显示技术对比(LCD与DLP)
- 格式:doc
- 大小:429.00 KB
- 文档页数:10
DLPPDPLCD大屏产品技术参数比对分析随着科技的发展,大屏产品的需求越来越大。
其中,DLP(数字光处理技术)、PDP(等离子显示技术)和LCD(液晶显示技术)是目前市场上比较常见的大屏产品技术。
本文将对这三种大屏产品的技术参数进行比对分析。
1.分辨率:DLP:DLP大屏产品的分辨率较高,常见的分辨率为1920×1080(Full HD)和3840×2160(4K)。
PDP:PDP大屏产品的分辨率相对较低,常见的分辨率为1366×768和1920×1080。
LCD:LCD大屏产品的分辨率与DLP大屏产品相似,常见的分辨率为1920×1080和3840×2160。
2.对比度:DLP:DLP大屏产品的对比度通常较高,有助于显示更丰富的色彩和更细腻的画面细节。
PDP:PDP大屏产品的对比度相对较低,但在黑色和白色的显示效果上比较出色。
LCD:LCD大屏产品的对比度取决于LED背光的质量,一般介于DLP 和PDP之间。
3.显示效果:DLP:DLP大屏产品拥有出色的色彩还原能力和动态处理能力,能够呈现出更鲜艳的色彩和更流畅的动态效果。
PDP:PDP大屏产品的黑色显示效果相对较好,适合播放影视作品或需要强调对比度的场景。
LCD:LCD大屏产品的色彩还原能力较好,色彩饱和度高,但在显示快速动态图像时可能存在残影问题。
4.亮度:DLP:DLP大屏产品的亮度常常较高,可以适应各种环境光照条件下的显示需求。
PDP:PDP大屏产品的亮度较低,适合在较暗的环境下使用。
LCD:LCD大屏产品的亮度适中,能够适应大多数环境光照条件。
5.观看角度:DLP:DLP大屏产品的观看角度较大,观众可以从较大的角度范围内观看屏幕上的内容。
PDP:PDP大屏产品的观看角度相对较窄,从侧面观看时容易出现色彩变化。
LCD:LCD大屏产品的观看角度通常较大,但从侧面观看时也可能出现色彩变化。
DLP与LCD 投影机比较
1、DLP投影机的总体性能及寿命优于LCD投影机
DLP镜片使用寿命达10万小时以上,LCD液晶板寿命2万小时左右,液晶板易老化,蓝色通道尤为明显,投影机亮度越高老化越严重,且液晶板是LCD的核心部件,维修价格较高,。
德州仪器进行过一项实验,在寿命测试中,经过长时间开机,DLP的画面质量完全优于LCD投影机。
图1为两台投影机四个时段的图象。
图1:DLP投影机和LCD投影机的实际放映图像之比较
2、DLP较LCD投影机稳定性更高
工程投影机属于精密光学仪器,灰尘及高温会对投影机造成不可逆转的损坏。
DLP投影机可以对核心部件DMD进行密封,隔绝空气避免灰尘进入,并采用液冷方式进行散热,最大限度的降低了灰尘及高温对投影机的损坏,在0-45℃都可以正常开机,并可以实现7*24小时连续开机,降低用户的使用风险。
LCD投影机的核心部件液晶板受显示方式限制,无法隔绝外部空气,只能用风冷方式进行散热,温度要控制在5-40℃才能正常开机,在北方室内温度不足5℃时无法使用且无法长时间连续开机。
3、在边缘融合项目中DLP具有LCD投影机无法比拟的优势
DLP投影机色彩稳定性非常高,不易出现画面偏色现象;LCD投影机液晶板易老化,从而导致画面偏色,整个画面颜色出现色彩不一致。
*上图为LCD液晶板老化导致的画面偏色模拟图
*上图为LCD投影机打暗场时出现的亮带模拟图。
DLP显示技术的优点
和LCD技术相比较,DLP技术的优点,如下:
