第3章大气污染气象学
- 格式:ppt
- 大小:553.00 KB
- 文档页数:63
第三章 大气污染气象学3.1 一登山运动员在山脚处测得气压为1000 hPa ,登山到达某高度后又测得气压为500 hPa ,试问登山运动员从山脚向上爬了多少米? 解:由气体静力学方程式,大气中气压随高度的变化可用下式描述:dP g dZ ρ=-⋅ (1)将空气视为理想气体,即有m PV RT M =可写为 m PMV RTρ==(2) 将(2)式带入(1),并整理,得到以下方程:dP gM dZ P RT=- 假定在一定范围内温度T 的变化很小,可以忽略。
对上式进行积分得:ln gMP Z C RT =-+ 即 2211ln ()P gM Z Z P RT =--(3) 假设山脚下的气温为10。
C ,带入(3)式得:5009.80.029ln10008.314283Z ⨯=-∆⨯ 得 5.7Z km ∆= 即登山运动员从山脚向上爬了约5.7km 。
3.2 在铁塔上观测的气温资料如下表所示,试计算各层大气的气温直减率:105.1-γ,3010-γ,5030-γ,305.1-γ,505.1-γ,并判断各层大气稳定度。
解:d m K z T γγ>=---=∆∆-=-100/35.25.1102988.297105.1,不稳定d m K z Tγγ>=---=∆∆-=-100/5.110308.2975.2973010,不稳定d m K z Tγγ>=---=∆∆-=-100/0.130505.2973.2975030,不稳定d m K z Tγγ>=---=∆∆-=-100/75.15.1302985.297305.1,不稳定d m K zTγγ>=---=∆∆-=-100/44.15.1502983.297505.1,不稳定。
3.3 在气压为400 hPa 处,气块温度为230K 。
若气块绝热下降到气压为600 hPa 处,气块温度变为多少?解:288.00101)(P PT T =, K P P T T 49.258)400600(230)(288.0288.00101===解:由《大气污染控制工程》P80 (3-23),m Z Z u u )(11=,取对数得)lg(lg 11Z Zm u u =设y u u=1lg ,x Z Z =)lg(1,由实测数据得由excel 进行直线拟合,取截距为0,直线方程为:y=0.2442x故m =0.2442。
第三章大气污染气象学讲授2学时教学要求要求了解与大气污染相关的气象学基本知识,理解和掌握大气圈的结构、主要气象要素、大气稳定度和逆温的概念。
教学重点掌握大气层结构及大气的热力过程。
教学难点大气的热力过程、大气稳定度和逆温。
教学内容:§3-1大气圈结构及气象要素§3-2大气的热力过程§3-3大气的运动和风污染物排入大气后是否引起严重大气污染除取决于污染物的排入量外与污染物在大气中的扩散稀释速度关系极大。
各区域常常进行环境监测,测定各污染物的情况,我们会发现在同天大气监测值差别很大。
而统一污染源不可能差别很大,有时监测值会几百倍,造成这种现象的原因是与污染物的传输扩散与气象条件有着密切的关系。
近年来,在研究各种气象条件对大气污染物的传输扩散作用和大气污染物质对天气和气候的影响条件中逐渐形成了一门新的分支学科——大气污染气象学。
本章只讨论气象条件对大气污染物的传输扩散作用,初步掌握厂址选择和烟囱设计中的一些问题,为进一步学习污染气象学知识打下基础。
§3-1 概述一.低层大气的成分:干洁空气、水汽、气溶胶粒子。
二.大气的垂直结构三.影响大气污染的主要气象要素气象要素(因子):表示大气状态和物理现象的物理量在气象上称之。
气象要素的数值是直接观测获得的,主要有:气温、气湿、气压、风向、风速、云况、能见度、降水、蒸发、日照时数、太阳辐射、地面辐射、大气辐射等,下面分别介绍几个:1. 气温:空气湿度是反映空气中水汽含量和空气潮湿程度的一个物理量,常用的表示方法有:绝对湿度、水蒸气压力、体积百分比、含湿量、相对湿度、露点等。
2.风a)定义:什么是风?空气水平方向的流动叫风。
b)形成:风主要由于气压的水平分布不均匀而引起的,而气压的水平分布不均是由湿度分布不均造成。
风的特性用风向与风速表示,它是一向量。
由于温度分布不均而形成的风从图a看出地面AB上,t1 = t2 ,水平方向上的温度和气压到处相等,AB上空各高度在水平方向上的T、P也到处相等,则等压(各处气都相等的面)与地面平行,此时大气静止状(无风)。
