比表面积和孔隙结构,可用于吸附分离、催化反应等领域。
总结:无机化学合成方法是实验室中常用的方法之一,通过控制反应条件和选择合适的原料,可以合成出各种无机化合物。
本文介绍了沉淀法、水热合成法、气相合成法和溶胶-凝胶法四种常见的无机化学合成方法。
这些方法在材料科学、催化剂制备和功能材料设计等领域具有重要的应用价值。
新型无机功能材料的化学合成及应用随着科技的进步和人们的生活水平不断提高,各类新型无机功能材料在众多领域中得到越来越广泛的应用。
无机材料与有机材料相比,具有更强的化学稳定性、抗高温性、硬度、导电性等优秀的性能。
这种优秀性能使得无机材料被广泛应用于电子元器件、催化剂、燃料电池等领域。
本文将对新型无机功能材料的化学合成及应用进行简要介绍。
一、新型无机功能材料的化学合成1. 氧化石墨烯氧化石墨烯是一种重要的二维材料,具有优异的电学、光学、力学等性能,可广泛应用于电子器件、催化剂、光电器件、生物医学等领域。
氧化石墨烯的合成方法有很多种,比如Hummers方法、Brook方法、改良Hummers方法等,其中Hummers方法是氧化石墨烯最常用的合成方法。
2. 二氧化钛纳米晶二氧化钛纳米晶是一种重要的半导体材料,由于其良好的光电性质和光学性质,例如光催化性能良好,并且具有深深的应用前景。
二氧化钛纳米晶有几种典型的制备方法,如水热法、氧化物沉淀法、溶胶-凝胶法等,其中水热法是目前研究较多的可行方法。
3. 磷灰石陶瓷材料磷灰石陶瓷具有良好的生物相容性和组织相容性,是一种重要的生物医学材料。
磷灰石陶瓷的制备方法有多种,但最常用的是燃烧合成法。
该方法可以便捷地获得陶瓷坯,且其成本相对较低。
二、新型无机功能材料的应用领域1. 电子器件无机功能材料作为电子器件中的关键材料,可以提高电子元器件的耐磨性、导电性和耐热性,对于现代电子技术的发展具有重要意义。
例如,用于导电膜的氧化铟锡材料、用于电容器的二氧化钛材料以及用于发射材料的钨材料等都属于无机功能材料的范畴。
2. 催化剂催化剂是化学反应中的重要物质之一,它能够降低反应的活化能以及改变反应的粘度,从而促进化学反应的发生。
无机功能材料作为催化剂的关键组分,可以在燃料电池、石化等领域中发挥重要作用。
3. 燃料电池燃料电池作为最具前景的清洁能源之一,在汽车等领域中的应用前景广阔。
无机合成技术无机合成技术是一种重要的化学工艺,它通过人工手段合成无机化合物。
无机合成技术在许多领域中都有广泛的应用,如材料科学、医药化学、能源开发等。
本文将探讨无机合成技术的原理、应用以及未来发展方向。
一、原理介绍无机合成技术是通过组织无机分子之间的反应,生成新的无机化合物。
这种技术涉及到多种化学反应,其中最常见的是还原、氧化、配位以及沉淀反应。
这些反应可以在高温、高压或特定催化剂的存在下进行,以实现无机化合物的合成。
在无机合成技术中,化学反应的条件是至关重要的。
例如,在高温和高压条件下,一些物质的化学性质会发生明显的变化,从而导致新的无机化合物的生成。
此外,选择合适的催化剂也可以促进反应的进行,提高合成效率。
二、应用领域1. 材料科学无机合成技术在材料科学领域中有着广泛的应用。
例如,通过无机合成技术可以合成具有特定功能的纳米材料,如金属纳米颗粒、氧化物纳米线等。
这些纳米材料在光电子学、催化剂和新能源等领域具有重要的应用前景。
2. 医药化学无机合成技术在医药化学中也发挥着重要作用。
通过无机合成技术可以合成具有特定活性的无机化合物,用于制备药物,治疗疾病。
例如,抗癌药物顺铂就是通过无机合成技术合成的。