1)LCD是模拟技术,而DLP是数字技术,它可以真实又不断重复地产生影像,且不受温度、湿度和振动的影响。
2)LCD技术开关速度慢,因此必须采用三片式投影面板架构,而且对于快速移动的影像画面看起来会模糊不清。
DLP采用的微反射镜具有很高的开关速度,这能带来许多项优点,例如,只需使用一个投影面板,就能同时调变红、绿、蓝三种光束,另外更有能力将画面的快速动作准确再生。
3)DLP技术,由于采用单片面板架构,体积小、重量轻,架构简单,具有更高的对比值,高对比值可以提供更丰富的画面细节,因此画面更逼真,黑色更黑,画面显得更清晰锐利。
DLP非常可靠,数字微镜器件虽属机械性技术,但寿命高达十万小时。
DLP技术采用的是无机材料,不会有有机材料劣变的缺点。
4)LCD技术的像素面积小,使得画面看起来有点颗粒的感觉,好像是透过“格状玻璃”看图片一样。
在DLP技术中,微反射镜的反射面积远大于它们之间的距离,即所谓“填满率”高,投影画面看起来更加自然和完美。
投影机从最初的CRT技术起,慢慢进展分化成两大阵营:基于液晶透射成像的LCD和依照光反射成像的DLP。
二者的进展趋势大体一致,即朝向高分辨率、高亮度的方向进展。
但由于二者工作原理上存在着本质的不同,必然致使技术应用的不同。
一、LCD1. LCD投影机工作原理简介LCD(Liquid Crystal Display)液晶是介于液体和晶体之间的物质,其本身不发光。
投影机利用液晶的光电效应,即液晶分子的排列在电场作用下发生转变,阻碍其液晶单元的透光率或反射率,从而阻碍它的光学性质,产生具有不同灰度层次及颜色的图像。
目前市面上所售LCD投影机都是三片机,其工作方式如下:光源发出的白光,经分光镜被分为红绿蓝(RGB)三光束。
三束色光别离透射红绿蓝三片液晶板成像,最后在棱镜中汇聚,由投影镜头投射在屏幕上形成彩色图像。
2. 优势所在LCD的进展前后经历起步、改善、进展、完善等时期。
能够说,时至今日,LCD技术的进展已经相当做熟了,具体表此刻:(1)色彩还原性能好。
LCD投影厂家运用各类技术(如EPSon 的DAR、sRGB),使得LCD投影色彩绚烂,画面雍容典雅。
投影机第一是作为一种色彩还原设备而存在的,这是它的本质属性,第二才有它的衍生功能。
(2)稳固程度高。
系统对光源,对电子部件和光学部件的结构安排经多次改善,结构趋于合理。
机内光学部件、电源分派、高压生成、信号处置、I/O模块等相对分离独立,光路中应用特殊棱镜组,使得光热得以分离,利用寿命大大提高。
(3)接驳,衍生功能极为丰硕。
LCD投影机一样可接驳复合视频、S端子、音频、RS232通信、Com、USB通信,有些乃至内置SF读卡器(EPSon EMP71五、EMP505)。
其它诸如电子放大、画中画、指示标注、画面冻结等,所谓千奇百怪,使演示驾轻就熟。
假设连接上视频展现台进行实物投射,成效会更好。
(4)LCD投影机目前最大的优势所在正是庞大的品牌优势,比如一名方才有买投影机方式的低级用户,在来到市场了解产品的时候,确信第一会去主动了解像 EPSon、NEC等国际知名的大品牌,反观DLP阵营如普乐仕、奥图玛如此的品牌关于刚接触投影机的用户来讲可能全然没有听说过,那么不管是一直以来养成的消费适应仍是出于对售后效劳的安心,客人都会希望找自己比较熟悉的品牌购买。
投影仪显示技术对比投影仪作为一种重要的多媒体设备,在商务演示、教育培训和家庭娱乐等领域发挥着重要作用。
随着科技的不断发展,投影仪显示技术也在不断创新和进步。
本文将对当前主流的三种投影仪显示技术进行对比,并对其特点和应用进行分析和评价。
