现代无机合成
- 格式:ppt
- 大小:1.15 MB
- 文档页数:37
无机化学合成方法无机化学合成方法指的是通过化学反应将原材料转化成所需的无机化合物的方法。
在实验室中,无机化学合成方法是一种常用的手段,广泛应用于材料科学、催化剂制备、功能材料设计等领域。
本文将介绍几种常见的无机化学合成方法。
1. 沉淀法沉淀法是一种常见的无机化学合成方法,通过控制反应条件,使溶液中的溶负离子与溶正离子发生反应生成沉淀。
沉淀法常用于合成无机盐类、氧化物和氢氧化物等无机化合物。
例如,制备氢氧化铜的实验中,可以将铜盐加入氢氧化钠溶液中反应生成深蓝色沉淀。
2. 水热合成法水热合成法是利用高温高压水溶液中的热力学参数,以及水分子的溶剂能力进行合成的方法。
该方法广泛应用于制备陶瓷材料、纳米颗粒、多孔材料等。
水热合成法具有简单、环境友好等优点。
例如,通过水热合成方法可以制备出具有特定形状和尺寸的二氧化钛纳米颗粒。
3. 气相合成法气相合成法是一种将气体反应物在高温条件下进行化学变换的合成方法。
气体反应物经过一系列反应,形成所需的无机化合物。
常见的气相合成方法包括化学气相沉积(Chemical Vapor Deposition,CVD)和物理气相沉积(Physical Vapor Deposition,PVD)。
气相合成法广泛应用于薄膜的制备、纤维材料的合成等领域。
4. 溶胶-凝胶法溶胶-凝胶法是一种将溶液转变为凝胶或固体的合成方法。
通过溶胶-凝胶法可以合成出具有特定形貌、结构和功能的无机材料。
该方法具有制备复杂形态材料的能力,广泛应用于催化剂的制备、光催化材料的合成等。
例如,通过溶胶-凝胶法可以制备出二氧化硅凝胶材料,具有高比表面积和孔隙结构,可用于吸附分离、催化反应等领域。
总结:无机化学合成方法是实验室中常用的方法之一,通过控制反应条件和选择合适的原料,可以合成出各种无机化合物。
本文介绍了沉淀法、水热合成法、气相合成法和溶胶-凝胶法四种常见的无机化学合成方法。
这些方法在材料科学、催化剂制备和功能材料设计等领域具有重要的应用价值。
新型无机功能材料的化学合成及应用随着科技的进步和人们的生活水平不断提高,各类新型无机功能材料在众多领域中得到越来越广泛的应用。
无机材料与有机材料相比,具有更强的化学稳定性、抗高温性、硬度、导电性等优秀的性能。
这种优秀性能使得无机材料被广泛应用于电子元器件、催化剂、燃料电池等领域。
本文将对新型无机功能材料的化学合成及应用进行简要介绍。
一、新型无机功能材料的化学合成1. 氧化石墨烯氧化石墨烯是一种重要的二维材料,具有优异的电学、光学、力学等性能,可广泛应用于电子器件、催化剂、光电器件、生物医学等领域。
氧化石墨烯的合成方法有很多种,比如Hummers方法、Brook方法、改良Hummers方法等,其中Hummers方法是氧化石墨烯最常用的合成方法。
2. 二氧化钛纳米晶二氧化钛纳米晶是一种重要的半导体材料,由于其良好的光电性质和光学性质,例如光催化性能良好,并且具有深深的应用前景。
二氧化钛纳米晶有几种典型的制备方法,如水热法、氧化物沉淀法、溶胶-凝胶法等,其中水热法是目前研究较多的可行方法。
3. 磷灰石陶瓷材料磷灰石陶瓷具有良好的生物相容性和组织相容性,是一种重要的生物医学材料。
磷灰石陶瓷的制备方法有多种,但最常用的是燃烧合成法。
该方法可以便捷地获得陶瓷坯,且其成本相对较低。
二、新型无机功能材料的应用领域1. 电子器件无机功能材料作为电子器件中的关键材料,可以提高电子元器件的耐磨性、导电性和耐热性,对于现代电子技术的发展具有重要意义。
例如,用于导电膜的氧化铟锡材料、用于电容器的二氧化钛材料以及用于发射材料的钨材料等都属于无机功能材料的范畴。
2. 催化剂催化剂是化学反应中的重要物质之一,它能够降低反应的活化能以及改变反应的粘度,从而促进化学反应的发生。
无机功能材料作为催化剂的关键组分,可以在燃料电池、石化等领域中发挥重要作用。
3. 燃料电池燃料电池作为最具前景的清洁能源之一,在汽车等领域中的应用前景广阔。
现代无机合成的内容和研究对象
现代无机合成是指利用化学方法和技术,通过化学反应合成新的无机化合物的过程。
它是无机化学领域的重要分支,涉及到多种化学反应和合成方法,如溶剂热法、水热法、气相沉积法、溶胶凝胶法等。
