苏科版-数学-八年级上册-《实数》复习课件1
- 格式:doc
- 大小:58.50 KB
- 文档页数:4
2022-2023学年八年级数学上册考点必刷练精编讲义(苏科版)第4章《实数》 章节复习巩固知识点01:平方根和立方根知识点02:实数有理数和无理数统称为实数. 1.实数的分类 按定义分: 实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识要点:(1)所有的实数分成三类: .其中有限小数和无限循环小数统称有理数,无限不循环小数叫做⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数(2等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都 ,并且无理数不能写成 (4)实数和数轴上点是 的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都 ,反之任何一个实数都能在 找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为 。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是 ,即|a |≥0; (2)任何一个实数a 的平方是 ,即≥0; (3)任何非负数的是非负数,即 (). 非负数具有以下性质:(1)非负数有 零;(2)有限个非负数之和仍是 ; (3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数a 的相反数是-a ;一个正实数的 是它本身;一个 的绝对值是它的相反数;0的绝对值是有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在 范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的 ; 法则3. 两个数比较大小常见的方法有:知识点03:近似数及精确度2a 0≥0a ≥1. 近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.知识要点:一般采用四舍五入法取近似数,只要看2. 精确度:一个近似数四舍五入到哪一位,就称,也叫做这个近似数的精确度.知识要点:①精确度是指 .②精确度一般用“精确到哪一位”的形式的来表示,一般来说精确到哪一位表示,0.10.05例如精确到米,说明结果与实际数相差不超过米.2022-2023学年八年级数学上册考点必刷练精编讲义(苏科版)第4章《实数》 章节复习巩固知识点01:平方根和立方根有理数和无理数统称为实数. 1.实数的分类 按定义分:实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识要点:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数数和无限循环小数统称有理数,无限不循环小数叫做无理数. (2等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
苏科版数学八年级上册4.3《实数》说课稿1一. 教材分析《实数》是苏科版数学八年级上册4.3节的内容,本节内容是在学生已经掌握了有理数的概念和运算法则的基础上进行讲解的。
实数是数学中的一个基本概念,它包括有理数和无理数两大类。
本节内容主要介绍实数的概念、性质以及实数的分类。
教材通过举例和讲解,使学生能够理解实数的含义,掌握实数的性质,并能够对实数进行分类。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数的概念和运算法则,对数学中的概念和性质有一定的理解能力。
但是,实数作为一个新的概念,对学生来说还是较为抽象的,需要通过实例和讲解来理解和掌握。
另外,实数的分类也是本节内容的难点,学生需要通过教师的引导和自己的思考来理解和掌握。
三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够对实数进行分类。
2.过程与方法:通过实例和讲解,使学生能够理解实数的含义,通过教师的引导和学生的思考,使学生能够掌握实数的性质,并通过练习,使学生能够对实数进行分类。
3.情感态度与价值观:培养学生对数学的兴趣,使学生能够主动参与数学的学习,培养学生对知识的探究和思考的能力。
四. 说教学重难点1.教学重点:使学生理解实数的概念,掌握实数的性质,能够对实数进行分类。
2.教学难点:实数的分类,学生需要通过教师的引导和自己的思考来理解和掌握。
五. 说教学方法与手段本节课采用讲授法和实例教学法,通过教师的讲解和实例的讲解,使学生能够理解实数的概念和性质。
同时,采用小组合作学习和问题驱动学习法,引导学生进行思考和讨论,提高学生的学习积极性和主动性。
六. 说教学过程1.导入:通过复习有理数的概念和运算法则,引出实数的概念。
2.新课讲解:讲解实数的概念和性质,通过实例来讲解实数的性质。
3.课堂练习:布置一些实数的分类的练习题,让学生进行练习。
4.课堂小结:对本节课的内容进行小结,使学生能够巩固所学的内容。
5.布置作业:布置一些有关实数的练习题,让学生进行巩固。
《平面直角坐标系》复习点拨
【课标复习方向】
1、理解有序数对的含义,明白有序数对的两个数的前后顺序不能改变;
2、能够准确地画出一个平面直角坐标系,理解x轴、y轴、坐标原点及象限的含义;
3、平面直角坐标系中的点能够确定它的坐标,反之,给一个有序数对能找出它在坐标平面中对应的点;
4、理解并掌握各个象限、x轴、y轴及平行于x轴、y轴的直线上的点的坐标的特征;
5、能够用坐标表示地理位置,并能理解由于确定的坐标原点不同,表示同一地理位置的坐标也不相同;
6、掌握图形平移后图形上各点的坐标变化的规律以及由图形上点的坐标的变化而确定图形进行怎样的平移.