一、液晶投影仪(LCD)液晶投影仪采用液晶作为光阀来控制光线的透过与否,通过三原色滤光片的组合来实现彩色显示。
这种技术具有成本低、色彩还原度高等特点,广泛应用于商务演示和教育培训等领域。
然而,液晶投影仪对比度较低,黑色表现不够突出,并且存在亮暗不均匀的问题。
二、DLP投影仪(数字光处理)DLP投影仪采用数字微镜阵列和可控微镜反射来控制光线的显示。
通过微镜片的开合控制,DLP投影仪可以实现高对比度、高亮度和宽色域的显示效果,并且具有快速响应的优势。
然而,DLP投影仪价格相对较高,且在长时间使用后可能出现“彩虹效应”的问题。
三、LCoS投影仪(液晶反射)LCoS投影仪采用了液晶与反射镜的结合,通过改变液晶分子的取向来控制光线的反射。
这种技术能够实现较高的对比度和色彩还原度,并且在消除“彩虹效应”方面表现出色。
然而,LCoS投影仪价格较高,且由于技术复杂度大,生产难度较大。
综上所述,不同的投影仪显示技术各有优劣。
液晶投影仪具有成本低、色彩还原度高等优点,适用于商务演示和教育培训等场景;DLP投影仪则具有高对比度、高亮度和快速响应的特点,适用于大型会议和影院等场景;而LCoS投影仪则在对比度和色彩还原度方面具有更高的表现,适用于高要求的专业场景。
在选择投影仪时,用户需要根据实际需求和预算来选择适合自己的显示技术。
同时,还需考虑其他因素,如投影距离、亮度、分辨率以及设备的可靠性和支持等。
总之,投影仪显示技术的对比可以帮助用户更好地选择合适的设备。
无论是液晶投影仪、DLP投影仪还是LCoS投影仪,都在不同的方面有着独特的优点和应用场景。
随着科技的进步,相信投影仪显示技术将继续创新和发展,为用户提供更好的视觉体验。
DLP属于箱体拼接显示系统,拼缝小,一般在0.5mm左右,接近无缝状态,单元面积较大,有50、60、67、80英寸可选择,分为UHP和LED光源两种,占据中高端控制、指挥中心市场。
品牌有巴可、GQY、威创。
LCD为液晶面板超窄边拼接,面板一般采用三星、LG和夏普三类,尺寸为46、47、55、60寸,拼缝较大,约在5-6.7mm之间,产品厂家较多,鱼龙混杂,都是外购面板,自己组装,参差不齐。
以监控市场为主,如果以全屏图像显示为主,建议还是采用DLP。
LCD品牌原装有三星,国内的GQY和威创也生产,属于价格偏高质量值得信任的厂家。
LED是点距光源,旧有市场以文字显示为主,分为单双色、全彩系列,品质价格的区别主要在于点距距离,点距值越低,价格越高,因为其亮度较高,但分辨率较低,较为适合在室外大厅使用,一般主要在户外广告媒介采用。
lcd和dlp和led的区别LED、DID、DLP对比详细参数的对比液晶是当今最高端、最理想的显示设备,其优异的性能,已经获得了广泛认可。
液晶屏作为拼接单元,克服了DLP和LED幕墙的缺点,提供了一种性能优异,使用灵活的拼接幕墙。
对比度一般采用背光点灭控制方式,三星公司现在采用了画面部分(将画面分割成64个部分)背光亮度控制,可提高显示图像的表现力,目前的DID新品已经推出两年,完全解决了对比度问题,在这方面占有了绝对的优势。
其长寿稳定的特点,尤其适合监控终端显示这种长期开机的场合。
相比上述两类显示器件,你会发现,液晶显示器件确实具有很多独到的优异特性,以下是从功耗、光学原理、安全稳定性、结构、色彩、寿命、辐射、污染等各个角度进行分析对比三种显示技术:(1)低压、微功耗LCD功率由以前的300W已经下降到190W,采用的方法是减少液晶面板背光发光灯管数量,同时它的发光亮度并未因此而降低,因为在灯管的前方增加了7层增量膜,这样使得光源的透光性更加,达到最佳的背光效果。
