.110kV降压变电所短路电流计算.doc(故障分析课程设计)
- 格式:doc
- 大小:28.50 KB
- 文档页数:2
目录一、绪论 (2)(一)、原始资料 (2)(二)、设计内容 (2)(三)、原始资料分析 (3)二、电气主接线方案的拟定 (4)(一)电气主接线的基本要求和设计原则 (4)(二)主变压器的选择 (4)(三)确定各侧接线方式 (4)三、短路电流计算 (4)(一)短路电流计算的目的 (4)(二)短路电流计算的一般规定 (5)(三)计算步骤 (5)四、主要设备的选择 (5)五、主要设备的配置 (7)(一)、PT的配置 (7)(二)CT的配置 (8)(三)避雷器的配置 (8)六、所用电设计 (8)(一)用电电源数量及容量 (9)(二)所用电源引接方式 (9)(三)变压器低压侧接线 (9)七、配电装置设计 (9)八、主变保护的配置 (10)九、无功补偿装置 (10)一、绪论(一)、原始资料1、根据电力系统规划需新建一座220kv区域变电站,该站建成后与110kv 和220kv电网相连,并供给近区用户,按规划该站装设两台容量为120MVA主变压器。
2、按规划要求,该站有220kv、110kv和10kv三个电压等级,220kv出线6回(其中备用2回),110kv出线8回(其中备用2回),10kv出线12回(其中备用2回)。
变电站还安装4组5Mvar(共20Mvar)无功补偿电容器以满足系统调压要求。
3、110kv侧有两回出线供给远方大型冶炼厂(如:驻马店市南方钢铁公司),其容量为60000KVA,其它作为一些地区变电站进线,最大负荷与最小负荷之比0.6,10kv侧总负荷为30000KVA,Ⅰ、Ⅱ类用户占60%,最大一回负荷为2500KVA,最大负荷与最小负荷之比为0.65。
4、各级电压侧功率因数和最大负荷利用小时数为:220kv侧 cosφ=0.9 Tmax=3800小时/年110kv侧 cosφ=0.85 Tmax=4200小时/年10kv侧 cosφ=0.8 Tmax=4500小时/年5、220kv和110kv侧出线主保护为瞬时动作,后备保护时间为0.15秒,10kv 出线过流保护时间为2秒,断路器燃弧时间按0.05秒考虑。
电气课程设计110kv降压变电所电气部分设计学号:同组人:时间:2011 __大学__学院电光系一、原始资料1.负荷情况本变电所为某城市开发区新建110KV降压变电所,有6回35KV 出线,每回负荷按4200KW考虑,cosφ=0.82, Tmax=4200h,一、二类负荷占50%,每回出线长度为10Km;另外有8回10KV出线,每回负荷2200KW,cosφ=0.82, Tmax=3500h,一、二类负荷占30%,每回出线长度为10km;2.系统情况本变电所由两回110KV电源供电,其中一回来自东南方向30Km处的火力发电厂;另一回来自正南方向40Km处的地区变电所。
本变电所与系统连接情况如图附I—1所示。
图附I—1 系统示意图最大运行方式时,系统1两台发电机和两台变压器均投入运行;最小运行方式时,系统1投入一台发电机和一台变压器运行,系统2可视为无穷大电源系统。
3.自然条件本所所在地的平均海拔1000m,年最高气温40℃,年最低气温-10℃,年平均气温20℃,年最热月平均气温30℃,年雷暴日为30天,土壤性质以砂质粘土为主。
4.设计任务本设计只作电气初步设计,不作施工设计。
设计内容包括:①主变压器选择;②确定电气主接线方案;③短路电流计算;④主要电气设备及导线选择和校验;⑤主变压器及出线继电保护配置与整定计算⑥所用电设计;⑦防雷和接地设计计算。
二、电气部分设计说明书(一)主变压器的选择(组员:丁晨)本变电所有两路电源供电,三个电压等级,且有大量一、二级负荷,所以应装设两台三相三线圈变压器。
35KV侧总负荷P=4.2×6MW=25.2MW,10KV侧总负荷P=2.2×8=17.6MW,因此,总计算负荷S为S=(25.2+17.6)/0.82MVA=52.50MVA 每台主变压器容量应满足全部负荷70%的需要,并能满足全部一、二类负荷的需要,即S≥0.7 S30=0.7×52.20MVA=36.54MVA 且S≥(25.2×50%+17.6×30%)/0.82MVA=21.80MVA 故主变压器容量选为40MVA,查附录表Ⅱ-5,选用SFSZ9—__/110型三相三线圈有载调压变压器,其额定电压为110±8×1.25%/38.5±5%/10.5KV。
