大体积混凝土水化热计算
- 格式:docx
- 大小:13.15 KB
- 文档页数:4
大体积混凝土水化热计算混凝土的水化热是指在混凝土浆体中水和水泥反应生成水化产物时所释放出的热量。
水化热是混凝土在初凝和硬化过程中产生的主要热源之一,它对混凝土的温度变化和内部应力的发展具有重要的影响。
混凝土的水化反应是一个复杂的过程,其中涉及到水泥和水之间的化学反应、水泥水化产物的形成和生长等。
一般来说,混凝土的水化反应可以分为三个阶段:溶胶-凝胶转变阶段、凝胶形成和凝结阶段以及结构的形成和强化阶段。
在混凝土的水化反应中,水化热的产生量与混凝土配合比、水泥的种类和含量、温度等因素直接相关。
下面以大体积混凝土的水化热计算为例进行分析。
1.确定混凝土的配合比和水泥的种类和含量。
配合比是混凝土设计的基本要素,它决定了混凝土中水化反应发生的程度和热能释放量的大小。
混凝土配合比可以根据工程要求和试验数据进行确定。
水泥的种类和含量也对水化热产生量有直接影响,一般来说,大体积混凝土中常使用硅酸盐水泥。
2.计算混凝土中的水化热产生量。
根据混凝土的配合比和水泥的含量,可以计算出混凝土中水化热的产生量。
水化热的计算可以采用经验公式或者直接通过实验测定得出。
其中,主要的参数包括水化热生成率、水化热影响深度、混凝土总质量等。
3.分析混凝土的温度变化和内部应力的发展。
混凝土在水化过程中释放的热量会导致温度的升高,进而引起混凝土内部的应力发展。
通过数值计算或者实验分析,可以得到混凝土温度的变化规律和内部应力的发展情况。
这对混凝土的性能评价和施工安全有着重要的意义。
4.采取措施控制混凝土的温度和内部应力。
针对混凝土水化热引起的温度和内部应力的变化,可以采取一系列的措施进行控制。
例如,通过选用低热水泥、添加矿渣等对水化热进行调控;采用降温剂、遮阳措施等对温度进行控制;通过配置喷水降温系统、采用预应力等对内部应力进行控制。
这些措施能够有效地降低混凝土的温度升高和内部应力的发展,从而提高混凝土的耐久性和安全性。
总之,大体积混凝土的水化热计算是一个复杂的过程,需要综合考虑混凝土的配合比、水泥的种类和含量、温度等因素。
八、大体积混凝土计算取现场最大承台计算,长10.200m,宽4.8m,厚1.2m。
混凝土为C30,采用28天后期强度配合比,用普通硅酸盐水泥325号,水泥用量mc=147kg/m3,水泥发热量Q=289kj/kg。
混凝土浇筑时的入模温度To=5℃,结构物周围采用砖模板,在模板和混凝土上表面外包两层草袋保温,混凝土比热C=0.96kj/kg·k,混凝土密度ρ=2400kg/ m3。
(1)混凝土最高水化热绝热温度Tmax=mcQ/Cρ=147×289/0.96×2400=18.44℃(2)混凝土1d、3d、7d的水化热绝热温度:T(1)= Tmax×(1-e-mt)=18.44×0.727= 13.42℃T(3)= Tmax×(1-e-mt)=18.44×0.3852=6.61℃T(7)= Tmax×(1-e-mt)=18.44×0.108= 1.99℃(3)混凝土的最终绝热温升:查表得温降系数δ可求得不同龄期的水热温升为:t=3d δ=0.57 Tmaxδ=18.44×0.57=10.51℃t=6d δ=0.54 Tmaxδ=18.44×0.54=9.96℃t=9d δ=0.29 Tmaxδ=18.44×0.29=5.35℃t=12d δ=0.2 Tmaxδ=18.44×0.2=3.69℃t=15d δ=0.14 Tmaxδ=18.44×0.14=2.58℃t=18d δ=0.1 Tmaxδ=18.44×0.1=1.84℃t=3d δ=0.02 Tmaxδ=18.44×0.02=0.37℃混凝土内部的中心温度为:T(3)=To+T(t)δ=5+10.51=15.51℃T(6)=To+T(t)δ=5+9.96=14.96℃T(9)=To+T(t)δ=5+5.35=10.35℃T(12)=To+T(t)δ=5+3.69=8.69℃T(15)=To+T(t)δ=5+2.58=7.58℃T(18)=To+T(t)δ=5+1.84=6.84℃T(21)=To+T(t)δ=5+0.37=5.37℃(4)混凝土的收缩变形值:εy(t)=εy0(1-e-bt)×M1×M2×M3×M4×M5×M6×M7×M8×M9×M10εy(3)=3.24×10-4(1-2.718-0.01×3)×1×0.92×1×0.87×1.45×1.09×0.7×1×1×0.95=0.055×10-4εy(6)=3.24×10-4(1-2.718-0.01×6)×1×0.92×1×0.87×1.45×0.98×0.7×1×1×0.95=0.125×10-4εy(9)=3.24×10-4(1-2.718-0.01×9)×1×0.92×1×0.87×1.45×0.98×0.7×1×1×0.95=0.17×10-4εy(12)=3.24×10-4(1-2.718-0.01×12)×1×0.92×1×0.87×1.45×0.94×0.7×1×1×0.95=0.0.21×10-4εy(15)=3.24×10-4(1-2.718-0.01×15)×1×0.92×1×0.87×1.45×0.93×0.7×1×1×0.95=