LED一个平方的的面积下功耗也达到了570w,可见其功耗并不低。
(2)被动型显示液晶显示器件本身不能发光,它靠调制外界光达到显示目的。
它不像主动型显示器件那样,靠发光刺激人眼实现显示,而是单纯依靠对外界光的不同反射形成的不同对比度来达到显示目的。
所以我们才称其为被动显示。
被动型的显示本身是不发光的,因此在黑暗处不能看清,但在自然界中,人类所感知的视觉信息中,90%以上是靠外部物体的反射光,而并非靠物体本身的发光。
所以,被动显示更适合于人的眼视觉,更不易引起疲劳。
这个优点在大信息量、高密度、快速变换、长时间观察的显示时尤为重要。
此外,被动显示还不怕光冲刷。
所谓光冲刷,是指当环境光较亮时,被显示的信息被冲淡,从而显示不清晰。
而被动型显示,液晶显示不仅可以用于室外进行显示,而且可以在阳光等强烈照明环境下也可以显示得很清晰。
对于黑暗中不能观看的缺点,只要配上背光源,就可以克服。
LCD(液晶)、PDP(等离子)、DLP(背投)拼接的特点及相对优势LCD(液晶):液晶屏是由两块平行的薄玻璃板构成,两玻璃板之间的距离非常小,填充的是被分割成很小单元的液晶体。
液晶板本身不发光,它通过液晶屏的背光源使液晶屏亮起来优点:1、体积小,重量轻,便于安装,节省空间2、使用寿命长,现在的拼接显示单元的连续工作寿命大都在6万小时以上。
3、任意拼接、组合,受拼接形状限制小。
4、亮度均匀度较好5、后期维护方便,成本低缺点:1、拼接缝相对较大,虽然现阶段的拼接缝已经有了很大的提高,但是相对于其他的拼接系统,液晶拼接系统的拼接缝隙明显较大,对于显示系统要求较高的场所不适合使用。
PDP(等离子):等离子显示器是一种利用气体放电发光的显示装置,这种屏幕采用了等离子管作为发光元件。
大量的等离子管排列在一起构成屏幕。
每个像素单元对应的小室内部充有氖氙气体。
在等离子管电极间加上高压后,封在两层玻璃之间的等离子管小室中的气体发生电离并产生紫外光,从而激励前面板内表面上的红绿蓝(RGB)三基色荧光粉发出可见光。
优点:1、连读均匀度较好2、对比度相对较高、显示画面的细腻度较好3、相对于液晶拼接,等离子拼接系统的拼接缝明显要小。
缺点:1、初期安装后的显示亮度较高,随着使用时间的延长亮度衰减很快,而且无法回到原先的亮度。
2、显示静态画面一定时间后会出现灼屏现象。
3、相对于液晶拼接,等离子的可靠性较低,而且单元耗电量要高。
DLP:DLP大屏幕拼接系统以DLP投影机为主并配以图像处理器组成的高亮度、高分辩率、色彩逼真的电视墙,能显示各种计算机、网络信号及各种视频信号,画面能任意漫游、开窗、放大缩小和叠加。
优点:1、拼缝小:拼接完成后的拼接缝可0.3mm,一张扑克牌都插不进去。
2、尺寸大:DLP的单元吃尺寸大都在50-100寸之间,比较适合大尺寸拼接使用。
3、长期显示亮度衰减慢缺点:1、单元笨重,安装维护较为不便2、如拼接单元多会出现亮度不均匀的现象3、单元体积较大,会占用较大的空间4、后期维护成本高,功耗较大。
液晶、等离子、DLP背投技术对比显示技术发展到今天,可谓是百家争鸣、各有所长,特别是背投(DLP)、等离子(PDP)、液晶(LCD)的相续推出,向人们提供了对比选择的空间。
毫无疑问,更大、更薄,更先进是技术发展的方向,对于拼接幕墙(电视墙),也从传统的CRT向背投、等离子、液晶发展。