现代无机合成的研究对象主要包括以下几个方面:
1. 无机材料的合成:无机材料是指由无机化合物制成的材料,如氧化物、硫化物、氮化物等。
现代无机合成技术可以制备出具有特殊物理、化学性质的无机材料,如高温超导体、光催化剂、催化剂等。
2. 纳米材料的合成:纳米材料是指尺寸在1-100纳米之间的材料,由于其具有特殊的物理、化学性质,在材料科学、物理、化学、生物学等领域有着广泛的应用。
现代无机合成技术可以制备出具有特殊形貌和结构的纳米材料,如纳米颗粒、纳米线、纳米片等。
3. 金属有机框架材料的合成:金属有机框架材料是一种由金属离子和有机配体组成的多孔材料,具有高度的表面积和孔隙度,可以应用于气体吸附、分离、储存等领域。
现代无机合成技术可以制备出具有特殊结构和性质的金属有机框架材料。
4. 无机功能材料的合成:无机功能材料是指具有特殊功能的无机化合物或材料,
如发光材料、电子材料、磁性材料、电池材料等。
现代无机合成技术可以制备出具有特殊功能的无机功能材料,如发光二极管、太阳能电池等。
总之,现代无机合成技术的研究对象涵盖了无机材料、纳米材料、金属有机框架材料、无机功能材料等多个领域,这些材料和材料体系在材料科学、物理、化学、生物学等领域具有广泛的应用前景。
无机合成与催化应用课后题1.什么是无机合成?无机合成是研究无机物质及其不同物态的合成原理、合成技术、合成方法及对合成产物进行分离提纯及鉴定和表征的一门科学。
2.无机合成研究的主要内容(或基本问题)是什么?无机合成化学与反应规律问题;无机合成中的实验技术和方法问题;无机合成中的分离与纯化问题;无机合成中的结构鉴定和表征问题。
3.什么是材料?材料与化学物质的区别是什么?材料是指人类社会可以接受、能够经济地制造有用物品、器件、构件、机器或其他产品的物质,一般为固态物质。
4.材料科学与工程的四要素及其内在关系是什么?性能是确定材料用途的依据,并且最终将影响到材料的使用效能。
使用效能是材料研究的出发点,也是材料科学与工程所追求的最终目标,在很大程度上代表这一学科的发展水平。
材料的组成与结构一方面是特定的合成与制备条件的产物,另一方面又是决定材料性能与使用效能的内在因素,在材料科学与工程四要素中占有独特的承前启后的地位。
了解材料的组成与结构及它们同合成与制备之间、性能与使用效能之间的内在联系,是材料科学与工程的基本研究内容。
合成与制备是开发新材料、新器件的中心环节,也是提高材料质量、降低生产成本和提高经济效益的关键。
在材料科学与工程中合成与制备是最为基本和关键的要素。
5.按照组成结构特点,材料可以分为哪几类?金属材料;无机非金属材料(无机材料);有机高分子材料;复合材料。
6.什么是晶体缺陷?晶体缺陷有哪几种类型?品体缺陷对晶体性质有何影响?实际晶体中偏离理想完整点阵的部位或结构。
点线面体电子缺陷。
品体缺陷对晶体的光学、电学、磁学、热学、声学等物理性质及化学活性等有明显的影响。
7.经X射线晶体测定TiO和VO的晶胞边长,理论计算两晶体的密度分别为5.81g/cm3和6.49g/cm3;通过体积和质量实际测得该两晶体的密度分别为4.92g/cm3和5.92g/cm3。
试根据以上数据推断TiO和VO中具有肖特基缺陷还是具有弗伦克尔缺陷?8.什么是非晶体?非晶体的结构特征是什么?粒子在三维空间的排列呈现杂乱无序状态,即短程(几百pm范围内)有序、长程无序的固体统称为非品体,也称为无定形体或玻璃体。
无机合成原料
无机合成原料主要指那些不包含碳-氢键的化合物,如无机酸、无机碱、金属氧化物、无机盐等。
这些原料在工业生产和科学研究中有着广泛的应用,例如在化学工业中用于制造各种无机化学品,如酸、碱、盐、氧化物等;在材料科学中用于合成新型的无机材料;在农业中用作肥料和农药等。
以下是一些常见的无机合成原料:
1.无机酸:如硫酸、盐酸、硝酸等,可用于制造各种酸类和衍生物。
2.无机碱:如氢氧化钠、氢氧化钾等,可用于制造各种无机化合物。
3.金属氧化物:如氧化钙、氧化镁等,可用于制造各种金属盐类和氧化物。
4.无机盐:如氯化钠、硫酸钠等,可用于制造各种无机盐类和衍生物。
5.金属单质:如铁、铝、铜等,可用于制造各种金属制品和合金。