0.0.26×10-4εy(18)=3.24×10-4(1-2.718-0.01×18)×1×0.92×1×0.87×1.45×0.93×0.7×1×1×0.95=0.3×10-4各龄期的收缩当量温差T(3)=-εy3/a=-0.055×10-4/10×10-6=-0.55℃≈-1℃T(6)=-εy3/a=-0.12×10-4/10×10-6=-1.2℃≈-1℃T(9)=-εy3/a=-0.17×10-4/10×10-6=-1.7℃≈-2℃T(12)=-εy3/a=-0.21×10-4/10×10-6=-2.1℃≈-2℃T(15)=-εy3/a=-0.26×10-4/10×10-6=-2.6℃≈3℃T(18)=-εy3/a=-0.3×10-4/10×10-6=-3℃(5)C30混凝土各龄期的弹性模量E(3)=3.0×10-4(1-e-0.09×3)=0.72×10-4 N/MM2E(6)=3.0×10-4(1-e-0.09×6)=1.26×10-4 N/MM2E(9)=3.0×10-4(1-e-0.09×9)=1.68×10-4 N/MM2E(12)=3.0×10-4(1-e-0.09×12)=1.98×10-4 N/MM2E(15)=3.0×10-4(1-e-0.09×15)=2.22×10-4 N/MM2E(18)=3.0×10-4(1-e-0.09×18)=2.4×10-4 N/MM2(6)各龄期混凝土松弛系数S(63)=0.208 S(9)=0.214 S(12)=0.215 S(15)=0.233S(18)=0.252(6)最大拉应力计算:取a=1.0×10-5 γ=0.15 Ck=1.0 N/MM2 H=1200mm L =10200mm计算个温差引起的应力从3d到6d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·1.26×104=0.0026β= L/2=1.3 cosh·β=2.58Б(6)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/2.58】×1.26×104×-1℃×0.208=0.019 N/MM2从6d到9d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·1.68×104=0.0002β= L/2=1.14 cosh·β=1.95Б(9)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/1.95】×1.68×104×-2℃×0.214=0.020 N/MM2从9d到12d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·1.98×104=0.0002β= L/2=1.14 cosh·β=1.95Б(12)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/1.95】×1.98×104×-2℃×0.215=0.049 N/MM2从12d到15d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·2.22×104=0.00019β= L/2=0.99 cosh·β=1.51Б(15)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t)=1.0×10-5 /1-0.15【1-1/1.51】×2.22×104×-3℃×0.223=0.062 N/MM2从15d到18d引起的应力β=√Ck/ H E(t)=1.0×10-5 /1200·2.4×104=0.00019β= L/2=0.99 cosh·β=1.51Б(18)=a/1-γ【1-1/ cosh·β】E(t)×T(t)×S(t) =1.0×10-5 /1-0.15【1-1/1.51】×2.48×104×-3℃×0.252=0.073 N/MM2Б(max)=Б(6)+Б(9)+ Б(12)+Б(15)+ Б(18)=0.019+0.02+0.049+0.062+0.073=0.223 N/MM2混凝土抗拉强度设计值取1.5 N/MM2,则抗裂安全度:K=1.5/0.223=6.7 N/MM2>1.15满足抗裂条件故知不会出现裂缝。
大体积混凝土水化热计算定稿版在建筑工程中,大体积混凝土的应用越来越广泛。
然而,由于其体积较大,水泥水化过程中释放的热量不易散发,容易导致混凝土内部温度升高,从而产生温度应力。
当温度应力超过混凝土的抗拉强度时,就会引起混凝土裂缝,影响结构的安全性和耐久性。
因此,准确计算大体积混凝土的水化热对于控制混凝土的温度裂缝至关重要。
一、大体积混凝土水化热的产生原理水泥在水化过程中会发生一系列的化学反应,这些反应会释放出热量。
对于大体积混凝土,由于其体积大,热量聚集在内部,难以迅速散发出去,从而导致混凝土内部温度升高。
水泥的水化热主要取决于水泥的品种、强度等级以及水泥的用量。
一般来说,高标号水泥的水化热较大,水泥用量越多,水化热也越大。