那么,背投、等离子和液晶那一种更有技术优势,更能满足各种应用场所的需要呢?我们认为液晶将能更好的满足应用需求,这也正是本文将要向您阐述的,我们将列出背投、等离子与液晶三种显示方式的技术原理,并会分析在几个关键指标上它们各自的优缺点,以及“深圳安立信液晶专显电子有限公司ANRECSON”LCD DID拼接幕墙所具有的优势。
背投原理简析背投的实现原理很简单,在设备内部设置一部投影机,发出的图像经透镜放大后投射到屏幕背面,就是背投。
正是基于这种原理诞生的背投,由于采用不同的投影机种类,主要可分为CRT(阴极射线管)、LCD(液晶)、DLP(数字光处理)等几种。
CRT背投属于背投阵营中的低端产品,而其它几种背投则对应地为高端产品,其中以DLP背投最为出色,其图像清晰度、亮度、色彩、可视角度以及体积来看,均比传统CRT背投有了很大提高。
以下文中所述背投均指DLP背投。
优点:廉价的低端显示方案。
缺点:体积与重量过大,长时间不间断工作,加快背光灯老化。
等离子原理简析PDP是一种利用气体放电的显示技术,其工作原理与日光灯很相似。
它采用了等离子管作为发光元件,屏幕上每一个等离子管对应一个像素,屏幕以玻璃作为基板,基板间隔一定距离,形成一个个放电空间。
放电空间内充入氖、氙等混合惰性气体作为工作媒质,在两块玻璃基板的内侧面上涂有金属氧化物导电薄膜作激励电极。
当向电极上加入电压,放电空间内的混合气体便发生等离子体放电现象,也称电浆效应。
等离子体放电产生紫外线,紫外线激发涂有红绿蓝荧光粉的荧光屏,荧光屏发射出可见光,显现出图像。
优点:颜色鲜艳、高亮度、高对比度缺点:耗电与发热量很大,严重灼伤现象,画质随时间递减。
一、液晶拼接屏一、简介大屏拼接技术一般应用在大型的指挥中心系统,多方远程视会议。
整个大目前大屏幕拼接墙最基本的功能要求:幕墙显示一个大的画面;网络漫游,图像叠加;在一个大屏幕上组成任意的多个拼接;多路信号输入显示。
液晶是利用液状晶体在电压的作用下发生偏转的原理。
由组成屏幕的液状晶体在同一点上可以显示红、绿、蓝三基色,或者说液晶的一个点是由三个点叠加起来的,它们按照一定的顺序排列,通过电压来刺激这些液状晶体,就可以呈现出不同的颜色,不同比例的搭配可以呈现出千变万化的色彩。
液晶本身是不发光的,它靠背光管来发光,因此液晶屏的取决于背光管。
由于液晶采用点成像的原因,因此屏幕里面构成的点越多,成像效果越精细,纵横的点数就构成了液晶电视的分辨率,分辨率越高,效果越好。
液晶拼接显示单元因其纤薄的屏体而成为引领潮流的新型拼接显示技术,近年来,以液晶屏(LCD)为拼接单元的大屏幕系统,在大屏幕监控领域的应用逐渐受到关注,液晶屏的相关参数在提高,具有低功耗、重量轻、寿命长(一般可正常工作5万小时以上),具有无辐射、画面亮度均匀、色泽鲜艳等优点,且拼接缝隙逐渐缩小,达到单边拼缝最小7.3mm,价格日趋下滑,用于工业控制、信息发布、图像监控等广泛领域的窄缝液晶拼接显示系统的相对建设成本较低,这也是窄缝液晶拼接显示系统应运而生的必然原因。
液晶是当今最高端、最理想的显示设备,其优异的性能,已经获得了广泛认可。
液晶拼接幕墙采用液晶屏作为拼接单元,克服了DLP和PDP幕墙的缺点,提供了一种性能优异,使用灵活的拼接幕墙。
当然,由于目前液晶产品的背光源发光体仍采用阴极真空管(CCFL),其灯管两端的灯丝及管座限制了液晶板的尺寸,目前拼屏所用的DID液晶屏的边框仍有4mm-10mm的宽度,因此拼接缝稍大是液晶拼接幕墙的缺点,但随着LED背光源技术的投入,这一缺陷将会得到明显的改善。
二、液晶拼接幕墙的技术优势与缺点1、大小尺寸组合,使用更加灵活液晶各种尺寸齐全,大小随意。