3. 能源开发无机合成技术在能源开发领域也有着广泛的应用。
例如,通过无机合成技术可以合成高效的催化剂,用于燃料电池和光催化等能源转化过程。
此外,无机合成技术还可以合成新型能源材料,如锂离子电池的正极材料。
三、发展趋势随着科技的不断进步,无机合成技术也在不断发展。
未来,无机合成技术有以下几个发展趋势:1. 绿色合成绿色合成是无机合成技术发展的重要方向之一。
绿色合成是指在无机合成过程中尽可能减少或消除对环境的污染。
例如,采用可再生能源作为能源来源,使用非毒性的催化剂等。
绿色合成的发展将在保护环境的同时提高合成效率。
2. 纳米材料的合成纳米材料的合成将成为无机合成技术的重要研究方向。
纳米材料具有特殊的物理和化学性质,在材料科学、医药化学和能源开发等领域具有广泛的应用前景。
现代无机合成的内容和研究对象
现代无机合成是指利用化学方法和技术,通过化学反应合成新的无机化合物的过程。
它是无机化学领域的重要分支,涉及到多种化学反应和合成方法,如溶剂热法、水热法、气相沉积法、溶胶凝胶法等。
现代无机合成的研究对象主要包括以下几个方面:
1. 无机材料的合成:无机材料是指由无机化合物制成的材料,如氧化物、硫化物、氮化物等。
现代无机合成技术可以制备出具有特殊物理、化学性质的无机材料,如高温超导体、光催化剂、催化剂等。
2. 纳米材料的合成:纳米材料是指尺寸在1-100纳米之间的材料,由于其具有特殊的物理、化学性质,在材料科学、物理、化学、生物学等领域有着广泛的应用。
现代无机合成技术可以制备出具有特殊形貌和结构的纳米材料,如纳米颗粒、纳米线、纳米片等。
3. 金属有机框架材料的合成:金属有机框架材料是一种由金属离子和有机配体组成的多孔材料,具有高度的表面积和孔隙度,可以应用于气体吸附、分离、储存等领域。
现代无机合成技术可以制备出具有特殊结构和性质的金属有机框架材料。
4. 无机功能材料的合成:无机功能材料是指具有特殊功能的无机化合物或材料,
如发光材料、电子材料、磁性材料、电池材料等。
现代无机合成技术可以制备出具有特殊功能的无机功能材料,如发光二极管、太阳能电池等。
总之,现代无机合成技术的研究对象涵盖了无机材料、纳米材料、金属有机框架材料、无机功能材料等多个领域,这些材料和材料体系在材料科学、物理、化学、生物学等领域具有广泛的应用前景。
化学物质无机合成化学物质是现代社会中不可或缺的一部分,它们广泛应用于医药、农业、工业等各个领域。
其中,无机合成是一项重要的化学技术,涉及到合成无机化合物和材料。
本文将探讨化学物质无机合成的原理、方法和应用。
一、无机合成的原理无机合成是指通过无机化学原理和方法,将不同的无机物质反应生成目标无机物质的过程。
无机合成涉及到多种反应类型,包括酸碱中和反应、氧化还原反应、置换反应、络合反应等。
在无机合成中,化学反应的速度和产率是重要的考虑因素。
因此,在设计无机合成的过程中,需要选择合适的反应条件和催化剂,以促进反应的进行。
此外,反应物的纯度和比例也是影响合成效果的重要因素。
二、无机合成的方法无机合成方法繁多,下面介绍几种常见的方法。
1. 溶液法溶液法是一种常用的无机合成方法。
在溶液中,通过控制反应物的加入顺序和条件,可以合成出各种无机化合物。
同时,溶液法也可用于合成纳米材料,通过调控溶液中的反应条件,可以控制纳米材料的粒径和形貌。
2. 沉淀法沉淀法是通过加入一种沉淀剂,使溶液中的某些离子沉淀下来形成固体产物的方法。
此方法常用于制备无机颗粒材料和无机薄膜材料。