二、大体积混凝土水化热计算的重要性准确计算大体积混凝土的水化热具有以下重要意义:1、预测混凝土内部的温度变化:通过计算水化热,可以预测混凝土在不同时间点的温度分布,为采取有效的温控措施提供依据。
2、控制温度裂缝:避免因温度应力过大而导致混凝土开裂,保证结构的整体性和耐久性。
3、优化施工方案:根据水化热计算结果,合理安排混凝土的浇筑顺序、分层厚度、养护方式等施工参数,提高施工质量和效率。
三、大体积混凝土水化热计算的方法目前,常用的大体积混凝土水化热计算方法主要有以下几种:1、经验公式法经验公式法是根据大量的试验数据和工程实践总结出来的计算公式。
常见的经验公式有:(1)双曲线式:Q(t) = Q0(1 e^(mt))其中,Q(t)为t 时刻的水化热,Q0 为最终水化热,m 为常数,与水泥品种、强度等级等有关。
(2)指数式:Q(t) = Q0(1 e^(nt))^p式中,n、p 为常数,取决于水泥的特性。
经验公式法计算简单,但准确性相对较低,适用于初步估算。
2、热平衡法热平衡法基于能量守恒原理,考虑了混凝土的热传导、对流和辐射等传热过程。
通过建立热平衡方程,求解混凝土内部的温度分布。
Th= W c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3 混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第9d左右内部温度最高,则验算第9d砼温差3、混凝土养护计算1、绝热温升计算计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算计算结果如下表:混凝土表层(表面下50-100mm 处)温度,混凝土表面采用保温材料(稻草)蓄热保温养护,并在稻草上下各铺一层不透风的塑料薄膜。
①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:29.9(℃)(Tmax-25)T q ——施工期大气平均温度:12(℃)T 2-T q —-17.9(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=4.75cm故可采用两层土工布并在其上下各铺一层塑料薄膜进行养护。
②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]= 1.01③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=1.542④混凝土计算厚度:H=h+2hˊ=7.08m ⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。
大体积混凝土施工的主要技术难点是防止混凝土表面裂缝的产生。
造成大体积混凝土开裂的主要原因是干燥收缩和降温收缩。
处于完全自由状态下的混凝土,出现再大的均匀收缩,也不会在内部产生拉应力。
当混凝土处在地基等约束条件下时,内部就会产生拉应力,当拉应力超过当时混凝土的抗拉强度时,混凝土就会开裂。
混凝土中水泥水化用水大约只占水泥重量的20%,在混凝土浇筑硬化后,拌合水中的多余部分的蒸发将使混凝上体积缩小。
混凝土干缩率大致在(2-10) x 10-4范围内,这种干缩是由表及里的一个相当长的过程,大约需要4个月才能基本稳定下来。
干缩在一定条件下又是个可逆过程,产生干缩后的混凝土再处于水饱和状态,混凝土还可有一定的膨胀回复。
值得注意的是早期潮湿养护对混凝土的后期收缩并无明显影响,大体积混凝土的保湿养护只是为了推迟干缩的发生,有利于表层混凝土强度的增长,以及发挥微膨胀剂的补偿收缩作用。
大体积混凝土浇筑凝结后,温度迅速上升,通常经3 d--5d达到峰值,然后开始缓慢降温。
温度变化产生体积胀缩,线胀缩值符合△L=Lo•a•△T的规律,这里线胀缩值数取1 x 10-5(1/ 0C)。
因为混凝土的特点是抗压强度高而抗拉强度低,而且混凝土弹性模量较低,所以升温时体积膨胀一般不会对混凝土产生有害影响。
但在降温时其降温收缩与干燥收缩叠加在一起时,处于约束条件下的混凝土常常会产生裂缝,起初的细微裂缝会引起应力集中,裂缝可逐渐加宽加长,最终破坏混凝上的结构性、抗渗性和耐久性。
混凝土降温值=温度+水化热温升值-环境温度。
其中温升值的影响因素主要有水泥品种和用量、用水量、大体积混凝土的散热条件(主要包括浇筑方法、混凝土厚度、混凝土各表面的能力和其它降温措施)等。
为尽量发挥混凝土松弛对应力的抵消作用,同时避免在混凝土硬化初期骤然产生过大的应力,应该减慢降温速度。
一般规定,混凝土内外温差不大于25℃,降温速度不大于1.5 0C/ d。
该工程大体积混凝土的特点是:1)基础厚1 .2 m ;2)基础做了SBS防水;3)混凝土一次浇筑3 800 m3;4)混凝土强度等级C40。
大体积混凝土水化热计算和混凝土抗裂验算一、大体积混凝土水化热计算:1、水化热的产生原因:混凝土的水泥水化过程是一个放热反应,水化反应导致的水化热主要是由于水化反应中水化产物的结晶和水化反应放出的水化热所引起的。
2、水化热计算方法:水化热计算方法主要包括实测法和计算法两种。
(1)实测法:通过对实测数据的收集和分析,计算出混凝土的水化热释放量。
