试验八抽样定理
- 格式:doc
- 大小:60.00 KB
- 文档页数:2
通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。
2、观测并记录平顶抽样前后信号的波形。
此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。
3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。
(2)7.7KHZ在频率为9HZ 时的波形如上图,低通滤 波器恢复出的信号与原信号基本一致, 只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右, 恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。
上述现象验证了抽样定理,即,在信号 的频率一定时,采样频率不能低于被采 样信号的2倍,否则将会出现频谱的混 叠,导致恢复出的信号严重失真。
实验二PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ 用示波器接模块21的音频输出,观测信号 的幅频特性。
⑴、4000HZ(2)、3500HZ(1)9.0KHZ(3)7.0KHZ(3)120HZ⑷50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。
实验项目二PCM编码规则实验1、以FS为触发,观测编码输入波形。
示波器的DIV档调节为100微秒图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。
实验一 抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性2、掌握自然抽样及平顶抽样的实现方法3、理解低通采样定理的原理4、理解实际的抽样系统5、理解低通滤波器的幅频特性对抽样信号恢复的影响6、理解低通滤波器的相频特性对抽样信号恢复的影响7、理解平顶抽样产生孔径失真的原理8、理解带通采样定理的原理二、实验内容1、验证低通采样定理原理2、验证低通滤波器幅频特性对抽样信号恢复的影响3、验证低通滤波器相频特性对抽样信号恢复的影响4、验证带通抽样定理原理5、验证孔径失真的原理三、实验原理抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。
(具体可参考《信号与系统》)我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。
抽样定理实验的原理框图如下:抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号图1抽样定理实验原理框图抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号低通滤波器图2实际抽样系统为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。
在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。
另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示:被抽样信号抽样恢复后的信号图3复杂信号抽样恢复前后对比你能分辨图中抽样恢复后信号的失真吗?因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示:图1被抽样信号波形及频谱示意图对抽样脉冲信号的考虑大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显然,这个脉冲宽度(简称脉宽)对抽样的结果是有影响的,这就是课本上讲的“孔径失真”,用不同的宽度的脉冲信号来抽样所带来的失真程度是不一样的,为了让大家能很好地理解和观察孔径失真现象,我们将抽样脉冲信号设计为脉宽可调的信号,在实验中大家可以一边调节脉冲宽度,一边从频域和时域两个方面来观察孔径失真现象。
通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。
实验器材:
示波器、函数信号发生器、导线、面包板。
实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。
2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。
5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。
6.将采样频率设置为30kHz,并观察波形。
7.继续提高采样频率直至可清晰观察到原始信号的波形。
实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。
在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。
实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。
在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。
通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。
通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。
抽样定理定义:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以1/2 f h的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续的全部信息。