目录1前言 (2)2任务变电站原始资料 (4)2.1电力系统与本所的连接方式 (4)2.2主变压器型号及参数 (4)2.3负荷及出线情况 (5)3短路电流计算 (6)3.1基本假定 (6)3.2基准值的选择 (6)3.3各元件参数标么值的计算 (7)3.4短路电流的计算 (9)1.5短路电流计算结果 (14)4继电保护的配置 (15)4.1继电保护的基本知识 (15)4.2变压器保护配置及整定计算 (18)4.3 10kV线路保护配置及整定计算 (20)5结论 (28)6总结与体会 (29)7谢辞 (30)8参考文献 (31)1前言由于电力系统的飞速发展对继电保护不断提出新的要求,电子技术,计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新的活力。
未来继电保护的发展趋势是向计算化,网络化及保护,控制,测量,数据通信一体化智能化发展。
电能是一种特殊的商品,为了远距离传送,需要提高电压,实施高压输电,为了分配和使用,需要降低电压,实施低压配电,供电和用电。
发电----输电----配电----用电构成了一个有机系统。
通常把由各种类型的发电厂,输电设施以及用电设备组成的电能生产与消费系统称为电力系统。
电力系统在运行中,各种电气设备可能出现故障和不正常运行状态。
不正常运行状态是指电力系统中电气元件的正常工作遭到破坏,但是没有发生故障的运行状态,如:过负荷,过电压,频率降低,系统振荡等。
故障主要包括各种类型的短路和断线,如:三相短路,两相短路,两相接地短路,单相接地短路,单相断线和两相断线等。
本次毕业设计的主要内容是对110kV企业(水泥厂)变电站进行短路电流的计算、保护的配置及整定值的计算。
参照《电力系统继电保护配置及整定计算》,并依据继电保护配置原理,对所选择的保护进行整定和灵敏性校验从而来确定方案中的保护是否适用来编写的。
设计分五大章节,其中第三章是计算系统的短路电流,确定各点短路电流值;第四章是对各种设备保护的配置,首先是对保护的原理进行分析,保护的整定计算及灵敏性校验,其后是对变压器保护配置及整定计算以及10kV线路保护配置及整定计算。
目录引言 (2)1电力系统短路故障说明 (3)2短路故障分析计算(解析法) (6)2.1各元件电抗标幺值的计算 (6)2.2短路次暂态电流标幺值计算 (9)2.3三相短路电流及短路功率计算 (11)3 Y 矩阵计算法 (12)4两种算法分析 (15)4.1解析法计算结果 (15)4.2 Y 矩阵计算结果 (15)致谢 (16)参考文献 (17)引言在电力系统可能发生的各种故障中,对系统危害最大,而且发生概率最高的是短路故障。
所谓短路,是指电力系统中相与相之间或相与地之间的非正常连接。
在电力系统正常运行时,除了中性点外,相与相或相与地之间是相互绝缘的。
如果由于绝缘破坏而造成了通路,电力系统就发生了短路故障。
电力系统短路出现的原因:①电气设备载流部分的绝缘损坏;②操作人员违反安全操作规程而发生误操作;③鸟兽跨越在裸露的相线之间或相线与接地物体之间,或咬坏设备、导线绝缘层。
电力系统短路的后果:①短路时会产生很大电动力和很高温度,使短路电路中元件受到损坏和破坏,甚至引发火灾事故。
②短路时,电路的电压骤降,将严重影响电气设备的正常运行。
③短路时保护装置动作,将故障电路切除,从而造成停电,而且短路点越靠近电源,停电范围越大,造成的损失也越大。
④严重的短路要影响电力系统运行的稳定性,可使并列运行的发电机组失去同步,造成系统解列。
⑤不对称短路将产生较强的不平衡交变电磁场,对附近的通信线路、电子设备等产生电磁干扰,影响其正常运行,甚至发生误动作。
短路电流的计算目的:短路计算是为了正确选择和校验电气设备,准确地整定供配电系统的保护装置,避免在短路电流作用下损坏电气设备,保证供配电系统中出现短路时,保护装置能可靠动作。
在三相系统中,可能发生的短路有:三相短路、两相短路、两相短路接地以及单相短路接地。
其中三相短路造成的危害最大,本次课程设计的目的是在三相短路故障出现时分析与计算最大可能的故障电流和功率。
1电力系统短路故障说明(3 )如图 1 所示的系统中 K点发生三相短路故障,分析与计算产生最大可能的故障电流和功率。
课程设计报告课程:电气综合课程设计学院:电子工程学院专业:电气工程及其自动化姓名:学号:班级:指导教师:职称:讲师完成日期:2015年11月12日摘要随着经济的发展和现代工业建设的迅速崛起,供电系统的设计越来越全面、系统工厂用电量迅速增长,对电能质量、技术经济状况、供电的可靠性指标也日益提高,因此对供电设计也有了更高、更完善的要求。