实测法的优点是直接、准确,可以考虑到混凝土组成、水胶比、水化速率等因素的影响,但是需要投入较多的时间和资源。
(2)计算法:通过数学模型以及相应的参数,进行计算得出混凝土的水化热释放量。
计算法的优点是快捷、简便,但是由于模型参数的选择可能存在一定的误差。
二、混凝土抗裂验算:混凝土在干燥或温度变化时容易发生变形和裂缝,因此需要进行抗裂验算,以确保混凝土结构的安全和可靠。
1、裂缝的产生原因:混凝土结构中的裂缝主要有干缩裂缝和温度裂缝两种。
(1)干缩裂缝:由于混凝土在硬化过程中含有的水分蒸发会引起收缩,从而产生干缩裂缝。
干缩裂缝的产生与混凝土的材料性能、环境条件等因素有关。
(2)温度裂缝:由于混凝土的体积膨胀系数与环境温度变化有关,当混凝土结构受热膨胀或受冷缩小时,就会产生温度裂缝。
2、抗裂验算方法:混凝土抗裂验算通常采用两种方法,分别是应力限值法和变形控制法。
(1)应力限值法:根据混凝土结构的应力状态来判断是否会产生裂缝。
通过计算混凝土的受力状态、所受荷载及其变化等参数,然后与设计的裂缝承受能力进行比较,判断是否满足裂缝控制要求。
(2)变形控制法:通过控制混凝土的变形,来控制混凝土的裂缝产生。
根据混凝土结构的变形性能来确定裂缝的控制要求,通常采用限制最大变形或稳定变形的方法。
以上就是大体积混凝土水化热计算和混凝土抗裂验算的一些基本内容,通过合理的水化热计算和抗裂验算,可以确保混凝土结构的安全和可靠性。
大体积混凝土水化热方案计算讲解
大体积混凝土水化热是指在混凝土养护过程中,由于水泥水化反应释放的热量积累在混凝土内部导致混凝土温度升高的现象。
水化热对混凝土的物理性能和力学性能有较大的影响,因此需要进行合理的热方案计算和控制。
下面将对大体积混凝土水化热方案计算进行讲解。
1.收集所使用的水泥和骨料的物理性质和水化热参数,包括水泥的特性指标、骨料的热容和导热系数等。
这些参数是进行水化热计算的基础。
2.确定混凝土的设计配合比和体积。
配合比是指混凝土中水泥、骨料和水等各成分的比例关系。
体积是指混凝土所占的空间大小。
3.根据配合比和体积,计算混凝土中水化热的总量。
水化热总量等于水泥中反应的水化热量加上骨料中吸湿和放热的水化热量。
4.估算混凝土温升。
混凝土温升是指在水泥水化反应过程中,由于水化热的释放导致混凝土的温度升高。
温升的估算可以通过经验公式进行,也可以通过数值模拟方法进行。
5.建立混凝土温度监测系统。
混凝土温度监测系统可以用来记录混凝土温度的变化情况,以便及时调整养护措施。
6.设计适当的养护措施。
根据混凝土的温升情况,采取相应的养护措施进行控制。
例如可以采取降低养护温度、增加养护时间、增加养护水分等方法。
总的来说,大体积混凝土水化热方案计算是一个较为复杂的过程,需要综合考虑水泥和骨料的特性、配合比和体积等因素。
通过合理的计算和
养护措施,可以有效控制混凝土的温升,确保混凝土的物理性能和力学性能满足要求。
Th= m c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3 混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第9d左右内部温度最高,则验算第9d砼温差2、混凝土养护计算1、绝热温升计算计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算计算结果如下表:混凝土表层(表面下50-100mm 处)温度,底板混凝土表面采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。
地下室外墙1200 厚混凝土表面,双面也采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。
①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:39.6(℃)(Tmax-25)T q ——施工期大气平均温度:30(℃)T 2-T q —-9.6(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=4.46cm故可采用两层阻燃草帘并在其上下各铺一层塑料薄膜进行养护。
②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]= 2.76③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=0.5628④混凝土计算厚度:H=h+2hˊ= 3.63m⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。
大体积混凝土水化热计算大体积混凝土水化热计算一、背景介绍大体积混凝土指的是单体体积大于50m³的混凝土结构,其水化热问题具有重要意义。
水化热是指混凝土在凝固过程中由水泌热所导致的温度升高。
在大体积混凝土结构中,由于体积较大且散热不及小体积混凝土,水化热可能引起温度升高,从而影响混凝土的工程性能和耐久性。
二、水化热计算方法1. 水化热计算的基本原理水化热计算是通过考虑混凝土材料特性、环境温度、外部散热条件等参数,以数值模拟的方式计算混凝土结构在水化过程中产生的温度变化。