3. 水热合成法水热合成法是一种在高温高压水环境下进行的无机合成方法。
在水热条件下,反应速度加快,反应物更容易溶解和反应,从而促进无机合成的进行。
这种方法适用于合成金属氧化物、金属硫化物等材料。
4. 气相沉积法气相沉积法是通过将反应物的气态前体物质在高温下分解或反应,生成目标无机材料的方法。
此方法常用于制备薄膜材料和纳米颗粒。
三、无机合成的应用无机合成在各个领域都有广泛应用。
1. 医药领域无机合成用于合成药物的中间体或活性成分。
许多药物,如抗癌药物、抗生素等,都需要通过无机合成来制备。
2. 农业领域农业领域需要大量的无机化合物,如肥料、农药等。
通过无机合成,可以制备出高效、环保的农药和肥料,提高农作物的产量和质量。
3. 工业领域工业领域需要大量的无机材料,如金属氧化物、金属硫化物等。
无机合成原理及技术无机合成原理及技术无机合成是指通过化学反应使一种或多种无机物在一定条件下合成新的无机物的化学反应过程。
无机合成广泛应用于矿物学、地球化学、生态学、材料科学、工业药品生产和材料学等领域。
它是现代科技和社会发展的重要组成部分之一。
一、无机合成原理无机合成原理涉及了无机化学各个领域,主要可以从化学官能团、化学键和反应机理三个方面来进行讨论。
1. 化学官能团原理无机合成的化学官能团原理主要涉及了无机物中的离子(阳离子、阴离子)和桥配体(分子中两个或多个原子的配位点上配位取代的化学物质)等。
通过这些离子和配体的反应,可以得到新的无机物。
阳离子和阴离子的反应通常是直接组成盐或离子络合物。
例如,硝酸铜和氯化铁反应后可以得到硝酸铁和氯化铜:Cu(NO3)2 + FeCl3 → Fe(NO3)3 + CuCl2分子内配位取代的化学物质如果具有桥配性,将能促使化学反应的进行。
例如,二价的硫化物离子(S2-)在配位时可与两个质子配位形成硫氢盐,而氧化物离子则可以强烈协同桥配M(ox)2,如BaM(ox)2(M指金属离子)。
2. 化学键原理在无机化学反应中,形成化学键是至关重要的。
在不同的反应条件下,使用不同类型和性质的反应试剂可形成不同种类的化学键,以此来合成不同种类的无机物。
在利用化学键原理进行无机合成时,我们通常会碰到这样的情况:一个阳离子和一个阴离子之间,由于一种离子间作用力的存在(静电力)将会形成一种带电的复合物。
这种离子间作用力,通常会在化学反应中扮演重要的角色。
例如在硫酸钠和硝酸银反应时:Na2SO4 + AgNO3 → Ag2SO4 + 2NaNO3硫酸根离子与银离子反应之后,在产物中形成了银硫酸盐沉淀,而硝酸根离子则与钠离子结合形成了稳定的溶液。
3. 反应机理原理在无机化学反应过程中,反应机理通常具有很大的影响。
不同的反应机理可能会导致不同类型的反应产物,或者同一组反应试剂在不同反应条件下,可能会导致不同的反应机理。
无机化学物质的合成和应用无机化学是研究无机物质的性质、合成、结构和反应的一门学科。
无机化学物质指的是没有含碳-碳或碳-氢化学键的化合物,例如水、氧、硫酸等等。
在现代化学领域,无机化学物质已经广泛应用于矿物、金属、材料、医药、电子等多个领域。
在本文中,我们将重点探讨无机化学物质的合成方法和应用。
一、无机化合物的合成1. 溶液法溶液法是一种常见的制备无机化合物的方法。
该方法是将反应物通过溶解在适当溶剂中,然后在合适的条件下进行反应,从而得到所需的产物。
例如,铁氰化钾可以通过氰化钾和铁二价离子的溶液反应得到。
这种方法较为简单,但是需要注意选择合适的溶剂和反应条件,以确保得到高纯度的产物。
