水体中有机污染物的迁移转化
- 格式:ppt
- 大小:842.00 KB
- 文档页数:44
水体内污染物的迁移与转化随着人类经济社会的发展,大量的污染物排放到水体中,其中包括无机物和有机物等,这些污染物不仅对水体本身的生态环境造成了极大的破坏,而且还会对人类的健康产生巨大的威胁。
因此,进行水体内污染物的迁移与转化的研究具有非常重要的现实意义。
一、水体内污染物的迁移机制1. 全球水循环过程中的污染物迁移全球水循环是地球大气圈、水圈和陆地生物圈等部分组成的整体系统,在这个系统中,污染物会通过全球水循环向各地的水体中传输。
例如,空气中的污染物(如氧化氮与二氧化硫)在大气中形成酸雨,然后通过雨水向地面水体中传输,进而加剧了水体中的酸性。
2. 水体内不同环境的污染物迁移水体内污染物的迁移机制是多种多样的,因为水环境中的温度、水流速度、离子环境、生物区系等环境因素均会对污染物的迁移方式产生影响。
在静水环境中,污染物多集中分布于底部或者水面附近,而在水流速度较快的河流或者海域中,污染物则随着水流向下游或者海底迁移。
此外,污染物的溶解度、分子质量、分子形式等也会对污染物的迁移方式产生一定的影响。
二、水体内污染物的转化机制1. 水体内生物作用的污染物转化生物是水体内最重要的组成部分之一,因为水体中存在着大量的细菌、藻类、浮游生物等微生物群体,它们可以通过吃掉周围的有机物而将污染物降解为水体生态环境所必需的无害物质,从而起到了水体净化的作用。
例如,强氧化剂过氧化氢可以被水体内的微生物降解为H2O和O2,香料中的L-薄荷烯等芳香类污染物可以被水体内的藻类通过吸收转化为二氧化碳和水,并且藻类中的一些细胞壁也含有丰富的吸附有机物的活性部位,可以吸附水体中的污染物,起到净化作用。
因此,生物作用是水体内污染物转化中最为重要的一个机制。
2. 环境氧化还原的污染物转化环境氧化还原反应是一类水体内污染物转化的重要机制,它通常是指一类化学反应,其中电子在不同的物质之间转移。
在氧气存在的环境下,某些化合物可以发生氧化反应,例如铁离子可以被氧化为铁离子,从而引发一系列反应,最终使得化学反应达到自我平衡。
污染物在水体中的迁移转化方式主要有以下三种途径:
(1)氧化-还原作用。
天然水体中有许多无机和有机氧化剂和还原剂,如溶解氧、Fe3+、Mn4+、Fe2+、S2-及有机化合物等,这些物质对污染物的转化起重要作用。
如环境中重金属在一定氧化-还原条件下,容易发生价态变化,结果是其化学性质改变,迁移能力也会发生改变。
水体中的氧化-还原类型、速率和平衡,在很大程度上决定了水中重要溶质和污染物的性质。
如在一个厌氧湖泊中,湖下层的元素以还原态存在:碳还原成CH4,氮还原成[*]等,而表层水由于可被大气中氧补充,成为氧化性介质,达到热力学平衡时,碳成为CO2,氮成为[*]。
显然这种变化对水生生物和水质影响很大。
(2)络合作用。
天然水体中有许多无机配位体,如OH-、Cl-[*]、[*]和有机配位体如氨基酸、腐殖酸,以及洗涤剂、农药、大分子环状化合物等,它们可以与水中的污染物,特别是重金属发生络合反应,改变其性质和存在状态,影响污染物在水体中发生、迁移、反应和生物效应。
(3)生物降解作用。
水体中的微生物,特别是底泥中的厌氧微生物,可以使一些污染物发生转化,如把无机汞转变为有机汞。
有机物在水中迁移转化规律
有机物迁移转化
(1)需氧污染物.在水中需要消耗大量的水溶氧进行微生物
分解的污染物称为需氧污染物,它们进入水体后即发生生物化学分解作用,由污染物有机成分中的碳水化合物、蛋白质、脂肪和木质素等分解为简单的二氧化碳和水及其它无机物质.