抽样定理在实际应用中应注意在抽样前后模拟信号进行滤波,把高于二分之一抽样频率的频率滤掉。
这是抽样中必不可少的步骤。
07年的抽样定理:设时间连续信号f(t),其最高截止频率为f m ,如果用时间间隔为T<=1/2f m的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。
什么是A/D转换和D/A转换?什么是A/D转换和D/A转换?一。
什么是a/d.d/a转换:随着数字技术,特别是信息技术的飞速发展与普及,在现代控制。
通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。
由于系统的实际对象往往都是一些模拟量(如温度。
压力。
位移。
图像等),要使计算机或数字仪表能识别。
处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析。
处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。
这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路-模数和数模转换器。
将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br>为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。
转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。
抽样定理验证实验抽样定理是统计学充满魅力的概念之一,它表明,当样本容量足够充分大时,样本的抽样分布会接近于总体分布。
这个定理被广泛用于各种数据分析和决策中,因为它可以减少成本和时间,同时保证结果的准确性。
在这篇文章中,我们将介绍如何进行一个简单的抽样定理验证实验。
实验目的:1、理解抽样定理的数学概念实验器材:1、一组充分大的总体数据2、随机数生成程序或工具3、计算器或数据分析软件实验步骤:1、准备一组充分大的总体数据。
这里我们选择一个简单的总体,例如一个1到10的自然数序列。
2、根据总体数据的范围,设定随机数生成程序或工具,以生成符合一定分布规律的随机数。
在这里,我们可以选择均匀分布或正态分布。
4、计算样本数据的平均值和标准差。
5、重复步骤2到4多次,得到多组样本数据。
6、将多组样本数据中的平均值和标准差绘制成频率分布图和直方图,观察它们的分布情况。
同时,计算它们的样本均值和样本标准差。
8、根据抽样定理,当样本容量足够充分大时,样本的抽样分布会接近于总体分布。
因此,我们可以提高样本容量,再次重复步骤2到7,观察样本数据的频率分布图和直方图与总体数据的分布情况,以及样本均值和标准差与总体均值和标准差之间的相似性,以验证抽样定理。
实验结果:对于上述实验过程,我们可以得到如下结果:1、在样本容量较小时(例如,10个样本数据),样本数据的频率分布图和直方图可能偏离总体数据,样本均值和标准差与总体均值和标准差之间的相似性也较低。
这些结果表明,随着样本容量的增加,样本数据的接近程度越来越高,最终接近于总体分布。
这验证了抽样定理的数学概念,也为我们在实际数据分析和决策中提供了可靠的理论基础。
结论:抽样定理强调了在估计总体参数时,样本容量对估计结果的重要性。
在实践中,我们应该坚持选择充分大的样本容量,以确保结果的可靠性和准确性。
通过验证抽样定理,我们可以更好地理解样本与总体之间的关系,为我们在实践中做出更好的决策提供可靠的依据。
实验八抽样定理一实验目的1 了解电信号的采样方法与过程以及信号恢复的方法。
2 验证抽样定理。
二原理说明1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。
抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。
即:f S(t)= f(t)×s(t)如图8-1所示。
T S为抽样周期,其倒数f S =1/T S称为抽样频率。
图8-1 对连续时间信号进行的抽样对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。
平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。
当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。
抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。
2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。
(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图8-2冲激抽样信号的频谱图3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。
而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。
当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。
在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。
图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。
实验八:抽样定理实验(PAM )一.实验目的:1. 掌握抽样定理的概念2. 掌握模拟信号抽样与还原的原理和实现方法。