2. 固相法固相法是一种在固体相中进行反应的无机化合物合成方法。
该方法与溶液法不同,反应物通常是以固态的形式存在,然后进行热处理或加入催化剂等条件来促进反应。
例如,氧化铝可以通过热处理氢氧化铝的固体来合成。
固相法适用于不易在溶液中反应的化学反应,但是需要控制反应条件以避免产生杂质。
3. 气相法气相法是一种在气相中进行反应的无机化合物合成方法。
该方法通常需要将反应物在特定温度和压力下流动,然后利用气相反应的机制进行反应。
例如,酸性氮化硅可以通过在氮化硅和氨气的反应中得到。
气相法适用于不易在溶液中和固态中合成的化合物,但是需要高端设备和控制良好的反应条件,以确保产物的纯度。
二、无机化合物的应用1. 材料科学无机化合物在材料科学中广泛应用,例如金属、陶瓷、玻璃、高分子等材料的制备中,无机化合物是不可或缺的原料。
例如氧化铝、氮化硼、碳化硅等无机化合物可以作为陶瓷材料、涂料材料等的重要基础材料,具有高温稳定性、良好的化学稳定性等优良性质。
2. 医药领域无机化合物在医药领域具有广泛应用。
例如,金属铂常被用于癌症治疗的药物中。
金属铂可以与DNA中的碱基配对形成交联,从而阻止癌细胞的生长和分裂。
此外,铁、钙等离子也被广泛应用于健康和药物领域。
现代无机合成的内容和研究对象无机合成是化学领域中的一个重要分支,它研究的是无机化合物的合成方法和过程。
无机合成的内容涵盖了广泛的领域,包括金属有机化学、配位化学、固体化学等。
无机合成的研究对象是无机化合物,其中包括无机盐、金属配合物、氧化物、硫化物等。
无机合成的研究对象之一是无机盐。
无机盐是由阳离子和阴离子组成的化合物,常见的无机盐有氯化钠、硫酸铜、硝酸铵等。
无机盐的合成方法有很多种,常见的方法包括溶液法、固相反应法、气相反应法等。
例如,氯化钠可以通过溶液法将氢氧化钠和盐酸反应得到,也可以通过固相反应将氯气和金属钠反应得到。
金属配合物是无机合成的另一个重要研究对象。
金属配合物是由金属离子和配体组成的化合物,配体可以是有机分子或无机分子。
金属配合物广泛应用于催化、生物医学和材料科学等领域。
金属配合物的合成方法包括配体置换法、配位反应法等。
例如,铁配合物可以通过将铁离子和配体反应得到,常见的铁配合物有氯化铁和氨配合物。
固体化学也是无机合成的重要研究内容之一。
固体化学研究的是固体物质的合成方法和性质。
无机固体化合物的合成方法有很多种,常见的方法包括固相法、溶胶凝胶法、水热法等。
固体化合物的合成方法和条件对其性质有很大影响,合适的合成方法可以得到具有特定性质的固体化合物。
例如,氧化锌可以通过固相法将金属锌和氧气反应得到,也可以通过溶胶凝胶法将金属盐和氢氧化钠反应得到。
现代无机合成的内容包括无机盐、金属配合物和固体化合物的合成方法和过程。
研究对象包括无机化合物中的阳离子、阴离子、金属离子和配体等。
无机合成研究的目的是为了得到具有特定性质和应用价值的无机化合物,推动无机化学领域的发展。
通过不断改进合成方法和理解合成过程,可以制备出更多新颖、高效的无机化合物,为人类社会的发展做出更大的贡献。
现代无机合成技术*名:***学号: *********所属学院:化学学院专业:物理化学班级:化学2班*师:**2015 年1 月5 日纳米TiO2的性能、应用及其制备方法综述摘要:纳米TiO2具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在光催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、气敏传感器件等方面具有广阔的应用前景。