这些无机合成原料具有广泛的应用前景,通过进一步的研究和开发,可以合成出更多具有优异性能的新型无机材料,为人类的生产和生活带来更多的便利和效益。
化学物质无机合成化学物质是现代社会中不可或缺的一部分,它们广泛应用于医药、农业、工业等各个领域。
其中,无机合成是一项重要的化学技术,涉及到合成无机化合物和材料。
本文将探讨化学物质无机合成的原理、方法和应用。
一、无机合成的原理无机合成是指通过无机化学原理和方法,将不同的无机物质反应生成目标无机物质的过程。
无机合成涉及到多种反应类型,包括酸碱中和反应、氧化还原反应、置换反应、络合反应等。
在无机合成中,化学反应的速度和产率是重要的考虑因素。
因此,在设计无机合成的过程中,需要选择合适的反应条件和催化剂,以促进反应的进行。
此外,反应物的纯度和比例也是影响合成效果的重要因素。
二、无机合成的方法无机合成方法繁多,下面介绍几种常见的方法。
1. 溶液法溶液法是一种常用的无机合成方法。
在溶液中,通过控制反应物的加入顺序和条件,可以合成出各种无机化合物。
同时,溶液法也可用于合成纳米材料,通过调控溶液中的反应条件,可以控制纳米材料的粒径和形貌。
2. 沉淀法沉淀法是通过加入一种沉淀剂,使溶液中的某些离子沉淀下来形成固体产物的方法。
此方法常用于制备无机颗粒材料和无机薄膜材料。
3. 水热合成法水热合成法是一种在高温高压水环境下进行的无机合成方法。
在水热条件下,反应速度加快,反应物更容易溶解和反应,从而促进无机合成的进行。
这种方法适用于合成金属氧化物、金属硫化物等材料。
4. 气相沉积法气相沉积法是通过将反应物的气态前体物质在高温下分解或反应,生成目标无机材料的方法。
此方法常用于制备薄膜材料和纳米颗粒。
三、无机合成的应用无机合成在各个领域都有广泛应用。
1. 医药领域无机合成用于合成药物的中间体或活性成分。
许多药物,如抗癌药物、抗生素等,都需要通过无机合成来制备。
2. 农业领域农业领域需要大量的无机化合物,如肥料、农药等。
通过无机合成,可以制备出高效、环保的农药和肥料,提高农作物的产量和质量。
3. 工业领域工业领域需要大量的无机材料,如金属氧化物、金属硫化物等。
无机合成原理及技术无机合成原理及技术无机合成是指通过化学反应使一种或多种无机物在一定条件下合成新的无机物的化学反应过程。
无机合成广泛应用于矿物学、地球化学、生态学、材料科学、工业药品生产和材料学等领域。
它是现代科技和社会发展的重要组成部分之一。
一、无机合成原理无机合成原理涉及了无机化学各个领域,主要可以从化学官能团、化学键和反应机理三个方面来进行讨论。
1. 化学官能团原理无机合成的化学官能团原理主要涉及了无机物中的离子(阳离子、阴离子)和桥配体(分子中两个或多个原子的配位点上配位取代的化学物质)等。
通过这些离子和配体的反应,可以得到新的无机物。
阳离子和阴离子的反应通常是直接组成盐或离子络合物。
例如,硝酸铜和氯化铁反应后可以得到硝酸铁和氯化铜:Cu(NO3)2 + FeCl3 → Fe(NO3)3 + CuCl2分子内配位取代的化学物质如果具有桥配性,将能促使化学反应的进行。
例如,二价的硫化物离子(S2-)在配位时可与两个质子配位形成硫氢盐,而氧化物离子则可以强烈协同桥配M(ox)2,如BaM(ox)2(M指金属离子)。
2. 化学键原理在无机化学反应中,形成化学键是至关重要的。
在不同的反应条件下,使用不同类型和性质的反应试剂可形成不同种类的化学键,以此来合成不同种类的无机物。
在利用化学键原理进行无机合成时,我们通常会碰到这样的情况:一个阳离子和一个阴离子之间,由于一种离子间作用力的存在(静电力)将会形成一种带电的复合物。
这种离子间作用力,通常会在化学反应中扮演重要的角色。
例如在硫酸钠和硝酸银反应时:Na2SO4 + AgNO3 → Ag2SO4 + 2NaNO3硫酸根离子与银离子反应之后,在产物中形成了银硫酸盐沉淀,而硝酸根离子则与钠离子结合形成了稳定的溶液。
3. 反应机理原理在无机化学反应过程中,反应机理通常具有很大的影响。
不同的反应机理可能会导致不同类型的反应产物,或者同一组反应试剂在不同反应条件下,可能会导致不同的反应机理。
无机化学物质的合成和应用无机化学是研究无机物质的性质、合成、结构和反应的一门学科。