3. 了解模拟信号抽样过程的频谱 二.实验内容:1.采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。
2. 采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱 三.实验步骤:1. 将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。
2. 插上电源线,打开主机箱右侧的交流开关,在分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。
3. 信号源模块调节“2K 调幅”旋转电位器,是“2K 正弦基波”输出幅度为3V 左右。
4. 实验连线5. 不同频率方波抽样6. 同频率但不同占空比方波抽样7. 模拟语音信号抽样与还原 四.实验现象及结果分析:1.固定占空比为50%的、不同频率的方波抽样的输出时域波形和频谱: (1) 抽样方波频率为4KHz 的“PAM 输出点”时域波形:抽样方波频率为4KHz 时的频谱:50K…………PAM 输出波形输入波形分析:理想抽样时,此处的抽样方波为抽样脉冲,则理想抽样下的抽样信号的频谱应该是无穷多个原信号频谱的叠加,周期为抽样频率;但是由于实际中难以实现理想抽样,即抽样方波存在占空比(其频谱是一个Sa()函数),对抽样频谱存在影响,所以实际中的抽样信号频谱随着频率的增大幅度上整体呈现减小的趋势,如上面实验频谱所示。
仔细观察上图可发现,某些高频分量大于低频分量,这是由于采样频率为4KHz ,正好等于奈奎斯特采样频率,频谱会在某些地方产生混叠。
(2) 抽样方波频率为8KHz 时的“PAM 输出点”时域波形:2KHz6K 10K 14K输入波形PAM 输出波形抽样方波为8KHz 时的频谱:分析:当采样频率为8KHz 时,频谱如上图所示,已抽样信号的频谱有无穷多个原始信号频谱叠加而成,周期为采样频率8KHz ,由于此时采样频率>>那奎斯特速率,故没有混叠。
实验一 抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性2、掌握自然抽样及平顶抽样的实现方法3、理解低通采样定理的原理4、理解实际的抽样系统5、理解低通滤波器的幅频特性对抽样信号恢复的影响6、理解低通滤波器的相频特性对抽样信号恢复的影响7、理解平顶抽样产生孔径失真的原理8、理解带通采样定理的原理二、实验内容1、验证低通采样定理原理2、验证低通滤波器幅频特性对抽样信号恢复的影响3、验证低通滤波器相频特性对抽样信号恢复的影响4、验证带通抽样定理原理5、验证孔径失真的原理三、实验原理抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。
(具体可参考《信号与系统》)我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。
抽样定理实验的原理框图如下:被抽样信号抽样脉冲抽样恢复信号图1抽样定理实验原理框图被抽样信号抽样恢复信号图2实际抽样系统为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。
在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。
另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示:被抽样信号抽样恢复后的信号图3复杂信号抽样恢复前后对比你能分辨图中抽样恢复后信号的失真吗?因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz 正弦波”+“1KHz 正弦波”,波形及频谱如所示:图1被抽样信号波形及频谱示意图对抽样脉冲信号的考虑大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显然,这个脉冲宽度(简称脉宽)对抽样的结果是有影响的,这就是课本上讲的“孔径失真”,用不同的宽度的脉冲信号来抽样所带来的失真程度是不一样的,为了让大家能很好地理解和观察孔径失真现象,我们将抽样脉冲信号设计为脉宽可调的信号,在实验中大家可以一边调节脉冲宽度,一边从频域和时域两个方面来观察孔径失真现象。
1. 了解电信号的采样方法与过程。
2. 理解信号恢复的方法。
3. 验证抽样定理的正确性。
二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。
三、实验设备与器材1. 信号与系统实验箱TKSS-C型。
2. 双踪示波器。
四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。
2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。
3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。
4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。
5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。
五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。
2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。
1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。
2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。
3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。