同时它也是一种新型的无机功能材料,显示出很多传统二氧化钛所不具备的奇异的性能,在光电转换和光催化方面有广阔的应用前景,其制备以及应用已经成为材料研究的热点之一。
本文对有关纳米TiO2的性能、应用及制备方法研究进行了综述。
关键字:纳米TiO2、性能、应用、制备一、简介:纳米二氧化钛:亦称纳米钛白粉。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在100纳米以下,其外观为白色疏松粉末。
具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。
二、分类:①、按照晶型可分为:金红石型纳米钛白粉和锐钛型纳米钛白粉。
②、按照其表面特性可分为:亲水性纳米钛白粉和亲油性纳米钛白粉。
③、按照外观来分有,粉体和液体之分,粉体一般都是白色液体有白色和半透明状。
三、纳米TiO2的性能纳米TiO2除了具有与普通纳米材料一样的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等外,还具有其特殊的性质,尤其是催化性能。
3.1基本物化特性纳米TiO2有金红石、锐钛矿和板钛矿3种晶型。
金红石和锐钛矿属四方晶系,板钛矿属正交晶系,一般情况下,板钛矿在650℃转变为锐钛矿,锐钛矿915℃转变为金红石,结构转变温度与TiO2颗粒大小、含杂质及其制备方法有关,颗粒愈小,转变温度愈低,锐钛型纳米TiO2向金红石型转变的温度为600℃或低于此温度,纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水、稀酸,微溶于碱和热硝酸,不与空气中CO2、SO2、O2等反应,具有生物惰性和热稳定性,无毒性[1]。
3.2光催化性利用有些半导体材料对有机污染物进行光催化降解,最终使其生成无毒、无味的CO2、H2O和一些简单的无机物,正在成为环保领域的一项工业化技术。
纳米TiO2是一种n型半导体材料,禁带宽度较宽,其中锐钛型为3.2 eV,金红石型为3.0eV,当它吸收了波长小于或等于387.5nm的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,吸附在TiO2表面的氧俘获电子形成•O2-,而空穴则将吸附在TiO2表面的OH-和H2O氧化成具有强氧化性的•OH,反应生成的原子氧、氢氧自由基都有很强的化学活性,氧化降解大多数有机污染物,同时空穴本身也可夺取吸附在半导体表面的有机物质中的电子,使原本不吸收光的物质被直接氧化分解,这两种氧化方式可能单独起作用也可能同时起作用,对于不同的物质两种氧化方式参与作用的程度有所不同[2]。
此外,许多有机物也被直接氧化降解,这为消除环境污染、污水处理开辟了一条新路。
3.3超亲水性近几年来,有许多关于将二氧化钛光催化剂固定与玻璃、墙面砖和卫生洁具等物品表面,从而使它们具有杀菌、自洁净、光催化降解污物等功能的研究。
已有研究表明,薄膜在光照下的亲水性对二氧化钛光催化表面的自洁净、易清洗等性能具有十分重要的影响。
当水在二氧化钛薄膜表面的接触角小于150时具有高的水流动性,小于100时有自清洁效果,小于70时有防霉效果[3]。
因而有关这方面的研究工作越来越多。
FUJISHIMA课题组发现当二氧化钛薄膜在紫外光照射下,水在二氧化钛薄膜表面的润湿角逐渐下降到00,他们把这种现象称为二氧化钛薄膜超亲水性。