设计是否合理,不仅直接影响基建投资、运行费用和有色金属的消耗量,也会反应在供电的可靠性和安全生产方面,它和企业的经济效益、设备人身安全密切相关。
变电所是电力系统的一个重要组成部分,有电气设备及配电网络按一定的接线方式所构成,他从电力系统取得电能,通过其变换、分配、输送与控制的枢纽,然后将电能安全、可靠、经济的输送到每一个用电设备的转设场所。
作为电能传输与控制的枢纽,变电站必须改变传统的设计和控制模式,才能适应现代的电力系统、现代工业化生产和社会生活的发展趋势。
随著计算机技术、现代通讯和网络技术的发展,为目前变电站的坚实、控制、保护和计量装置及系统分隔的状态提供了有优化组合和系统集成的技术基础。
110Kv变电所属于高压网络,该地区变电所所涉及方面多,分析变电所担负的任务及用结构化负荷等情况,利用用户数据进行负荷计算,确定用户无功功率补偿装置。
电力技术高新化、复杂化的迅速发展,使电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发展变化。
变电所为电力系统中的一个关键的环节也同样在新技术领域得到了充分的发展。
……【关键词】迅速崛起变电所可靠性电力技术目录1 引言 (5)1.1 变电站的作用 (5)1.2 我国变电站及其设计的发展趋势 (6)1.3 变电站设计的主要原则和分类 (8)2 任务书 (9)2.1 原始资料 (9)2.2 负荷计算 ......................................................................................................................... 10 计算方法:根据材料给定的有功功率P 、功率因数cos&,求出无功功率Q=P*tan&nP P P P P +⋅⋅⋅⋅⋅+++=∑321 n Q Q Q Q Q +⋅⋅⋅⋅⋅+++=∑321 计算负荷:∑∑+∂=22*Q P S c ,∂为需要系数一般取0.85.根据原始资料:cos&=0.85,则tan&=tan(arccos0.85)=0.62加工厂1回:1c P =1500kW,tan&*11c c P Q ==1500*0.62=930kVar机械厂2回:2c P = 3c P =1200kW,tan&*232c c c P Q Q ===1200*0.62=744kVar药棉厂1回:4c P =2000kW,tan&*44c c P Q ==2000*0.62=1240kVar棉纺厂2回:5c P = 6c P =1800kW,tan&*565c c c P Q Q ===1800*0.62=1116kVar水厂2回:7c P = 8c P =1600kW,tan&*787c c c P Q Q ==1600*0.62=992kVar化工厂2回:9c P = 10c P =1200kW,Qc9= Qc10=Pc9* tan&=2000*0.62=1240kVar975421*2*2*2*2c c c c c c P P P P P P P +++++=∑=1500+1200*2+1800*2+1600*2+2000*2=16700kW ............................................................. 10 975421*2*2*2*2c c c c c c Q Q Q Q Q Q P +++++=∑=930+2*744+1240+1116*2+992*2+1240*2=103454kW ....................................................... 11 ∑∑+=22)()(*Q P K S c1c c P P P ∑=+S=16.7MVA 3 电气主接线设计 (11)c3.1 电气主接线设计概述 (12)3.2 电气主接线的基本形式 (14)3.3 电气主接线选择 (15)4 变电站主变压器选择 (19)4.1 主变压器的选择 (19)4.2 主变压器选择结果 (20)5 短路电流计算 (21)5.1 短路的危害 (21)5.2 短路电流计算的目的 (21)5.3 短路电流计算方法 (21)6 电气设备的选择 (23)6.1 导体的选择和校验 (23)6.2 断路器和隔离开关的选择及校验 (24)6.3 电压互感器和电流互感器的选择 (25)6.3.1 电流互感器的选择 (25)6.3.2 电压互感器的选择 (25)参考文献 (26)1 引言1.1 变电站的作用一、变电站在电力系统中的地位电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