七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。
2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。
3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。
实验五抽样定理实验内容及步骤1、阅读范例程序Program5_2,在这个程序中,选择的信号的最高频率是多少?这个频率选择得是否恰当?为什么?答:选择信号的最高频率为100Hz。
这个频率选择恰当,因为f>2f max。
2、在1—8 之间选择抽样频率与信号最高频率之比,即程序Program5_2 中的a 值,反复执行范例程序Program5_2,观察重建信号与原信号之间的误差,通过对误差的分析,说明对于带限信号而言,抽样频率越高,则频谱混叠是否越小?解:a=1时图1a=3时图2a=8时图3第四幅图error代表着原信号与重建信号之间的误差。
由此得到结论,凡是带限信号,抽样频率越高,误差越小。
3、画出连续时间信号的时域波形及其幅频特性曲线,信号为:x=cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(25*pi*t)(1)、对信号进行采样,得到采样序列,画出采样频率分别为15Hz,30 Hz,60 Hz 时的采样序列波形;解:代码如下:tmax= 4;dt = 0.01;t = 0:dt:tmax;Ts = 1/15;ws= 2*pi/Ts;w0 = 25*pi;dw= 0.1;w = -w0:dw:w0;n = 0:1:tmax/Ts;x = cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(w0*t);xn =cos(5*pi*n*Ts)+1.5*sin(8*pi*n*Ts)+0.5*cos(w0*n*Ts);subplot(221)plot(t,x);title('A continuous-time signal x(t)');xlabel('Time t');grid onsubplot(223)stem(n,xn,'.');title('The sampled version x[n] of x(t)'),xlabel('Time index n');axis([0,tmax/Ts,0,1]),grid onxa= x*exp(-j*t'*w)*dt;X = 0;for k = -8:8;X = X + x*exp(-j*t'*(w-k*ws))*dt;endsubplot(222)plot(w,abs(xa))title('Magnitude spectrum of x(t)'),grid onaxis([-60,60,0,1.8*max(abs(xa))])subplot(224)plot(w,abs(X))title('Magnitude spectrum of x[n]');xlabel('Frequency in radians/s'),grid onaxis([-60,60,0,1.8*max(abs(xa))])图像如下:Ts=1/15时:图4 Ts=1/30时:图5Ts=1/60时:图6(2)、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。
抽样定理实验报告一、实验目的1.了解抽样定理的基本概念和原理;2.通过实验掌握抽样定理的应用方法;3.分析实验结果,验证抽样定理的有效性。
二、实验原理抽样定理,也称为中心极限定理,是概率论和数理统计学中的重要定理之一、它指出当从总体中抽取的样本数量足够大时,样本均值的分布接近于正态分布。
具体原理如下:假设总体的分布情况未知,从中抽取容量为n的样本,将样本观察值依次排列为X1,X2,...,Xn。
根据大数定律,当n趋向于无穷大时,样本均值的极限分布为正态分布。
三、实验步骤1.确定实验总体和样本容量:假设总体为一些城市的居民收入情况,样本容量为n=50。
2.随机抽取样本:从该城市的居民总体中随机选取50个人的收入数据作为样本数据。
3.计算样本均值:将样本数据相加后除以样本容量,得到样本均值。
4.重复步骤2和3,进行多次实验:重复50次实验,每次都从总体中随机抽取不同的样本,并计算样本均值。
5.统计实验结果:将50次实验中得到的样本均值进行统计,并绘制频数分布直方图。
6.分析实验结果:通过观察频数分布直方图,分析样本均值的分布情况,验证抽样定理的有效性。
四、实验结果及分析根据实验步骤,我们从城市的居民总体中随机抽取了50个人的收入数据,并计算了样本均值。
通过重复50次实验,并统计得到的样本均值,我们绘制了频数分布直方图。
从频数分布直方图中可以看出,样本均值的分布情况呈现出正态分布的特点,中间值出现的频率最高,两端值出现的频率相对较低。
这与抽样定理的结论一致,即样本均值的极限分布为正态分布。
实验结果的分析表明,当样本容量足够大(在本实验中,样本容量为50),从总体中抽取的样本均值趋近于总体均值,而且样本均值的分布接近正态分布。
这进一步验证了抽样定理的有效性。
五、实验结论通过本次实验,我们了解了抽样定理的基本概念和原理,并通过实验验证了抽样定理的有效性。
实验结果表明,当从总体中抽取足够大的样本时,样本均值的分布接近正态分布。
通信原理抽样定理实验报告一、实验目的。
本实验旨在通过实际操作,验证和理解抽样定理在通信原理中的重要性和应用。
二、实验原理。
抽样定理是指在进行信号采样时,采样频率必须至少是信号最高频率的两倍,才能够准确地还原原始信号。
否则,会产生混叠失真,导致信号无法正确恢复。
抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。
三、实验器材。