无机化学物质指的是没有含碳-碳或碳-氢化学键的化合物,例如水、氧、硫酸等等。
在现代化学领域,无机化学物质已经广泛应用于矿物、金属、材料、医药、电子等多个领域。
在本文中,我们将重点探讨无机化学物质的合成方法和应用。
一、无机化合物的合成1. 溶液法溶液法是一种常见的制备无机化合物的方法。
该方法是将反应物通过溶解在适当溶剂中,然后在合适的条件下进行反应,从而得到所需的产物。
例如,铁氰化钾可以通过氰化钾和铁二价离子的溶液反应得到。
这种方法较为简单,但是需要注意选择合适的溶剂和反应条件,以确保得到高纯度的产物。
2. 固相法固相法是一种在固体相中进行反应的无机化合物合成方法。
该方法与溶液法不同,反应物通常是以固态的形式存在,然后进行热处理或加入催化剂等条件来促进反应。
例如,氧化铝可以通过热处理氢氧化铝的固体来合成。
固相法适用于不易在溶液中反应的化学反应,但是需要控制反应条件以避免产生杂质。
3. 气相法气相法是一种在气相中进行反应的无机化合物合成方法。
该方法通常需要将反应物在特定温度和压力下流动,然后利用气相反应的机制进行反应。
例如,酸性氮化硅可以通过在氮化硅和氨气的反应中得到。
气相法适用于不易在溶液中和固态中合成的化合物,但是需要高端设备和控制良好的反应条件,以确保产物的纯度。
二、无机化合物的应用1. 材料科学无机化合物在材料科学中广泛应用,例如金属、陶瓷、玻璃、高分子等材料的制备中,无机化合物是不可或缺的原料。
例如氧化铝、氮化硼、碳化硅等无机化合物可以作为陶瓷材料、涂料材料等的重要基础材料,具有高温稳定性、良好的化学稳定性等优良性质。
2. 医药领域无机化合物在医药领域具有广泛应用。
例如,金属铂常被用于癌症治疗的药物中。
金属铂可以与DNA中的碱基配对形成交联,从而阻止癌细胞的生长和分裂。
此外,铁、钙等离子也被广泛应用于健康和药物领域。
现代无机合成的内容和研究对象无机合成是化学领域中的一个重要分支,它研究的是无机化合物的合成方法和过程。
无机合成的内容涵盖了广泛的领域,包括金属有机化学、配位化学、固体化学等。
无机合成的研究对象是无机化合物,其中包括无机盐、金属配合物、氧化物、硫化物等。
无机合成的研究对象之一是无机盐。
无机盐是由阳离子和阴离子组成的化合物,常见的无机盐有氯化钠、硫酸铜、硝酸铵等。
无机盐的合成方法有很多种,常见的方法包括溶液法、固相反应法、气相反应法等。
例如,氯化钠可以通过溶液法将氢氧化钠和盐酸反应得到,也可以通过固相反应将氯气和金属钠反应得到。
金属配合物是无机合成的另一个重要研究对象。
金属配合物是由金属离子和配体组成的化合物,配体可以是有机分子或无机分子。
金属配合物广泛应用于催化、生物医学和材料科学等领域。
金属配合物的合成方法包括配体置换法、配位反应法等。
例如,铁配合物可以通过将铁离子和配体反应得到,常见的铁配合物有氯化铁和氨配合物。
固体化学也是无机合成的重要研究内容之一。
固体化学研究的是固体物质的合成方法和性质。
无机固体化合物的合成方法有很多种,常见的方法包括固相法、溶胶凝胶法、水热法等。
固体化合物的合成方法和条件对其性质有很大影响,合适的合成方法可以得到具有特定性质的固体化合物。
例如,氧化锌可以通过固相法将金属锌和氧气反应得到,也可以通过溶胶凝胶法将金属盐和氢氧化钠反应得到。
现代无机合成的内容包括无机盐、金属配合物和固体化合物的合成方法和过程。
研究对象包括无机化合物中的阳离子、阴离子、金属离子和配体等。
无机合成研究的目的是为了得到具有特定性质和应用价值的无机化合物,推动无机化学领域的发展。
通过不断改进合成方法和理解合成过程,可以制备出更多新颖、高效的无机化合物,为人类社会的发展做出更大的贡献。
无机化学中的新型合成方法无机化学是研究无机物质的性质、结构、合成和应用的学科。
在现代化学中,无机化学的研究造就了许多重大的发现和创新,这也为我们提供了解决许多现实问题的新方法。
针对当前无机化学领域热门话题,本文将为您探讨最新的无机化学合成方法。
一、金属有机骨架材料的合成新型金属有机骨架材料(Metal organic framework, MOF)是一种重要的无机化合物,可以广泛应用于气体储存、催化和吸附等领域。
MOF材料的合成一直是研究的重点之一。