LCD、DLP大屏幕显示系统技术对比1.当前市场主流投影大屏幕显示技术比较1.1LCD技术液晶式投影机全称为液晶显示式(Liquid Crystal Display,缩写为LCD)投影机。
一个LCD扮演一个光阀的角色,它最好能被理解为一个能够调制和控制通过面板可以发射的偏振光的总量的机构。
LCDs的改进已倾向于增加透射率(光输出),但是LCD仍然局限于模拟结构。
非晶硅和多晶硅是薄膜晶体管(TFT)LCDs,它需要一个晶体管来控制LCD板上的每一个象素。
通过晶体管提供给LCD象素的一个电子信号改变了象素的极性。
通过改变极性,通过每个象素的光的总量可以被控制来产生一个图像。
三个闭合分隔的红、绿和蓝LCD次级象素。
光可以表示为垂直和水平分量,如果光定位在一个垂直取向的偏振镜上,这个偏振片扮作一个滤光片,并且只允许垂直光通过。
这个系统的另一面放置了另外一个偏振片,因而光只能在水平方向通过。
在路径上没有液晶时第一个偏振片将阻挡水平光而通过垂直光。
当垂直光打倒第二个偏振片时,它也将被阻挡(因为第二个偏振片仅通过水平光)。
这一结果是光的完全封闭状态,产生一个黑象素。
当一个液晶“夹心”在两个偏振片之间时,它扮作一个偏振光的调制器或“绞扭器”。
通过把一个电压加到液晶上,光的极性可以被改变,允许各种不同水平的光通过系统,基于LCD技术的投影系统使用一个单独的LCD板或者三个LCD板,一个板一种基本的颜色——红、绿和蓝。
在显示在这儿的单板构造图中,小的,封闭间隔的红、绿和蓝次级象素组成一个象素。
1.2DLP技术DLP是Digital Light Processing的英文缩写,意为数字光学处理,是一种基于美国德州仪器公司(Texas Instrumens)开发的数字微反射镜器件DMD(Digital Micromirror Device)技术的数字光学成像技术。
DLP是投影和显示信息领域的一个革命性的新方法,由数字电路驱动,是完成显示数字可视信息的最终环节。
对于影视投影显示、计算机幻灯展示或全球范围内多人通过交互技术进行合作等方面,DLP是现在和未来在数字可视通信方面的唯一选择。
正如CD在音视频领域的革命一样,DLP必将带来一场视频投影领域的革命。
1.2LCD、DLP的对比1.3DLP技术的优势数字光学处理(DLP TM)是投影和显示信息的一个革命性的新方法。
基于Texas仪器公司开发的数字微反射镜器件(DMD TM),DLP完成了显示数字可视信息的最终环节。
数字光学处理(DLP TM)技术在消费者、商业和投影显示工业的专业领域方面被作为子系统或“发动机”提供给市场主管。
正如CD在音频领域的革命一样,DLP将在视频投影方面带来革命。
50″ 67″投影拼接单元选型直接关系到投影墙的亮度、色彩、清晰度,它是大屏幕拼接系统最重要的部分之一。
DMD结构:每个DMD(Digital Micromirror Device)是由成千上万个倾斜的、显微的、铝合金镜片组成,这些镜片被固定在隐藏的轭上,扭转铰链结构连接轭和支柱,扭力铰链结构允许镜片旋转±10度。
支柱连接下面的偏置/复位总线,偏置/复位总线连接起来使得偏置和复位电压能够提供给每个镜片。
镜片、铰链结构及支柱都在互补金属氧化半导体上(CMOS)地址电路及一对地址电极上形成(图B-1)。
在一个地址电极上加上电压,连带着把偏置/复位电压加到镜片结构上,将在镜片与地址电极一侧产生一个静电吸引,镜片倾斜直到与具有同样电压的着陆点电极接触为止。
在这点,镜片以机电方式锁定在位置上。