1. 示波器。
2. 信号发生器。
3. 低通滤波器。
4. 电缆、连接线等。
四、实验步骤。
1. 将信号发生器输出正弦波信号,频率为f,幅度适当。
2. 将示波器设置为触发模式,连接到信号发生器输出端。
3. 调节示波器的水平和垂直位置,使得正弦波信号在屏幕上能够完整显示。
4. 逐渐增加信号发生器的频率,直到正弦波信号出现混叠失真。
5. 记录混叠失真出现时的频率值,并计算出最小采样频率。
五、实验结果。
通过实验,我们得到了信号发生器产生正弦波信号的频率和最小采样频率的数值。
实验结果表明,在通信原理中,抽样定理的重要性不可忽视。
只有在满足抽样定理的条件下,才能够准确地还原原始信号,避免混叠失真的发生。
六、实验结论。
抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。
在实际工程中,我们需要根据信号的最高频率来确定采样频率,以确保信号的准确恢复和传输。
本次实验的结果再次验证了抽样定理的重要性,为我们在通信原理中的应用提供了重要的参考。
七、实验感想。
通过本次实验,我们更加深刻地理解了抽样定理在通信原理中的重要性和应用。
在今后的学习和工作中,我们将会更加严格地遵循抽样定理,以确保通信系统的稳定和可靠。
八、参考文献。
[1] 《数字通信原理》,XXX,XXX出版社,2018年。
[2] 《通信工程基础》,XXX,XXX出版社,2017年。
以上就是本次实验的全部内容,谢谢阅读!。
抽样定理实验原理
抽样定理是统计学中的一项重要原理,它可以帮助研究者在分析数据时得出准确的结论。
抽样定理的实验原理是通过从总体中随机抽取一部分样本,并对这些样本进行观察和分析,从而推断出总体的性质。
实际操作中,研究者需要按照一定的规则从总体中选择样本。
这种选择需要具备随机性,确保每个样本都有被选择的机会,并且不会受到任何外部因素的干扰。
通过随机抽样,可以减小样本选择的偏差,提高对总体的推断准确性。
在实验开始前,研究者需要确定样本的大小。
通常情况下,样本越大,推断总体特征的准确性就越高。
然而,样本大小的选择也需要考虑实际操作的可行性以及经济成本等因素。
当样本被选定后,研究者可以对样本进行观察和测量。
通过对样本数据的分析,可以获取有关总体的统计信息,如均值、方差等。
同时,抽样定理指出,样本均值的分布会逐渐接近总体均值,而样本方差的分布也会逐渐接近总体方差。
基于抽样定理的实验原理,研究者可以运用统计学中的各种方法,如假设检验、置信区间估计等,来推断总体的特征。
这些方法可以帮助研究者对数据进行分析和解释,进而得出科学结论。
总之,抽样定理的实验原理是通过随机抽样和样本观察来推断总体性质的一种统计学原理。
它在现实应用和科学研究中扮演
着重要角色,帮助研究者从有限的样本中获取对总体的准确认识。
抽样定理和脉冲调幅(PAM)实验抽样定理,也称为奈奎斯特-香农定理或奈斯凯-香农定理,是信号处理中的一条基本定理,它表明,如果我们想要完全恢复连续的信号,我们必须将信号进行采样,采样频率必须要大于信号中频率最高的成分的两倍。
抽样定理告诉我们,如果我们使用低于两倍信号最高频率的采样频率,则不能完整地恢复原始信号。
因此,抽样定理是数字信号处理的基础之一。
脉冲调幅(PAM)是数字通信的一种基本模式,其通过将模拟信号转换为数字信号来完成模拟通信与数字通信之间的转换。
PAM是一种基本的数字化模拟调制技术,它将模拟信号进行采样并将其转换为数字信号,在数字信号中,每个样本由一个固定数量的二进制数表示。
在PAM中,我们使用一个调制脉冲来调制数据信号,这样可以将数据信号从一个信号空间映射到另一个信号空间,因此可以实现数字化通信。
在实际应用中,抽样定理和脉冲调幅(PAM)通常被用于数字通信和数字信号处理方面。
为了理解抽样定理和脉冲调幅(PAM)如何工作,我们可以进行以下实验:实验1:抽样定理实验在这个实验中,我们需要一个函数生成器(signal generator)和一个示波器(oscilloscope)来生成和观察信号。
设置函数生成器以产生一个正弦波信号,然后使用示波器来查看该信号。
以5kHz的频率采样信号,观察它的样本的数量和质量。
接下来,将抽样频率调整为10kHz并观察示波器上的波形,你会发现它看起来更平滑。
继续增加采样率以尝试找到一个极限值,达到这个极限值之后,再增加采样率不会对信号的质量产生任何显著的改进。
实验2:脉冲调幅实验在这个实验中,我们需要一个数字信号生成器(digital signal generator)、一个数字信号记录仪(digital signal recorder)和一个示波器。
设置数字信号生成器以产生一个正弦波数据信号,然后使用数字信号记录仪来记录该信号。
接下来,使用示波器来查看该记录的数字信号。
一、实验背景抽样定理是统计学中的一个基本原理,它揭示了在大规模总体中,通过合理的抽样方法,可以从样本中推断出总体的某些特征。
为了验证抽样定理在实际应用中的有效性,我们进行了本次抽样定理实验。
二、实验目的1. 了解抽样定理的基本原理和方法;2. 通过实验验证抽样定理在实际应用中的有效性;3. 掌握不同抽样方法对样本结果的影响。
三、实验方法1. 实验数据:本次实验选取了一个包含1000个数据的总体,其中每个数据由两个随机变量组成;2. 抽样方法:采用简单随机抽样、分层抽样和系统抽样三种方法进行实验;3. 实验步骤:(1)对总体数据进行编号;(2)根据抽样方法,随机抽取一定数量的样本数据;(3)对样本数据进行统计分析,包括均值、标准差、方差等指标;(4)将样本结果与总体结果进行比较,分析抽样定理的有效性。
四、实验结果与分析1. 简单随机抽样:在简单随机抽样中,我们从总体中随机抽取了100个样本数据。
通过对样本数据的统计分析,得到样本均值为x̄,样本标准差为s,样本方差为s²。
将样本结果与总体结果进行比较,发现样本均值与总体均值非常接近,样本标准差和样本方差也都在总体标准差和总体方差附近。