(2)难降解有机物污染物.这是指难以被生物分解的有机物
质.如有机氯农药、多氯联苯、芳香氨基化合物、高分子合成聚合物(塑料、合成橡胶、人造纤维)、染料等有机物质,它们在
环境中难以被生物降解,污染危害时间长.例如有机氯农药喷撒作物后只有一小部分落在作物枝叶上,其余大部分散落在土壤表面或进入大气;而进入大气后又可以随降雨或尘埃降落到地面后再进入水体.。
水环境污染物的迁移转化规律
水环境污染物的迁移转化是一个重要的环境问题,也是当前地球环境污染防治的一个议题。
水环境污染物的迁移转化规律是指,污染物在水中的运动、转化和转移规律,它经历了在
水中的溶解、沉降和扩散三种过程,也就是物理-化学-生物三位一体联合作用过程。
污染物在水环境中的转化是一个复杂的过程,包括物理转化、化学转化和生物转化三种过程。
物理转化是指水的流动和搅动能使污染物聚集;化学转化指的是污染物在水环境中由
于水的化学反应逸散和降解转化;生物转化是指污染物在水环境中被有机降解的过程,靠
微生物的发酵、氧化抑制等作用达到处理效果。
此外,水环境污染物的迁移转化还受到很多其他因素的影响,比如水质、温度、pH值、
向性、气泡等,这些因素可以影响污染物的迁移速率、转化效率以及最终消解率。
综上所述,水环境污染物的迁移转化是一个复杂的过程,要正确预测和分析污染物的迁移、转化和消解情况,需要大量实际调查资料和实验数据,结合理论模拟和理论计算,以便更准确地评估水环境污染物的迁移转化过程,有效地实施环境保护。
多环芳烃(PAHs)在淡水水体中的迁移转化规律1 概述多环芳烃( Polycyclic Aromatic Hydrocarbons ,简称PAHs)是指两个或两个以上苯环连在一起的一类化合物,具有高脂溶性和相对低的水溶性,具有“致癌、致畸和致基因突变”(目前已发现的致癌性多环芳烃及其衍生物超过400 种)作用的持久性有机污染物( Persistent Organic Pollutant s ,POPs) 。
这一类物质由于高毒性、低流动性和难降解性使其在环境保护领域备受关注。
美国EPA优先控制名单中确定了16种PAHs作为优先控制污染物,我国也将7 种多环芳烃列入“中国环境优先控制污染物”黑名单。
PAHs由于化石燃料燃烧、机动车、垃圾焚烧、精炼油、焦炭和沥青生产以及铝的生产等人类活动而广泛分布于环境中。
多环芳烃在环境中大多数是以吸附态和乳化态形式存在,一旦进入环境,便受到各种自然界固有过程的影响,发生变迁。
通过复杂的物理迁移、化学及生物转化反应,在大气、水体、土壤、生物体等系统中不断变化,改变分布状况。
处在不同状态、不同系统中的多环芳烃则表现出不同的变化行为。
多环芳烃进入大气后,可通过化学反应、降尘、降雨、降雪等过程进入土壤及水体中。
人们可以通过呼吸、饮食等多种途径摄入,对人类健康产生极大危害,因此研究多环芳烃在环境中的行为具有十分重要的意义。
多环芳烃在环境中,特别是水环境中的迁移转化和归宿也得到广泛关注。
本文着重探讨河流、湖泊等淡水水体中多环芳烃的迁移转化研究成果,并指出存在问题和今后努力的方向。
2 PAHs在淡水水体中的迁移转化规律2.1 PAHs 在大气-水体间迁移转化PAHs 在大气-水体间迁移转化方式有:气态湿沉降、携带PAHs 的颗粒物湿沉降与干沉降、水-气界面PAHs 交换。
李军等利用双膜理论计算多环芳烃在麓湖水面上的交换通量,除萘、苊、二氢苊的通量方向是从湖水到大气外,其它多环芳烃都是从大气进入水体。
水生环境中有机污染物的迁移与转化机制在现代社会,有机污染物的排放已经成为一个严重的环境问题。
其中,水生环境中的有机污染物对生态系统和人类健康造成了极大的威胁。
了解有机污染物在水生环境中的迁移与转化机制,对于科学有效地减少水体污染具有重要的意义。
1. 有机污染物的迁移机制有机污染物在水生环境中的迁移受到水流、沉积物和生物活动等因素的影响。
其中,水流是主要的迁移途径之一。
当有机污染物进入水体后,其随着水流的运动而迁移。
水流的速度以及水体的流动情况都会对有机污染物的迁移路径和距离产生影响。
此外,沉积物也是有机污染物迁移的重要载体。
有机污染物可以通过吸附或结合到沉积物中,从而随着沉积物的迁移而改变位置。
同时,生物活动也会对有机污染物的迁移产生一定影响。
例如,水生生物的摄食和代谢活动能够加速有机污染物的迁移速度。
2. 有机污染物的转化机制有机污染物在水生环境中还会发生一系列的化学、生物和物理过程,导致其发生转化。
其中,化学转化是有机污染物转化的重要途径之一。
水中的有机污染物可以通过氧化、还原和水解等反应发生转化。
此外,生物转化也是有机污染物转化的重要过程。
水生生物可以通过代谢作用将有机污染物转化为更简单的物质。
这些转化物质可以更易于在环境中分解和消除。
物理过程也会对有机污染物的转化产生一定影响。
例如,光照会促使有机污染物发生光解反应,从而改变其结构和性质。
3. 影响有机污染物迁移与转化的因素有机污染物的迁移与转化机制受到多种因素的影响。
首先,有机污染物的物化性质对其迁移与转化具有重要影响。
例如,有机溶剂在水中具有一定的溶解度,更容易迁移。
其次,环境条件也会对有机污染物的迁移与转化产生一定影响。
如温度、pH值和氧气浓度等环境因素都会对有机污染物的稳定性和活性产生影响。
此外,水体中的微生物群落和生态系统结构也会对有机污染物的转化产生重要影响。
水中存在的微生物能够通过吸附、降解和转化等过程,促进有机污染物的去除和降解。