九年级数学一元二次方程4
- 格式:pdf
- 大小:1.02 MB
- 文档页数:10
怎样求解一元二次方程(四种)怎样求一元二次方程aX²+bX+c=0(a≠0)的在实数域上的解(即实根)?我提供四种方法一、公式法二、配方法三、直接开平方法四、因式分解法下面我一一讲解!•一元二次方程aX²+bX+c=0(a≠0)1.1先判断△=b²-4ac,若△<0原方程无实根;2. 2 若△=0,原方程有两个相同的解为:X=-b/(2a);3. 3 若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
END1.1先把常数c移到方程右边得:aX²+bX=-c2. 2将二次项系数化为1得:X²+(b/a)X=- c/a3. 3方程两边分别加上(b/a)的一半的平方得:X²+(b/a)X +(b/(2a))²=- c/a +(b/(2a))²4. 4方程化为:(b+(2a))²=- c/a +(b/(2a))²5. 5①、若- c/a +(b/(2a))²<0,原方程无实根;②、若- c/a +(b/(2a))² =0,原方程有两个相同的解为X=-b/(2a);③、若- c/a +(b/(2a))²>0,原方程的解为X=(-b)±√((b²-4ac))/(2a)。
END1.1形如(X-m)²=n(n≥0)一元二次方程可以直接开平方法求得解为X=m±√nEND1.1将一元二次方程aX²+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。
END•方法中“√”字样为开根号。
•公式法和配方法具有通用性,直接开平方法和因式分解法适用于特殊的一元二次方程。
一元二次方程详细的解法方法1:配方法(可解全部一元二次方程)如:解方程:x^2-4x+3=0 把常数项移项得:x^2-4x=-3 等式两边同时加1(构成完全平方式)得:x^2-4x+4=1 因式分解得:(x-2)^2=1 解得:x1=3,x2=1小口诀:二次系数化为一常数要往右边移一次系数一半方两边加上最相当方法2:公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac0时x有两个不相同的实数根当判断完成后,若方程有根可根属于第2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”. 如:解方程:x^2+2x+1=0 利用完全平方公式因式分解得:(x+1﹚^2=0 解得:x1=x2=-14.直接开平方法5.代数法。
青岛版九年级上册数学第4章一元二次方程含答案一、单选题(共15题,共计45分)1、关于x的一元二次方程(m﹣6)x2﹣6x﹣1=0有两个不相等的实数根,则m 满足()A.m≥﹣3B.m>﹣3且m≠6C.m≥﹣3且m≠6D.m≠62、方程3x2+x-6=0左边配成一个完全平方式后,所得的方程是( )A. B. C.D.3、一个等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则该等腰三角形的周长是()A.12B.9C.13D.12或94、如果关于x的一元二次方程的两个根分别是,,那么p,q的值分别是()A.3,4B.-7,12C.7,12D.7,-125、已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0 的两个不相等的实数根,且满足= -1,则m的值是().A.3或 -1B.3C.-1D.-3 或 16、下列方程中,是一元二次方程的是()A.2x+y=1B.x 2+3xy=6C.x+ =4D.x 2=3x﹣27、定义运算:a*b=2ab,若a、b是方程x2+x﹣m=0(m>0)的两个根,则(a+1)*b+2a的值为()A. mB.2﹣2 mC.2 m﹣2D.﹣2 m﹣28、某品牌LED电视机经过连续两次降价,每台售价由原来的4000元降到了2980元,设平均每次降价的百分率为x,则下列方程中正确的是()A.4000(1+x)2=2980B.2980(1+x)2=4000C.2980(1﹣x)2=4000D.4000(1﹣x)2=29809、若x1, x2是一元二次方程2x2﹣x﹣3=0的两根,则x1+x2的值是()A.﹣1B.2C.D.310、有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=111、一元二次方程的一次项系数和常数项依次是A.-1和1B.1和1C.2和1D.0和112、已知一元二次方程2x2﹣5x+1=0的两个根为x1, x2,下列结论正确的是()A.x1+x2=﹣ B.x1•x2=1 C.x1, x2都是有理数 D.x1, x2都是正数13、对于ax2+bx+c=0,有9a+3b+c=0和4a-2b+c=0成立,则的值为()A.7B.-7C.5D.-514、用配方法解一元二次方程x2+3=4x,下列配方正确的是()A.(x+2) 2=2B.(x-2) 2=7C.(x+2) 2=1D.(x-2) 2=115、如果n(n≠0)是x的方程x2+mx+2n=0的根,则m+n的值为( )A.1B.2C.-1D.-2二、填空题(共10题,共计30分)16、方程(2x+3)(x﹣2)=0的根是________.17、已知x1, x2是方程x2+6x+3=0的两实数根,则值为________.18、如果关于的方程有两个相等的实数根,那么的值是________.19、阅读材料:如果a,b分别是一元二次方程的两个实数根,则有,;创新应用:如果m,n是两个不相等的实数,且满足,,那么代数式的值是________ .20、设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=________.21、若x=0是关于x的一元二次方程(m+2)x2﹣3x+m2﹣4=0的一个根,则m 的值为________.22、方程x2-3x+2=0 的二次项系数是________.23、某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是________ .24、已知关于的方程有两个实数根,则的取值范围是________.25、设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=________.三、解答题(共5题,共计25分)26、用估算的方法确定一元二次方程x2﹣5x+3=0的近似解.(精确到0.1)27、一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?28、阅读下面材料,再解方程:解方程x2-|x|-2=0解:( 1 )当x≥0时,原方程化为x2-x-2=0,解得:x1=2,x2=-1(不合题意,舍去)( 2 )当x<0时,原方程化为x2 + x –2=0,解得:x1=1,(不合题意,舍去)x2= -2∴原方程的根是x1=2, x2= - 2( 3 )请参照例题解方程x2-|x-1|-1=029、解方程:2x2﹣7x+3=030、雅安地震牵动全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款10000元,第三天收到捐款12100元。
青岛版九年级上册数学第4章一元二次方程含答案一、单选题(共15题,共计45分)1、方程的根是()A.x=0B.x=3C. ,D. ,2、根据下列表格的对应值:x 0.59 0.60 0.61 0.62 0.63x2+x-1 -0.061 -0.04 -0.017 0.0044 0.0269判断方程x2+x-1=0一个解的取值范围是( )A.0.59<x<0.61B.0.60<x<0.61C.0.61<x<0.62D.0.62<x<0.633、某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