四、纳米TiO2的制备方法目前,纳米TiO2的制备方法很多,一般可以分为物理法和化学法。
4.1物理法常用的物理法有气相冷凝法、粉碎法和真空冷凝法。
气相冷凝法是通过多种方法使物质挥发成气相,并经过特殊工艺冷凝成核得到纳米粉体。
由于使材料气化的方法有很多种,因此气相冷凝法的工艺也千差万别。
在气化和冷凝过程中须有保护性气氛,可以通过控制蒸发和冷凝的工艺条件来控制粉体的粒径。
气相蒸发沉积法、溅射法、蒸发-凝聚法、等离子法都是气相冷凝制备纳米粉体的重要方法。
该方法制备的粉体纯度高,颗粒大小分布均匀,尺寸可控,适于生产高熔点纳米金属粒子或纳米颗粒薄膜。
粉碎法,是利用球磨机转动和振动时的巨大能量,将原料粉碎为细小颗粒。
其制备纳米粉体的优点是工艺简单,易实现连续生产,并能制备出高熔点的金属和合金材料,缺点是其对设备要求很高,而且颗粒大小不均匀,容易引入杂质。
真空冷凝法用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。
其特点是纯度高、结晶组织好、粒度可控,但技术设备要求高。
4.2化学法4.2.1气相法① TiCl4氢氧火焰水解法该方法最初是由德国迪高沙(Degussa)公司开发。
其所用原料是TiCl4、H2和O2,是将TiCl4气体导入高温的氢氧火焰中进行气相水解.所得到的晶体类型一般是锐钛型和金红石型的混晶型。
优点是,产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小,且过程较短,自动化程度高。
不足之处就是过程温度较高,腐蚀严重,设备材质要求较严,对工艺参数控制要求精确。
因此产品成本较高,一般厂家难以承受。
主要用于电子材料、催化荆和功能陶瓷等方面,且该工艺已经成熟。
②TiCl4气相氧化法[4]该方法用的原料是TiCl4和O2,利用N2携带TiCl4蒸气,预热到435℃后经套管喷嘴的内管进入高温管式反应器,O2预热到870℃后经套管喷嘴的外管也进入反应器,TiCl4和O2在900℃---1400℃下反应生成的纳米TiO2微粒经粒子捕集系统,实现气固分离。
该工艺目前关键是要解决喷嘴和反应器的结构设计及TiO2粒子遇冷壁结疤且粒径难以控制的问题。
其优点是自动化程度高,可制备优质的粉体。
③钛醇盐气相水解法[5]该工艺最早是由美国麻省理工学院开发成功的,可以用来生产单分散的球形纳米TiO2。
该工艺已经在日本曹达公司实现了工业化,主要是利用氮气、氧气或空气作载气,把钛醇盐蒸气和水蒸气分别导入反应器,瞬间混合和快速水解。
通过改变反应区内各蒸汽的停留时间、浓度、流速、物质的量比以及反应温度等来调节纳米TiO2的粒径和形状。
用该法制的纳米TiO2粉体纯度高、分散性好、团聚少、表面活性大,特别适用于精细陶瓷、催化剂材料、电子材料。
该法是目前气相法制造纳米TiO2中使用最多的方法.该工艺的特点是操作温度较低、能耗小,对材质要求不高,并可以连续化生产。
但工艺过程需瞬间完成,要求反应物料在极短的时间内达到微观上的均匀混合。
因此,对反应器的类型、加热方式、进料方式均有很高的要求。
④钛醇盐热裂解法该工艺以钛醇盐为原料,氮气、氦气或氧气经纯化后携带醇盐蒸气,经喷嘴进入主反应器,以防止TiO2超细粒子在喷嘴上沉积堵住喷嘴,二者在主反应器进行热分解反应,另一路将汽化器出来的饱和反应气稀释以防止气流中钛醇盐在进入主反应器的途中冷凝析出。
反应器出口物料经粒子捕集系统实现气固完全分离。
用这种方法可生产出中球形非晶型超细TiO2,为提高分解反应速率,载气中最好含有水蒸气。