课程设计(论文)题目 110KV变电所一次部分设计学院名称电气工程学院指导教师职称讲师班级电力113班学号学生姓名2014年 6月 30日电气工程基础设计任务书一、设计内容要求设计110KV变电所(B所)的电气部分二、原始资料1供设计的变电所有A、B、C三个,各自的地理位置和系统发电机、变压器相关数据如附图1所示.附图1 各变电所的地理位置2各变电所的10kV低压负荷分别为P a=500kW,P b=300kW,P c=200kW.3各变电所典型负荷曲线有两种,分别如附图2(a)和附图2(b)所示。
4110kV输电线路l1、l2、l3、l4的长度各不相同,电抗均按0。
4Ω/km计.5每位同学设计的原始数据,除了P a=500kW,P b=300kW,P c=200kW之外,其它数据应根据自己所在班级的序号,在附表1中查找。
附图2 典型日负荷曲线附表1 每位同学设计原始数据查找表三、设计任务(1)设计本变电所的主变压器台数、容量、形式。
(2)设计高低压侧主接线方式。
(3)设计本变电所的所用电接线方式。
(4)计算短路电流。
(5)选择电气设备(包括断路器、隔离开关、互感器等)。
设计成果1.设计说明书一份 2。
计算书一分 3。
主接线图一份要求:上述3者按顺序装订成一册(简装,钉书针左边钉好3颗,勿用夹子夹)五、主要参考资料[1]姚春球。
发电厂电气部分。
北京:中国电力出版社:2004[2]电力工业部西北电力设计院.电力工程电气设备手册(第一册).北京:中国电力出版社,1998 [3]周问俊.电气设备实用手册.北京:中国水利水电出版社,1999[4]陈化钢。
企业供配电。
北京:中国水利水电出版社,2003。
9[5]电力专业相关教材和其它相关电气手册和规定摘要:本次设计为110kV降压变电站电气一次部分的初步设计,根据原始资料,以设计任务书和国家有关电力工程设计的规程、规范及规定为设计依据.变电站的设计在满足国家设计标准的基础上,尽量考虑当地的实际情况。
课程设计任务书设计题目: 110kV变电站电气一次部分设计前言变电站(Substation)改变电压的场所。
是把一些设备组装起来,用以切断或接通、改变或者调整电压.在电力系统中,变电站是输电和配电的集结点。
主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。
对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经变压器后,变为220伏的生活用电,或变为380伏的工业用电。
随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求.本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。
其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择.其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。
目录第1章原始资料及其分析 (4)1原始资料 (4)2原始资料分析 (6)第2章负荷分析 (6)第3章变压器的选择 (8)第4章电气主接线 (11)第5章短路电流的计算 (14)1短路电流计算的目的和条件 (14)2短路电流的计算步骤和计算结果 (15)第6章配电装置及电气设备的配置与选择 (18)1 导体和电气设备选择的一般条件 (18)2 设备的选择 (19)结束语 (25)致谢 (26)参考文献 (27)附录一:一次接线图第一章原始资料及其分析1。
原始资料待建变电站是该地区农网改造的重要部分,预计使用3台变压器,初期一次性投产两台变压器,预留一台变压器的发展空间。
1。
1电压等级变电站的电压等级分别为110kV,35kV,10kV。
短路电流的计算概述电力系统正常运行方式的破坏,多数是由于短路故障引起的,系统中将出现比正常运行时的额定电流大许多倍的短路电流,其数值可达几万甚至几十万安培。
变电站设计中不能不全面地考虑短路故障的各种影响。
短路是电力系统的严重故障,所谓短路,是指相与相之间通过电弧或其它较小阻抗的一种非正常连接,在中性点直接接地系统中或三相四线制系统中,还指单相和多相接地。