若平均每月增率是x,则可以列方程();A.500(1+2x)=720B.500(1+x)2=720C.500(1+x 2)=720 D.720(1+x)2=5004、下列方程中有实数根的是()A.x 2+x+2=0B.x 2﹣x+2=0C.x 2﹣x﹣1=0D.x 2﹣x+3=05、若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥ 且k≠16、已知方程的两个实数根为,则的值为()A.-3B.3C.6D.-67、定义:如果一元二次方程ax2+bx+c=0(a≠)满足a+b+c+=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=cB.a=bC.b=cD.a=b=c8、关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,,则k的取值范围是()A.k>-1B.k>1C.k≠0D.k>-1且k≠09、在方程x+=2,(3-x)(2+x)=4,x2+x=y,2x-x2=x3中,一元二次方程有()A.0个B.1个C.2个D.3个10、若是方程的两根,则的值是()A.8B.-8C.-6D.611、下列二元二次方程中,没有实数解的方程是()A.x 2+(y﹣1)2=0B.x 2﹣(y﹣1)2=0C.x 2+(y﹣1)2=﹣1 D.x 2﹣(y﹣1)2=﹣112、若,是一元二次方程的两根,则的值是()A.3B.2C.-2D.113、若关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≤﹣1且k≠0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠014、方程x(x﹣1)=x的解是()A.x=0B.x=2C.x1=0,x2=1 D.x1=0,x2=215、教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则正确的方程为()A. B. C. D.二、填空题(共10题,共计30分)16、已知x1,x2是方程x2=2x+1的两个根,则的值是________.17、已知关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则实数k 的取值范围是________18、已知一元二次方程(m﹣2)x2﹣4x+m2﹣4=0的一个根为0,则m=________.19、若满足且.则________.20、某菱形的两条对角线长都是方程x2-6x+8=0的根,则该菱形的周长为________21、关于x的一元二次方程ax2+3ax+2=0有两个相等的实数根,则a的取值为________。
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
《一元二次方程》教案教学目标:学问与技能目标1.使学生了解一元二次方程及整式方程的意义;2.驾驭一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.过程与方法目标1.通过一元二次方程的引入,培育学生分析问题和解决问题的实力;2.通过一元二次方程概念的学习,培育学生对概念理解的完整性和深刻性.情感与看法目标由学问来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培育学生用数学的意识.教学重、难点:重点:一元二次方程的意义及一般形式.难点:正确识别一般式中的“项”及“系数”;判定一个数是否是方程的根.教学过程:一、创设问题情境1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先打算好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培育学生手、脑、眼并用的实力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应当怎样求出截去的小正方形的边长?老师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学学问不够用,须要学习新的学问,学了本章的学问,就可以解这个方程,从而解决上述问题.学生看投影并思索问题二、探究新知1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?“元”和“次”的含义?(3)什么叫做分式方程?2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以视察、比较,得到一元二次方程的概念.一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.例题解析例1 把方程223122+=-+x x x ))((化为一元二次方程的一般形式,写出它的二次项、一次项、常数项及二次项系数、一次项系数.4.练习:指出下列方程,哪些是一元二次方程?(1)x (5x -2)=x (x +1)+4x 2;(2)7x 2+6=2x (3x +1); (3)2172x= (4)6x 2=x ;(5)2x 2=5y ;(6)-x 2=05.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.一元二次方程的一般形式:ax 2+bx +c =0(a ≠0).ax 2称二次项,bx 称一次项,c 称常数项,a 称二次项系数,b 称一次项系数.一般式中的“a ≠0”为什么?假如a =0,则ax 2+bx +c =0就不是一元二次方程,由此加深对一元二次方程的概念的理解.6.要剪一块面积为150cm 2的长方形铁片,使它的长比宽多5cm ,这块铁片应当怎样剪? 设长为x cm ,则宽为(x -5)cm列方程x (x -5)=150,即x 2-5x -150=0请依据列方程回答以下问题:(1)x 可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:(3)分析:x 2-5x -150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,但是我们可以用二分法求出该方程的根.解:(1)x 不行能小于5.理由:假如x <5,则宽(x -5)<0,不合题意.x 不行能等于10.理由:假如x =10,则面积x 2-5x -150=-100,也不行能.(2)(3)铁片长x 三、习题演示1、把方程3x (x -1)=2(x +1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?老师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.2、下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.老师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.四、总结引导学生从下面四方面进行小结.从方法上学到了什么方法?从学问内容上学到了什么内容?分清晰概念的区分和联系?1.将实际问题用设未知数列方程转化为数学问题,体会学问来源于实际以及转化为方程的思想方法.2.一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区分和联系.强调“a≠0”这个条件有长远的重要意义.4.要会用一些方法求一元二次方程的根.。