《大气污染控制技术》习题三 第三章 大气污染气象学3.1 一登山运动员在山脚处测得气压为1000 hPa ,登山到达某高度后又测得气压为500 hPa ,试问登山运动员从山脚向上爬了多少米? 解:由气体静力学方程式,大气中气压随高度的变化可用下式描述:dP g dZ ρ=-⋅ (1)将空气视为理想气体,即有m PV RT M =可写为 m PMV RTρ==(2) 将(2)式带入(1),并整理,得到以下方程:dP gM dZ P RT=- 假定在一定范围内温度T 的变化很小,可以忽略。
对上式进行积分得:ln gMP Z C RT =-+ 即 2211ln ()P gM Z Z P RT =--(3) 假设山脚下的气温为10。
C ,带入(3)式得:5009.80.029ln10008.314283Z ⨯=-∆⨯ 得 5.7Z km ∆= 即登山运动员从山脚向上爬了约5.7km 。
3.2 在铁塔上观测的气温资料如下表所示,试计算各层大气的气温直减率:105.1-γ,3010-γ,5030-γ,305.1-γ,505.1-γ,并判断各层大气稳定度。
解:d m K z T γγ>=---=∆∆-=-100/35.25.1102988.297105.1,不稳定d m K z Tγγ>=---=∆∆-=-100/5.110308.2975.2973010,不稳定d m K z Tγγ>=---=∆∆-=-100/0.130505.2973.2975030,不稳定d m K z Tγγ>=---=∆∆-=-100/75.15.1302985.297305.1,不稳定d m K zTγγ>=---=∆∆-=-100/44.15.1502983.297505.1,不稳定。
3.3 在气压为400 hPa 处,气块温度为230K 。
若气块绝热下降到气压为600 hPa 处,气块温度变为多少? 解:288.00101)(P PT T =, K P P T T 49.258)400600(230)(288.0288.00101===解:由《大气污染控制工程》P80 (3-23),m Z Z u u )(11=,取对数得)lg(lg 11Z Zm u u =设y u u=1lg ,x Z Z =)lg(1,由实测数据得由excel 进行直线拟合,取截距为0,直线方程为:y=0.2442x故m =0.2442。
w d v w w vp R p p p R p p ϕϕ=-- ——湿空气的总压力;——干空气分压,因而p=d p +w p ;d =287.0J/(kg K ),湿空气K =287.0/461.4=0.622,带入式3-4得,RT dP;可以看出,影响气温变化的原因有两个:一P是由于空气与外界有热量交换;一是由于外界压力的变化使空气膨胀或压缩;当空气团作铅直运动时,外界的气压变化很大,且气压变化的影响远远超过气团与周围热交换的影响时,可以认为空气团的温度变化主要受气压变化的影响,而不考虑热交换的影响,及过程视为绝热的;dPP在对高度Z 求偏微分,可以得到:()d Z T θθγγ∂=-∂ (3-19) 可见0Z θ∂∂,即γ>γd 时,大气不稳定;0Zθ∂∂时,即γ<γd 时,大气稳定;0Z θ∂∂=时,大气是中性的;四、逆温在边界层中,由于气象和地形等条件的影响,有时会出现气温随高度增加而升高的现象,称为逆温。
出现逆温的气层,称为逆温层。
逆温出现时γ<0,大气处于非常稳定状态,大气的垂直运动很难发展,污染物质的输送和扩散受到抑制,因此可能造成严重的大气污染。
所以逆温层又称为阻挡层。
根据逆温形成原因可将其分为5种。
1、辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。
2、下沉逆温 由于空气下沉受到压缩增温而形成的逆温称为下沉逆温。
图3-6 下沉逆温形成示意图3、平流逆温 由暖空气平流到冷地面上而形成的逆温称为平流逆温。
4、湍流逆温 低层空气因湍流混合形成的逆温,称为湍流逆温。
5、锋面逆温 锋面逆温是由大气中冷暖空气团相遇形成的一个倾斜过度层(称为锋面),较暖的空气总是位于较冷空气之上而形成的逆温。
五、烟流形状与大气稳定度的关系大气污染状况与大气稳定度有密切关系。
大气稳定度不同,高架点源排放的烟流扩散形状和特点不同,造成的污染状况差别很大。
典型的烟流形状有五种:但是,也应指出,边界层内的风向足随高度增加而向右偏转的。