这说明简单随机抽样能够有效地反映总体的特征。
2. 分层抽样:在分层抽样中,我们将总体分为三个层次,每个层次包含不同的数据特征。
在每个层次中,我们分别抽取了30个样本数据。
通过对样本数据的统计分析,得到样本均值、标准差和方差。
将样本结果与总体结果进行比较,发现分层抽样在保证样本代表性的同时,还能更好地反映不同层次的特征。
3. 系统抽样:在系统抽样中,我们按照一定的间隔从总体中抽取样本数据。
首先,计算总体数据个数除以样本个数,得到抽样间隔;然后,从第一个数据开始,每隔抽样间隔抽取一个样本数据。
通过对样本数据的统计分析,得到样本均值、标准差和方差。
将样本结果与总体结果进行比较,发现系统抽样在保证样本代表性的同时,能够节省抽样时间和成本。
学生实验报告)实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。
见图4。
如果fs<fH,就会出现频谱混迭的现象,如图5所示。
在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。
采用标准抽样频率fs=8KHZ。
改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。
验证抽样定理的实验方框图如图6所示。
在图8中,连接(8)和(14),就构成了抽样定理实验电路。
由图6可知。
用一低通滤波器即可实现对模拟信号的恢复。
为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ2、多路脉冲调幅系统中的路际串话~多路脉冲调幅的实验方框图如图7所示。
在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。
分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。
N路抽样脉冲在时间上是互不交叉、顺序排列的。
各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。
本实验设置了两路分路抽样电路。
多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。
图7 多路脉冲调幅实验框图冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。
这样大的衰减带来的后果是严重的。
但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。
但我们知道平顶抽样将引起固有的频率失真。
PAM信号在时间上是离散的,但是幅度上趋势连续的。
而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。
本实验仅提供一个PAM系统的简单模式。
3、多路脉冲调幅系统中的路标串话路际串话是衡量多路系统的重要指标之一。
路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。
实验八抽样定理
一实验目的
1 了解电信号的采样方法与过程以及信号恢复的方法。
2 验证抽样定理。
二原理说明
1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。
抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。
即:
f S(t)= f(t)×s(t)
如图8-1所示。
T S为抽样周期,其倒数f S =1/T S称为抽样频率。
图8-1 对连续时间信号进行的抽样
对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。
平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。
当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。
抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。
2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。
(a)连续信号的频谱
(b)高抽样频率时的抽样信号及频谱(不混叠)
(c)低抽样频率时的抽样信号及频谱(混叠)
图8-2冲激抽样信号的频谱图
3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。
而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。
当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。
在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。
图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。
实验中选用f S <2B、f S =2B、f S >2B三种情况抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f S必须大于信号频率中最高频率的两倍即f S >2 f max。
4 为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图8-3的方案。
除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混叠。
但这也会造成失真。
如实验选用的信号频带较窄,则可不设置低通滤波器。
本实验就是如此。