近年来,一种独特的方法——热力学控制的“液体斧头编织”(Thermodynamic Control Liquid Axe Making, TCLAM)被成功应用到了MOF材料的合成中。
TCLAM方法是利用化学和热力学知识,通过对合成条件进行严格调控,形成化学反应的热力学驱动力,合理设计反应过程,从而实现MOF材料的高效合成。
这种方法具有高效、可重复性和环保等优点。
二、水相合成法水相合成法是将一部分或全部反应物溶解在水中进行的无机物合成方法。
这种方法具有反应条件温和、环保无污染等优点。
近年来,水相合成法在无机材料合成中得到了广泛应用。
比如,铝酸盐、硅酸盐、杂多酸等材料的合成都可以采用水相合成法进行。
在水相合成法中,所使用的水不仅可以作为溶剂,还可以作为模板剂或助剂等。
因此,这种方法可以减少反应过程中对有毒有害的溶剂的使用,保护环境。
三、高温高压合成法高温高压合成法是在高温高压条件下进行的无机物合成方法。
这种方法可以在简单的条件下合成高难度的无机化合物。
例如,高温高压合成法可以在非常高的温度和压力下,通过高温化学反应合成出各种难合成的高温超导材料。
同时,这种方法也可以用于合成金刚石、碳化硅、氧化铁等高性能材料。
高温高压合成法的优点是反应时间短、反应效率高、可以在高温高压条件下得到纯净的产物,是一种十分重要的无机材料合成方法。
总之,无机化学中的新型合成方法不断涌现,为研究者提供了更多的契机和挑战。
新型无机材料的合成及其应用研究一、引言无机化学中的材料合成和应用是一个非常重要的领域。
随着现代化技术的快速发展,对新材料的研究和发展也日益受到重视。
新型无机材料已经成为了当前材料科学的热点研究领域之一,这些材料具有许多独特的性质和广阔的应用前景。
本文主要探讨新型无机材料的合成方法以及其在不同领域中的应用。
二、新型无机材料的合成1. 晶体生长法晶体生长法是一种常见的无机材料合成方法。
它通过溶液中逐渐形成晶体的方式来合成无机材料。
这种方法通常需要控制化学反应物的浓度、温度、PH值等因素,以控制晶体生长的速度和方向,从而得到理想的晶体形态和尺寸。
常用的晶体生长方法包括坩埚法、溶液法、气相沉积等。
2. 气-液-固相法气-液-固相法是一种新型无机材料合成方法。
它是通过将固体材料与气体或液体反应,产生气态或液态的产物,然后在固体表面上形成新材料。
在这个过程中,固体在表面上形成一层胶状或熔融层,从而促进了反应。
气-液-固相法可以用于制备各种复杂的无机材料,如纳米颗粒、氧化物、硫化物等。
3. 水热法水热法是一种在高温高压水环境下进行无机材料合成的方法。
在水热条件下,物质和溶剂的热运动增强,表面张力减小,从而有利于固态反应在水热液相中进行。
水热法可以制备出具有催化活性、光学性质、导电性质等特殊性质的无机材料。
三、新型无机材料的应用1. 催化剂新型无机材料在催化剂领域具有广泛的应用前景。
很多新型无机材料具有良好的催化活性和选择性,可以用于工业催化合成、汽车废气处理、环境污染治理等领域。
例如,一些金属氧化物、非晶态材料和多孔材料等可作为催化剂中的活性组分。
2. 电子器件新型无机材料在电子器件领域中的应用也非常广泛。
例如,一些透明、导电材料如氧化铟锡、氧化铟锌等被广泛地应用于平板显示、透明电子、光伏电池等领域。
3. 生物医药新型无机材料在生物医药领域中也有着重要的应用。
例如,一些金属有机框架材料、纳米材料、荧光标记材料等可以用于癌症治疗、细胞成像、胰岛素控释等领域。
化学领域的无机合成方案无机合成是化学领域的重要分支,其研究内容主要涉及无机材料的化学合成及其性质表征。
在许多领域中,从生物医药到电子器件,无机化学合成工艺都逐渐成为不可或缺的技术手段。
本文将简要介绍一些目前在无机合成领域中应用广泛的一些方案,并对其工艺流程和优点进行简要论述。
一、溶剂热法溶剂热法是一种通过加热溶液来合成无机材料的方法。
其基本原理是在高温高压条件下,利用有机物作为介质溶解无机物,使其在高温下反应生成所需产物。
由于其工艺简单、易于控制,且所得产品具有优异的物理和化学性质,因此在材料科学、能源材料、环保等领域得到广泛应用。
以铜铈氧化物(COX)为例,使用乙二醇作为介质,在200℃的高温高压下合成,可得到具有均一分散性和纳米晶体结构的COX 粉末。