常用的水化热计算方法包括数学模型法、试验法和数值模拟法。
2. 数学模型法数学模型法是通过建立包括质量守恒、能量守恒和动量守恒等方程的数学模型,来描述混凝土在水化过程中的温度变化。
数学模型法的关键是建立准确的初始和边界条件,以及选择合适的数值方法进行计算。
3. 试验法试验法是通过对冷却试件的实测温度等数据进行统计分析,以得出混凝土水化热的温度变化规律。
试验法需要进行大量的试验工作,对试验条件和试件尺寸等要求较高。
4. 数值模拟法数值模拟法是利用计算机软件模拟混凝土水化热过程的温度变化。
数值模拟法可以通过建立有限元模型,考虑混凝土材料的温度传导和水化反应等因素,进行快速有效的水化热计算。
三、水化热计算的影响因素1. 混凝土材料特性混凝土的水胶比、水泥品种、水化热产热率等材料特性会影响水化热计算结果。
不同材料的特性不同,水化热的温升程度也会有所差异。
2. 环境温度环境温度是指混凝土结构所处的周围温度。
不同环境温度对混凝土的水化热影响不同,较高的环境温度会加速水化反应,导致更高的温度升高。
3. 外部散热条件外部散热条件包括混凝土表面散热、周围物体散热和自由对流散热等。
不同的散热条件会对混凝土的水化热产生影响,例如表面散热条件好的情况下,混凝土温度升高的幅度会相对较小。
四、附件本所涉及的附件如下:1. 水化热计算的数学模型2. 混凝土材料特性表3. 环境温度数据统计表4. 外部散热条件参数表五、法律名词及注释1. 混凝土:一种以水、水泥和骨料为基本原料,经过搅拌、浇筑和硬化而成的建筑材料,具有坚固、耐久等特点。
九、基础混凝土浇筑专项施工方案江苏广兴建设集团有限公司基础混凝土浇筑专项施工方案工程名称:镇江新区平昌新城配套公建工程编制:审核:批准:江苏广兴建设集团有限公司镇江新区平昌新城配套公建工程项目部2012年3月14日基础混凝土浇筑专项施工方案第一节、工程概况一、工程概况【本方案针对重要施工技术措施节点的分部分项工程的特点及要求进行编写】镇江新区平昌新城配套公建工程;工程建设地点:镇江新区平昌新城平昌路;属于框剪结构;地上12层;地下1层;建筑高度:44.65m;标准层层高:3.6m ;总建筑面积:25000平方米;总工期:450天。
本工程由镇江瑞城房地产开发有限公司投资建设,常州市规划设计院设计,镇江市勘察设计院地质勘察,镇江兴华工程建设监理有限责任公司监理,江苏广兴集团有限公司组织施工;由胡金祥担任项目经理,周道良担任技术负责人。
本工程地下室基础为带人防核6防6、二级防水等级要求的人防地下室,地下室主体结构混凝土强度等级:基础底板为C35,地下室顶板、梁为C30,地下室墙、柱均为C40,地下车道底板混凝土为C35,侧壁为C40。
地下室底板、外墙、地下车道底板及侧板、单层车库顶板、覆土顶板及水池围护结构均需采用P6抗渗混凝土,地下室底板、外墙、顶板采用补偿收缩混凝土,后浇带采用膨胀混凝土,地下室混凝土在混凝土中掺入抗裂纤维。
本工程地下室底板厚度600mm/800mm (主楼位置),地下室板墙厚度分别为200mm/250mm/300mm/450mm(详见地下结施13墙定位及配筋图),板墙浇筑高度3.8m/4.4m(详见顶板施工图)。
【本工程地下室基础混凝土标号众多,抗渗、膨胀、纤维等外加剂的参数以及使用位置,不同型号混凝土浇筑节点处的处理要严格参照图纸结构总说明中4.1.3要求进行施工】二、施工要求1、确保混凝土施工在浇筑时期内安全、质量、进度都达到优质工程标准。
2、本工程混凝土浇筑施工质量技术措施控制重点:(1)、大体积混凝土水化热的处理;(2)、地下室后浇带防水措施。
1 混凝土泵输出量和搅拌车数量计算1 泵车数量计算N=q nq max·η=120140∗0.6=2式中:q n-混凝土浇筑数量,取q n=120m3/h;q max-混凝土输送泵车最大排量,取q max=140m3/h;η-泵车作业效率,取η=0.6。
2 每台泵车需配备的混凝土搅拌车数量计算N=Q1V(LS+T t)=75.620(7.630+2060)=3式中:Q1-混凝土泵的实际输出量Q1=Q max·α·η=140*0.9*0.6=75.6m3/h;V-每台混凝土搅拌车容量,取V=20m3;S-混凝土搅拌车平均行车速度,取30km/h;L-搅拌桩到施工现场往返距离,取7.6km;T t-每台混凝土搅拌车总计停歇时间,取20min。
2 混凝土温升计算1 水泥水化热计算水泥水化热可按下式计算:Q0=4(3.1)7/Q7−3/Q3-在龄期3d 时的累积水化热(kJ/kg);式中:Q3-在龄期7d 时的累积水化热(kJ/kg);Q7Q-水泥水化热总量(kJ/kg)。
不同龄期水泥水化热见表3.1-1。
表3.1-1 水泥在不同期限内的发热量计算得Q=392.37kJ/kg。
2 胶凝材料水化热计算胶凝材料水化热可按下式计算:Q=(k1+k2−1)Q0(3.2)式中:Q-胶凝材料水化热总量(kJ/kg);k1-粉煤灰掺量对应的水化热调整系数,取值见表3.1-2。
k2-矿渣粉掺量对应的水化热调整系数,取值见表3.1-2。
表3.1-2 不同掺量掺合料水化热调整系数注:表中掺量为掺合料占总胶凝材料用散的百分比。
本项目承台C40混凝土粉煤灰掺量为14.9%,不掺矿渣。