【知识网络】
【重点难点】
重点:①理解平面直角坐标系,能够把有序数对对应的点在直角坐标系中指出来以及能够把坐标系中的点用有序数对表示出来;
②用坐标表示地理位置和用坐标表示平移.
难点:①对有序数对的“有序”的理解;②用坐标解决实际问题.
【知识要点】
一、平面直角坐标系
1、有序数对:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).由有序数对的定义知,任意两个不同的数组成有序数对,两个数的排列顺序不同,所表示的意义就不同. 如有序数对(2,4)与(4,2),不妨用来表示“教室里座位的位置”,前者表示“2排4号”,后者表示“4排2号”,可见这两个有序数对表示的是两个不同的位置.
初中-数学-打印版
初中-数学-打印版
2、平面直角坐标系及其有关的概念
(1)平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系,如图1.
(2)坐标轴:在平面直角坐标系中,水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点
. (3)象限:如图1,坐标平面被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限. 值得的注意是:坐标轴上的点不属于任何象限.
(4)点的坐标
①点的坐标的确定:对于平面内任意一点P 如图2,过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序实数对(a ,b )叫做点P 的坐标.
②点的坐标的特征:
象限内点的坐标的特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-),如图1.
坐标轴上点的坐标的特征:x 轴上(a ,0),当在x 轴正半轴上a 为正,当在x 轴负半轴上a 为负;y 轴上(0,b ),当在y 轴正半轴上b 为正,当在x 轴负半轴上b 为负;原点为(0,0).
平行于坐标轴的直线上点的坐标的特征:平行于x轴的直线上所有点的纵坐标相同;平行于y轴的直线上所有点的横坐标相同.
③确定点的位置
已知平面直角坐标系内一点的坐标,如P(-3,1),只需在x轴上找出表示-3的点,再在y轴上找出表示1的点,过这两点分别作x轴和y轴的垂线,两垂线的交点就是点P.
二、坐标方法的简单应用
1、利用坐标表示地理位置的一般步骤
(1)建立直角坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.
2、图形平移后的坐标变化规律
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).
3、由坐标变化导致图形的平移
在平面直角坐标系内,如果一个图形各个点的横坐标都加(或减)一个正数a,相应的新图形就是把原图形向右(或左)平移a个单位长度;如果把各个点的纵坐标都加(或减)一个正数b,相应的新图形就是把原图形向上(或下)平移b个单位长度.
【典题例析】
例1(大连市)在平面直角坐标系中,下列各点在第二象限的是()
A.(2,1);
B.(2,-1);
C.(-2,1);C.(-2,-1).
解析:根据平面直角坐标系中象限内点的坐标的特征知,第二象限(-,+),故判断答案为C.
评注:本题主要考查平面直角坐标系中象限内点的坐标的特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
例2(杭州市实验区)如图3的围棋盘放在某个平面直角坐标系内,白棋②的坐标为
--,那么黑棋①的坐标应该是.
(7,4)
--,白棋④的坐标为(6,8)
初中-数学-打印版
初中-数学-打印版
解析:由白棋② 的坐标和白棋④的坐标确定原点的位置,建立平面直角坐标系(如图
3).从而确定黑棋①的坐标为(-3,-7).
评注:用坐标表示位置的关键是确定坐标原点,建立平面直角坐标系.
例3(2005年吉林省实验区)如图4,A 点坐标为(3,3),将△ABC 向下平移4个单位得△C B
A ''',请你画出△C
B A ''',并写出点的坐标.
解析:将△ABC 向下平移4个单位得△C B A '''(如图4).
由A 点坐标(3,3),可确定△C B A '''三个顶点的坐标为A′(3,-1),B′(2,-3),C′(5,-3).
评注:已知一个图形的各顶点的坐标,求经过平移后的图形的各顶点的坐标的规律为:左右平移只改变横坐标,纵坐标不变;上下平移只改变纵坐标,横坐标不变.
(图4)。