通过XRD和TEM等测试手段表明,该方法合成的COX样品具有优异的晶体结构和催化活性,可应用于高性能催化剂的制备等领域。
二、水热合成法水热合成法是一种通过高温高压条件下,在水和无机物的反应中合成材料的方法。
其主要原理是将溶解度较低的无机物质在高温和高压的状态下转化为可溶的物质,然后在适宜的温度下和其他物质结合形成所需产物。
由于水热合成法是否成功,往往取决于反应温度、时间和反应物的配比等因素。
以钙钛矿为例,可通过水热法合成出良好的晶体结构和光电性能的钙钛矿粉末材料。
通过TEM和XRD等实验检测表明,该方法制备的钙钛矿通过光催化分解甲醛的电化学测试表明,具有优异的光电化学催化性能,可在太阳能电池、光催化降解废水、光催化杀菌等领域中广泛应用。
三、溶胶-凝胶法溶胶-凝胶法是一种通过制备溶液或胶体,来制造无机材料的方法。
其主要过程是将溶液或胶体中所含的无机化合物阶段性进行固化,即将溶胶转化为凝胶,进而制备出所需的无机材料。
该方法具有高纯度、高度保真等优点,并在化学传感器、涂料、染料、催化剂等领域得到广泛应用。
以SiO2为例,溶胶-凝胶法可制备出高质量、高可靠性、高精度的SiO2材料。
上海大学2015~2016学年秋季学期研究生课程论文课程名称:现代无机合成课程编号:01SAJ9017论文题目:Hydrothermal-Electrochemical Synthesis of ZnO Nanorods作者姓名:刘志学号:15723697成绩:论文评语:任课教师签名:批阅日期:水热电化学合成ZnO纳米棒刘志上海市大场镇上大路99号上海大学理学院摘要ZnO纳米棒具有本体ZnO材料的性质以及其纳米结构带来的一些特性使得它在传感和光发射等领域有很大潜在应用价值。
本文采用SSP(soft solution proeessing)方法中的重要工艺方法—水热电化学法一步制备出ZnO纳米棒,达到了降低材料制造成本、减少环境污染、降低晶体缺陷密度的目的。
本研究首次对水热电化学法制备ZnO纳米棒的反应过程进行了热力学计算。
热力学计算得到水热电化学法制备ZnO纳米棒的反应历程为:Zn(NO3)2Zn2++2NO3-(1)NO3-+H2O+2e-NO2-+2OH-(2)Zn2++2OH-Zn(OH)2(3)Zn(OH)2ZnO+H2O水热电化学法制备的纳米棒的长度大约为4.3um,直径分布在90-150nm。
对于是否添加NaOH添加剂以及120-180℃之间不同条件的各组实验样品的形貌、结构以及光致发光性质都进行了表征。
在180℃合成的ZnO纳米棒显现出很强的UV 辐射和较弱的缺陷相关可见辐射,紫外-可见辐射之比约为230。
这种高质量光学性质主要归功于高温生长导致较高的纳米棒生长速率(4.3um/h)。
在热力学上分相不如ZnO相稳定。
因为生长温度在聚合物材料析是因为高温下缺陷相关Zn(OH)2承受范围之内,我们的方法提供了一种十分有前景的在灵活的聚合物基体上合成高光电性质的设备的方法。
关键词:水热电化学合成;ZnO;纳米棒;光致发光;PET,三电极体系Hydrothermal-Electrochemical Synthesis of ZnONanorodsLiuzhiDepartment of Science,Shanghai University,99Shangda Road,Dachang District,Shanghai Abstract:Properties of zno nanorods with ontology zinc oxide(ZnO)materials and some of the features of the nano structure make it in the fields such as sensor and optical emission have great potential application value.This paper adopts an important process of the SSP(soft solution proeessing)method-hydrothermal-electrochemical method to synthesis