在三相系统中短路的基本类型有:三相短路,两相短路,两相接地短路和单相接地短路。
其中,三相短路是对称短路,系统各相与正常运行时一样仍处于对称状态,其他类型的短路都是不对称短路。
变电所中的各种电气设备必须能承受短路电流的作用,不致因过热或电动力的影响造成设备损坏。
短路电流的大小也是比较主接线方案、分析运行方式时必须考虑的因素。
系统短路时还会出现电压降低,靠近短路点处尤为严重,这将直接危害用户供电的安全性及可靠性。
为限制故障范围,保护设备安全,继电保护装置整定必须在主回路通过短路电流时准确动作。
由于上述原因,短路电流计算成为变电所电气部分设计的基础。
选择电气设备时,通常用三相短路电流;校验继电保护动作灵敏度时用两相短路、单相短路电流或单相接地电流。
工程设计中主要计算三相短路电流。
3.2 短路电流计算相关内容3.2.1 短路电流计算的目的计算短路电流的目的主要是为了选择断路器等电气设备或对这些设备提出技术要求;评论并确定网络方案,研究限制短路电流措施;为继电保护设计与调试提供依据;分析计算送电线路对通讯设施的影响等。
在发电厂和变电站的电气设计中,短路电流计算是其中的一个重要环节。
其计算的目的主要有以下几方面:(1)在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。
(2)在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。
《电力系统分析》课程设计任务书
110kV降压变电所短路电流计算
原始资料
1、电气一次部分设计情况
该变电所为110/38.5/10.5kV三级电压,所内装设31.5MV A及40MV A主变各一台,2回110kV架空进线,4回35kV出线及8回10kV出线。
主接线可以考虑110kV侧采用内桥、外桥、单母分段接线,35kV可以考虑单母分段、双母线接线,10kV可以考虑单母分段、双母线接线。
2、参数部分
系统电抗标幺值"
d
X=0.0581,两条110kV进线为LGJ-150型,线路长度一条为16.582km,另一条为14.520km。
3、主变铭牌参数如下:
#1主变:型号SFSZ8-31500/110
接线Y N/Y N0/△-11
变比110±4×2.5%/38.5±2×2.5%/10.5
短路电压(%)高-中10.47 高-低18 中-低6.33
短路损耗(Kw)高-中169.7 高-低181 中-低136.4
空载电流(%)0.46
空载损耗(kW)40.6
#1主变:型号SFSZ10-40000/110
接线Y N/Y N0/△-11
变比110±8×1.25%/38.5±2×2.5%/10.5
短路电压(%)高-中11.79 高-低21.3 中-低7.08
短路损耗(Kw)高-中74.31 高-低74.79 中-低68.30
空载电流(%)0.11
空载损耗(kW)26.71
为了方便计算,设基准容量S
B =100MVA,基准电压U
B
=Uav
设计任务
1、设计110kV降压变电所主接线方案,用1#图纸绘制。
2、短路计算要求:
1)利用“近似法”进行标幺值计算。
2)对于110kV母线故障,考虑两条进线同时运行的情况以计算最大三相短路电流及两相短路电流。
对于35、10kV母线故障,因为不考虑两台主变长期并列运行,所以按分列运行情况进行计算,计算最大三相短路电流及两相短路电流。
课程设计指导书
一、课程设计的目的和要求
目的:课程设计是学生在学习电力系统课程后的一次综合性训练,复习巩固本课程及其他课程的有关内容,增强工程观念,培养电力网规划设计的能力。
要求:
1)熟悉国家能源开发策略和有关的技术规程、规定、导则等,树立供电必须安全、可靠、经济的观点。
2)掌握电力网初步设计的基本方法和主要内容
3)熟练电力网的基本计算
4)学习工程设计说明书的撰写
二、课程设计的原始资料
1)电气一次部分设计情况
2)参数部分
3)主变铭牌参数
4)其他条件及要求
三、课程设计的内容及时间
内容:
1)变电所主接线方案的技术论证及经济比较
2)变电所主接线的设计
3)短路计算的目的和要求
4)变电所短路计算
5)编写设计说明书、绘图
时间:
约需1.5—2周
四、课程设计提纲
1、课程设计说明书
课程设计说明书可参考下列提纲层次编写:
1)前言
2)目录
3)第一章设计任务介绍
4)第二章变电所接线方案的选择及论证
5)第三章短路计算的目的、要求及短路计算
6)第四章变电所短路计算结果分析
7)结束语
8)参考文献
2、图纸
只画设备布置,不作具体型号的标注。