在存储单元中存入一个二进制数字使镜片倾斜+10度,同时在存储单元中存入一个零使镜片倾斜-10度(图B-2a,b,c)。
DMD以2048x1152的阵列构成,每一个器件共有约2.3x10的6次方镜面,这些器件具有显示真的高分辨率电视的能力。
首次大量生产的DMD为848x600。
这种DMD将能投影NTSC、相位交换线(PAL)、VGA以及高级视频图形适配器(SVGA)图形,并且它将可以显示16:9纵横比信号源。
图B-1:一个DMD上单独镜片的分解示意图。
DMD上每一个16um的平方镜片包括这样三个物理层和两个“空气隙”层,“空气隙”层分离三个物理层并且允许镜片倾斜+10度或-10度。
图B-2:一个DMD的表面上的镜片的特写镜头以及它的底层结构。
图(a)演示九个镜片中的三个镜片倾斜到“开”位置,+10度。
图(b)中央的镜片被移开以演示底部隐藏的铰链结构。
图(c)给出镜片微观的结构的特写。
与镜片相连的支柱,直接位于底部表面的中央。
这一新的投影技术的诞生,使我们在拥有捕捉、接收、存储数字信息的能力后,终于实现了数字信息显示。
数字光学处理技术:正如中央处理单元(CPU)是计算机的核心一样,DMD是DLP的基础。
单片、双片以及多片DLP系统被设计出来以满足不同市场的需要。
一个DLP为基础的投影系统包括内存及信号处理功能来支持全数字方法。
DLP投影机的其它元素包括一个光源、一个颜色滤波系统、一个冷却系统、照明及投影光学元件。
一个DMD可被简单描述成为一个半导体光开关。
成千上万个微小的方形16x16um 镜片,被建造在静态随机存取内存(SRAM)上方的铰链结构上而组成DMD。
每一个镜片可以通断一个象素的光。
铰链结构允许镜片在两个状态之间倾斜,+10度为“开”。
-10度为“关”,当镜片不工作时,它们处于0度“停泊”状态。
根据应用的需要,一个DLP系统可以接收数字或模拟信号。
模拟信号可在DLP的或原设备生产厂家(OEM’s)的前端处理中转换为数字信号,任何隔行视频信号通过内插处理被转换成一个全图形帧视频信号。
从此,信号通过DLP视频处理变成先进的红、绿、蓝(RGB)数据,先进的RGB数据然后格式化为全部二进制数据的平面。
一旦视频或图形信号在一种数字格式下,就被送入DMD。
信息的每一个象素按照1:1的比例被直接映射在它自己的镜片上,提供精确的数字控制,如果信号是640x480象素,器件中央的640x480镜片采取动作。
这一区域处的其它镜片将简单的被置于“关”的位置。
图1(a)图1(b)图1(a):一个848x600数字微镜器件。
器件中部反射部分包括508,800个细小的、可倾斜的镜片。
一个玻璃窗口密封和保护镜片。
DMD显示为实际尺寸。
图1(b):一个1024*768数字微镜器件。
器件中部反射部分包括768,432个细小的、可倾斜的镜片。
一个玻璃窗口密封和保护镜片。
DMD显示为实际尺寸通过对每一个镜片下的存储单元以二进制平面信号进行电子化寻址,DMD阵列上的每个镜片被以静电方式倾斜为开或关态。
决定每个镜片倾斜在哪个方向上为多长时间的技术被称为脉冲宽度调制(PWM)。
镜片可以在一秒内开关1000多次,这一相当快的速度允许数字灰度等级和颜色再现。
在这一点上,DLP成为一个简单的光学系统。
通过聚光透镜以及颜色滤波系统后,来自投影灯的光线被直接照射在DMD上。
当镜片在开的位置上时,它们通过投影透镜将光反射到屏幕上形成一个数字的方型象素投影图像(图2)。
图2:三个镜片有效地反射光线来投影一个数字形象。