故Q=0.955*Q=374.71kJ/kg。
3 混凝土绝热升温值计算混凝土绝热温升值可按下式计算:T(t)=WQCρ(1−e−mt)(3.3)式中: T(t)-混凝土龄期为t 时的绝热温升(℃);W-每立方米混凝土的胶凝材料用量(kg/m3);C-混凝土的比热容,可取0.92~1.00[kJ/(kg·℃)],取0.96kJ/(kg·℃);ρ-混凝土的质量密度,根据配合比取2417.4kg/m3;t-混凝土龄期(d),取3d、6d、9d、12d、15d、18d、21d;m-与水泥品种、用量和入模温度等有关的单方胶凝材料对应系数。
水化热温度计算1、最大绝热温升(1)Th=(mc+K·F)Q/c·ρ(2) Th=mc·Q/c·ρ(1-eˉ-mt)式中Th----混凝土最大绝热温升(℃)mc---混凝土中水泥用量(kg/m3)F----混凝土活性掺合料用量(kg/m3)K----掺合料折减系数.取0.25~0.30Q----水泥28d水化热(kJ/kg)见下表C---混凝土比热,取0.97(kJ/kg·K)ρ—混凝土密度,取2400(kg/m3)e----为常数,取2.718t-----混凝土的龄期(d)m----系数,随浇筑温度改变,见下表2、混凝土中心温度计算T1(t)=Tj+ Th·ε(t)式中T1(t)----t龄期混凝土中心温度(℃)Tj--------混凝土浇筑温度(℃)ε(t)----t龄期降温系数,见下表3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。
已知混凝土内部达到最高温度一般发生在浇筑后3-5天。
所以取三天降温系数0.49计算Tmax。
混凝土的最终绝热温升计算:Tn=mc*Q/(c*p) (1)不同龄期混凝土的绝热温升可按下式计算:Tt=Tn(1-e-mt) (2)式中:Tt:t龄期时混凝土的绝热温升(℃);Tn:混凝土最终绝热温升(℃);M:随水泥品种及浇筑温度而异,取m=0.362;T:龄期;mf:掺和料用量;Q:单位水泥水化热,Q=375kj/kg;mc:单位水泥用量;(430kg/m3)c:混凝土的比热,c=0.97kj/(kg*k);p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升:代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃代入(2)得:T3=69.3*0.662=45.88℃;T4=69.3*0.765=53.01℃;T5=69.3*0.836=57.93℃;T7=69.3*0.92=63.76℃;4、球磨机底板混凝土内部最高温度计算:Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃Tmax:混凝土内部最高温度(℃);Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃;Tt:t龄期时的绝热温升;δ:降温系数;混凝土的内部最高温度为48.05℃,根据现场实测表面温度Tb,计算内外温差,当温差超过25℃时,需进行表面覆盖保温材料,以提高混凝土的表面温度,降低内外温差。
二、基础底板混凝土热工计算基础底板混凝土入模温度取30℃,环境温度取30℃(9月份浇砼)。
为了避免水泥水化热引起的温度应力导致裂缝,应在底板混凝土表面覆盖一层塑料薄膜(保湿用)和阻燃草帘被(保温用)。
当混凝土表层与外界温差不大于20℃,底板混凝土中心与表层的温差不大于25℃,且平均降温速度小于1.5~2.0℃/d时才可拆除底板混凝土保温层。
分别取3d、6d、9d的龄期对底板大体积混凝土各项温度指标进行计算:〔以下计算公式见《建筑施工手册》(第四版)缩印本第614—615页〕(1)底板混凝土龄期为3d时,最大绝热温升:式中Th——混凝土最大绝热温升(℃);mc——混凝土中水泥用量(含膨胀剂)(kg/m3),根据搅拌站提供的配合比试配单,水泥用量为260 kg/m3,膨胀剂用量为28 kg/m3,取mc =288 kg/m3;Q——水泥28d水化热(kJ/kg),取375(kJ/kg);c——混凝土比热,取0.97〔kJ/ (kg•K)〕;ρ——混凝土密度,取2400(kg/ m3);e——为常数,取2.718;t——混凝土的龄期(d),t=3d;m——系数、随浇筑温度改变,当浇筑温度为30℃时,m=0.406(1/d)。
℃(2)混凝土中心计算温度T1(t)=Tj+Th•式中T1(t)——t龄期混凝土中心计算温度(℃);Tj ——混凝土浇筑温度(℃),取常温30℃;——t龄期降温系数,按板厚2.6m计算,3d龄期时。
T1(3)=30+32.67×0.656=51.43℃(3)混凝土表层(表面下50mm处)温度1)保温材料厚度(保温材料为阻燃草帘被)式中——保温材料厚度;h ——混凝土浇筑块体厚度,本工程大体积基础底板厚度核心筒外为2.0m,核心筒内2.6m;——所选保温材料导热系数〔W/(m•K)〕,草帘被=0.14;T2 ——混凝土表面温度(℃);Tq ——施工期大气平均温度,取30℃;——混凝土导热系数,取2.33 W/(m•K);Tmax ——计算得混凝土最高温度(℃);取T2-Tq=20℃,Tmax-T2=25℃Kb ——传热系数修正值。