为提高所生成超细TiO2的耐候性,可向热分解炉内同时导入易挥发的金属化物蒸气,使超细TiO2粉体制备和无机表面处理同时进行。
⑤惰性气体原位加压(IGC)法此法以金属Ti为原料在铝蒸发器中电阻加热,蒸发后,送入的He气中,形成Ti微粒,并沉积在液态N2冷却棒上。
然后将棒加热到室温,引入O2,Ti粉被氧化成纳米TiO2粉末,平均粒径12nm,主要是锐钛矿型,含少量金红石型。
用聚四氟乙烯刮刀刮下,收集在成型模中,在1.4kPa压力下室温原位成型压制成一定形状的生坯,然后进行热压烧结或微波烧结成高密度的纳米TiO2陶瓷。
气相法的反应速度快,能实现连续化生产,而且产品纯度高、分散性好、团聚少、表面活性大,特别适用于精细陶瓷材料、催化材料和电子信息材料,但气相法反应要在高温下瞬间完成,要求反应物料在极短的时间内达到微观上的均匀混合,对反应设备、加热、进料方式等都有很高的要求。
目前气相法在我国还处于小试阶段,若实现工业化大生产,还要解决一系列工程和设备问题。
但气相法制备纳米级TiO2的前景较好。
4.2.2 液相法①TiCl4液相水解法将TiCl4直接溶于去离子水中,稀释到一定浓度,在表面活性剂作用下,再通入NH3或NH3•H2O,TiCl4发生水解反应析出TiO2·nH2O。
经过滤、洗涤、干燥和煅烧得TiO2微粉。
可以向TiCl4稀释液中加适量醋酸、柠檬酸等抑制剂控制水解反应的速度,进而控制粒度及分布及反团聚。
该法具有原料来源广泛、成本低廉、设备简单等优点,但是还存在TiCl4精制难、粉体的纯度低及粒径难以控制等问题。
②溶胶-凝胶法[6][7]溶胶-凝胶法是上世纪80年代以来新兴的一种制备法,它能通过低温化学手段控制材料的显微结构,在材料合成领域具有极大的应用价值。
近年来。
溶胶-凝胶法被广泛采用于制备纳米TiO2。
溶胶-凝胶法包括,溶胶的制备,溶胶,凝胶转化,凝胶的干燥和焙烧。
该工艺以钛酸丁酯为原料,经水解、缩聚得溶胶,再经进一步缩聚得到凝胶,凝胶经过干燥得到纳米TiO2。
在溶胶-凝胶法中,均匀稳定的溶胶是制备性能良好的光催化剂的先决条件。
由于钛酸丁酯极易水解,甚至会吸收空气中少量的水分而发生水解,生成水合氧化钛沉淀,因此在溶胶的制备过程中,需要加入适量的酸来抑制其水解。
其反应机理如下:水解反应:Ti(OR)4+xH2O Ti(OR)(4-x)(OH)x+xROH…Ti(OH)4缩聚反应:TiOH+HOTi TiOTi十H2O(失水缩聚)TiOR+HOTi TiOTi+ROH(失醇缩聚)溶剂化反应:Ti(OR)4+yROH Ti(OR)(4-y)(OR)y十yROH溶胶-凝胶法避免了以无机盐为原料的阴离子污染问题,所以制得的超细TiO2粉体纯度好、分布均匀、分散性好、煅烧温度低、反应易控制、副反应少、工艺操作简,能适用于对粉料纯度要求高的领域但原料成本较高凝胶颗粒之间烧结性差干燥时收缩大易造成颗粒间的团聚。
③超临界CO2干燥法该法是以溶胶-凝胶法为基础进一步处理。
由于超临界流体具有极好的溶解特性液体间不存在气液相界面且不受表面张力或毛细管作用力的影响。
该法在抽提溶剂和晶化的过程中不会因为存在表面张力作用而使凝胶网络结构塌陷和发生凝胶收缩团聚而使颗粒长大。
具体过程是将溶胶凝胶法得到的湿凝胶放于高压釜中根据试验所要求的温度、压力进行超临界CO2干燥。
该法可制得大孔、高比表面积、高堆密度的纳米TiO2可克服干燥过程中超细TiO2颗粒间的团聚问题但该法工艺复杂产品成本较高需要干燥的时间过长。