入射光射到三个镜片象素上,两个外面的镜片设置为开,反射光线通过投影镜头然后投射在屏幕上。
这两个“开”状态的镜片产生方形白色象素图形。
中央镜片倾斜到“关”的位置。
这一镜片将入射光反射偏离开投影镜头而射入光吸收器,以致在那个特别的象素上没有光反射上去,形成一个方形、黑色象素图像。
同理,剩下的508797个镜片象素将光线反射到屏幕上或反射离开镜片,通过使用一个彩色滤光系统以及改变适量的508,800DMD 镜片的每个镜片为开态,一个全彩色数字图像被投影到屏幕上。
数字优势:早在十年前音频世界已开始数字技术的流行趋势。
目前,大量的新的数字视频技术已经进入娱乐及通信市场。
数字卫星系统(DSS)很快成为所有时期内销售最快的电子产品,按照于它进入市场的第一年销售记录。
Sony,JVC和Panasonic最近都已引进了数字照相设备。
EPSON、Kodak和Apple是现在在市场上已经拥有数字照像机的几家公司。
数字万用盘(DVD),被广泛地认为是新的存储媒介,将以其好于少许光视盘视频质量的在一张盘面上存放17G字节信息的能力放映全长度电影。
今天,我们已经拥扑拥捉、编辑、广播、接收数字信息的能力,不过必须先把它转换成模拟信号后才能显示。
DLP具有完成数字视频底层结构的最后环节的能力,并且为开发数字可视通信环境提供一个平台。
信号每次由数字转换为模拟(D/A)或从模拟转换为数字(A/D),信号噪音都会进入数据通道。
转换越少噪声越降,并且当(A/D)、(D/A)转换器减少时成本随之降低。
DLP提供了一个可以达到的显示数字信号的投影方法,这样就完成了全数字底层结构(图3)。
图3:视频底层结构。
DLP为一个完全数字视频底层结构提供了最后环节。
DLP的另一个数字优势是它的精确的灰度等级与颜色水平的再生,并且因为每个视频或图像帧是由数字产生,每种颜色8位到10位的灰度等级,精确的数字图象可以一次又一次地重新再现。
例如:一个每种颜色为8位的灰度等级使每个原色产生256不同的灰度,允许数字化生成256x3,或16.7百万个不同的颜色组合(图4)。
图4:DLP可产生数字灰度等级和颜色等级。
假设每种颜色用8位,可以数字化地产生16.7x10的6次方个颜色组合。
以上是每一种原色不同灰度的几种组合和产生的数字象素颜色。
反射优势:因为DMD是一种反射器件,它有超过60%的光效率,使得DLP系统比LCD投影显示更有效率。
这一效率是反射率、填充因子、衍射效率和实际镜片“开”时间产生的结果。
LCD依赖于偏振,所以其中一个偏振光没有用。
这意味着50%的灯光甚至从来不进入LCD,因为这些光被偏振片滤掉了。
剩下的光被LCD单元中的晶体管、门、以及信号源的线所阻挡。
除了这些光损失外,液晶材料本身吸收了一部分光,结果是只有一少部分入射光透过LCD面板照到屏幕上。
最近,LCD在光学孔径和光传输上有经验上的进展,但它的性能仍然有局限,因为它们依赖于偏振光。
无缝图像优势:DMD上的小方镜面积为16um平方,每个间隔1um,给出大于90%的填充因子。
换言之,90%的象素/镜片面积可以有效地反射光而形成投影图像。
整个阵列保持了象素尺寸及间隔的均匀性,并且不依赖于分辨率。
LCD最好也只有70%的填充因子。
越高的DMD填充因子给予出越高的可见分辨率,这样,加上逐行扫描,创造出比普通投影机更加真实自然的活生生的投影图像(图5,6a和6b)。
主导的视频图形适配器(VGA)LCD投影机用来投影图5的鹦鹉照片。
在图6a中,可以很容易看到LCD投影机中常见的象素点、屏幕门效应。