大体积混凝土热工计算1.底板混凝土单次混凝土浇筑厚度最大为2850mm,混凝土强度等级为C35/P12,理论上该处混凝土内部温度最高,容易产生裂缝,所以将此部位混凝土作为范例进行热工计算。
根据C35/P12混凝土配合比为:P.O42.5级水泥227kg,水162kg,中砂761kg,石子1051kg,粉煤灰:102kg,S95级磨细矿渣48kg。
2.预计施工浇筑时间为5月份,查气象历史数据,月最高平均气温为28°。
3.水泥水化热:q=286.6KJ/kg7.1混凝土表面温度裂缝控制计算大体积混凝土结构施工应该使混凝土中心与表面温度、表面温度与大气温度之差在允许范围内,则可控制混凝土裂缝的出现。
7.1.1混凝土的绝热温升水泥水化热引起的混凝土内部实际最高温度与混凝土的绝热温升有关。
混凝土的绝热温升:T i=W×Q×(1-e-mt)/(C×ρ)式中:T h—混凝土的绝热温升(℃)W—每立方混凝土的胶凝材料用量(kg/m3),W=227+102+48=377kg/m3Q—每公斤水泥的水化热,本工程为P.O42.5水泥,查计算手册,Q为335k J/kg C—混凝土比热0.994k J/(kg·K);ρ—混凝土容重2400㎏/m3;t—混凝土龄期(天);m—常数,与水泥品种、浇筑时温度有关,取0.406;e—常数,e=2.718自然对数的底;T(3)=WQ(1-e-mt)/Cρ=377×335×(1-e-0.406×3)/(0.994×2400)=38.198°C;经过计算,得到3天,5天,7天,14天混凝土最高水化热绝热温升:Th3=38.198℃,Th5=47.122℃,Th7=51.076℃,Th14=54.06℃。
7.1.2混凝土的内部最高温度Tmax(t) =Tj+Ti×ζ(t)式中Tmax(t)—混凝土t龄期内部最高温度(℃);分别取3、5、7、14天计算;Tj—混凝土浇筑温度(℃),混凝土浇筑入模温度取35℃;ζ—混凝土t龄期的散热系数,3天,5天,7天,14天分别计算得ζ(3)=0.55,ζ(5)=0.51,ζ(7)=0.351,ζ(14)=0.183;T max =Ti+T(7)ζ=35+38.198×0.55=51°C;按上式计算,3天,5天,7天,14天的结果为T max3=56℃,T max5=59.03℃,T max7=52.93℃,T max14=44.89℃7.1.3砼表层(表面下50~100mm)温度(1)、保温材料厚度(麻袋)δ=0.5h.λx (T2-Tq)Kb/λ(Tmax-T2)=0.5×2.85×0.05×20×1.3/2.33×25=0.0318mδ-保温材料厚度λx-所选保温材料导热系数,材料选麻袋,考虑薄膜保温作用按0.05(T2-Tq)本工程取20℃(Tmax -T2)最高温度与表面温度差,本工程取25℃Kb–传热系数修正值,选1.3。
大体积混凝土水化热计算及施工一、大体积混凝土的概念1、定义现代建筑中时常涉及到大体积混凝土施工,如桥梁基础、墩台、高层楼房基础、大型设备基础、水利大坝等。
它主要的特点就是体积大,一般实体最小尺寸大于或等于1m,它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。
混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
所以必须从根本上分析它,来保证施工的质量。
我国《大体积混凝土施工规范》GB50496-2009规定:混凝土结构物实体最小尺寸大于或等于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害缝产生的混凝土。
美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。
日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土”。
2、大体积混凝土的特点:结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。
大体积混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。
因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。
3、大体积砼与普通砼的区别不能仅以截面尺寸来简单判断是否大体积砼,实际施工中,有些砼厚度达到1m,但也不属于大体积砼的范畴,有些砼虽然厚度未达到1m,但水化热却较大,不按大体积砼的技术标准施工,也会造成结构裂缝。
大体积砼与普通砼的区别表面上看是厚度不同,但其实质的区别是由于砼中水泥水化要产生热量,大体积砼内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使砼开裂。
大体积混凝土水化热计算及冷凝管布设方案附件七:大致积混凝土水化热计算及冷凝管布设方案根据对往年同季节气温进行统计,本地区9月16日~10月15日每天高温一般不超过25℃,10月16日~11月15日每天高温一般不超过15℃。