ZnO nanorods in one step,reducing material cost and environmental pollution and cutting down the density of crystal defects.This study synthesis ZnO nanorods by hydrothermal-electrochemical method for the first time in the word meanwhile calculate the reaction process in thermodynamic. At least,we also reaserched the reaction mechanism of this process as follows: Zn(NO3)2Zn2++2NO3-(1)NO3-+H2O+2e-NO2-+2OH-(2)Zn2++2OH-Zn(OH)2(3)Zn(OH)2ZnO+H2O(4)The height and diameter of the ZnO nanorods were up to∼4.3u m and90-150nm, respectively.The morphological,structural,and photoluminescence properties of the ZnO nanorods were examined with respect to the growth temperature(120-180°C)and the presence of NaOH additive.The nanorods synthesized at high temperature(180°C) exhibited a strong UV emission and a weak defect-related visible emission leading to a UV-visible ratio of∼230.This high optical quality was attributed to the increased growth rate of ZnO nanorods(∼4.3um/h)which was caused by the high growth temperature(180°C).This was based on the fact that the ZnO phase is thermodynamically more favorable than the defect-related Zn(OH)2phase at higher temperature.Since the growth temperature was compatible with polymer materials,our synthetic method may provide a promising way for fabricating high performance optoelectronic devices on flexible polymer substrates.Keywords:hydrothermal-electrochemical method;ZnO;nanorods;photoluminescence;three electrode cell目录摘要 (1)关键词 (1)Abstract: (2)第一章:氧化锋纳米棒阵列 (4)1.1氧化锋纳米棒阵列研究现状 (4)1.2氧化锌纳米棒阵列的应用 (5)1.3本文献主要工作: (7)第二章文献阅读 (9)2.1文献来源 (9)2.2引言 (9)2.3实验过程 (11)2.4实验过程讨论 (12)2.5实验结论 (13)第三章总结与收获 (14)3.1文献涉及的制备方法 (15)3.2合成方法的特点 (15)3.3阅读体会和收获 (16)参考文献 (16)专业词汇解释 (17)1.光致发光 (17)2.原子层沉积 (19)3.一维纳米阵列 (20)第一章:氧化锋纳米棒阵列1.1氧化锋纳米棒阵列研究现状低维纳米结构分为零维结构、一维结构和二维结构。