根据本工程施工进度计划,49#和54#两个机位处于9月16日~10月15日期间进行大致积混凝土承台施工,50#~53#机位处于10月16日~11月15日期间进行施工。
因此,考虑混凝土水化热环境因素时,49#和54#两个机位按照25℃大气温度进行计算,50#~53#机位按照15℃大气温度进行计算。
计算时,考虑海水对流,按照海水温度低于大气温度5℃进行计算。
1、单位系统质量单位:kg;力的单位:kgf;能量单位:kcal,1kcal=4.186kcal,考虑使用海水降温,使用kcal作为能量单位更利于计算;长度单位:m;温度单位:℃;时间单位:h。
2、混凝土参数比重:2500kg/m³;导热系数:2.02kcal/(m.h.K);对流系数:19.84kcal/(㎡.h.K);比热容:0.23kcal/(kg.K)。
根据以往施工经验,考虑自拌C45混凝土现场养护条件28天强度等级为50Mpa,达到70%强度(31.5Ma)所需时间为25℃3天,15℃7天。
考虑采用普通硅酸盐水泥,胶凝材料根据发热量全部折合成水泥掺量为450kg/m³。
C45混凝土在25℃和15℃天气环境下的强度发展曲线如下图左图和右图所示。
(备注:图中强度单位为kgf/㎡。
)3、温度要求(1)混凝土表里温差不得超过25℃,表层温度取混凝土面以内5cm位置,内部温度取混凝土内部最高温度;混凝土表层温度和环境温度差不得超过20℃。
降温速度不宜超过2℃/d。
使用midas软件建立模型计算模型。
为更加直观的观察混凝土部的温度应力,建模时采用只建立1/2模型,但进行整体对称计算的方式。
为简化计算,直接将承台模型简化成圆柱结构。
大体积混凝土水化热计
算
标准化管理部编码-[99968T-6889628-J68568-1689N]
10.3 球磨机混凝土水化热温度计算
1、最大绝热温升
(1)Th=(mc+K·F)Q/c·ρ
(2) Th=mc·Q/c·ρ(1-eˉ-mt)
式中 Th----混凝土最大绝热温升(℃)
mc---混凝土中水泥用量(kg/m3)
F----混凝土活性掺合料用量(kg/m3)
K----掺合料折减系数.取0.25~0.30
Q----水泥28d水化热(kJ/kg)见下表
C---混凝土比热,取0.97(kJ/kg·K)
ρ—混凝土密度,取2400(kg/m3)
e----为常数,取2.718
t-----混凝土的龄期(d)
m----系数,随浇筑温度改变,见下表
2、混凝土中心温度计算
T1(t)=Tj+ Th·ε(t)
式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃)
ε(t)----t龄期降温系数,见下表
3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。
已知混凝土内部达到最高温度一般发生在浇筑后3-5天。
所以取三天降温系数0.49计算Tmax。
混凝土的最终绝热温升计算:
Tn=mc*Q/(c*p) (1)
不同龄期混凝土的绝热温升可按下式计算:
Tt=Tn(1-e-mt) (2)
式中:Tt:t龄期时混凝土的绝热温升(℃);
Tn:混凝土最终绝热温升(℃);
M:随水泥品种及浇筑温度而异,取m=0.362;
T:龄期;
mf:掺和料用量;
Q:单位水泥水化热,Q=375kj/kg;
mc:单位水泥用量;(430kg/m3)
c:混凝土的比热,c=0.97kj/(kg*k);
p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升:
代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃
代入(2)得:
T3=69.3*0.662=45.88℃;
T4=69.3*0.765=53.01℃;
T5=69.3*0.836=57.93℃;
T7=69.3*0.92=63.76℃;
4、球磨机底板混凝土内部最高温度计算:
Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃
Tmax:混凝土内部最高温度(℃);
Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃;
Tt:t龄期时的绝热温升;
δ:降温系数;
混凝土的内部最高温度为48.05℃,根据现场实测表面温度Tb,计算内外温差,当温差超过25℃时,需进行表面覆盖保温材料,以提高混凝土的表面温度,降低内外温差。
5、混凝土表面保温层厚度计算
δi=K*0.5hλi(Tb-Tq)/ λ(Tmax-Tb)=1.6*0.5*1.6*0.14*(23-20)/2.33*(48-23)=0.01m即10mm
其中:δi:保温材料所需厚度(m);
h:结构厚度(m);
λi:保温材料的导热系数,设用草袋保温,λi为0.14;
λ:混凝土的导热系数,取2.33;
Tq:混凝土3-7天的空气平均温度;
Tb:混凝土表面温度;
K:传热系数的修正值,即透风系数。
对易于透风的保温材料取2.6;对不易透风的保温材料取1.6或1.9;
根据计算结果采用1层塑料薄膜+两层保温麻布覆盖完全满足保温要求。