2023年九年级数学中考专题:尺规作图类训练题(含简单答案)
- 格式:docx
- 大小:639.63 KB
- 文档页数:7
试卷第1页,共8页2023年九年级数学中考复习:作图类训练题附答案一、单选题1.如图ABC △的内切圆(圆心为点O )与各边分别相切于点D ,E ,F ,连接EF ,DE ,DF .以点B 为圆心,以适当长为半径作弧分别交AB ,BC 于G ,H 两点;分别以点G ,H 为圆心,以大于12GH 的长为半径作弧,两条弧交于点P ;作射线BP .下列说法不正确的是()A .射线BP 一定过点OB .点O 是DEF △三条中线的交点C .若ABC △是等边三角形,则1=2DE BC D .点O 是DEF △三条边的垂直平分线的交点2.如图,在Rt ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若CD AB =16,则 ABD 的面积是()A .21B .80C .40D .453.用直尺和圆规作一个角等于已知角的示意图如下,则说明=A O B AOB ∠∠'''的依据是()A .边边边B .边角边C .角边角D .角角边4.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点试卷第2页,共8页P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④DAC ABD S S AC AB :=:.A .1B .2C .3D .45.如图,已知AB ∥CD,小妍同学进行以下尺规作图:①以点A 为圆心,AC 长为半径作弧,交射线AB 于点E ;②以点E 为圆心,小于线段CE 的长为半径作弧,与射线CE 交于点M ,N ;③分别以点M ,N 为圆心,大于12MN 的长为半径作弧,交于点F ,直线EF 交CD 于点G .若CGE α∠=,则A ∠的度数可以用α表示为()A .90α︒-B .1902α︒-C .1804︒-αD .2α6.如图,Rt △ABC 中,∠C =90°,用尺规作图法作出射线AE ,AE 交BC 于点D ,CD =5,P 为AB 上一动点,则PD 的最小值为()A .2B .3C .4D .57.如图,已知在△ABC 中,∠ABC <90°,AB ≠BC ,BE 是AC 边上的中线.按下列步骤作图:①分别以点B ,C 为圆心,大于线段BC 长度一半的长为半径作弧,相交于点M ,N ;②过点M ,N 作直线MN ,分别交BC ,BE 于点D ,O ;③连接CO ,DE .则下列结论错误的是()试卷第3页,共8页A .OB =OC B .DE ∥AB C .DB =DED .BDE S △=14ABCS 8.如图,在矩形ABCD 中,按以下步骤作图:①分别以点B 和D 为圆心,以大于12BD 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AD 于点E ,交BC 于F .若AE =3,BF =5,则线段AB 的长为()A .4B .5C.D二、填空题9.如图,在Rt ABC △中,=90°C ∠,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若=45°A ∠,则=BCDABDS S _________.10.如图,在ABC △中,=90°C ∠,利用尺规在AB ,AC 上分别截取AD ,AE ,使AE试卷第4页,共8页=AD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在BAC ∠内交于点F ;作射线AF 交BC 于点G .若AC =6,CG =2,则ABG △的周长为______.11.如图,AB CD ,以点A 为圆心,小于AC 的长为半径画弧,分别交AB 、AC 于E 、F 两点;再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠CMA =25°,则∠C 的度数为_______°.12.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC ≌△'''D O C 的依据是__________.13.如图,Rt ABC 中,90C ∠=︒,4AC =,3BC =,利用尺规在AC ,AB 上分别截取AD ,AE .使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为______.14.如图,在△ABC 中,按以下步骤作图:①分别以点B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交AB 于点D ,连接CD .若AD =3,试卷第5页,共8页CD =2,则AB =_______.15.如图,在ABC 中,42B ∠=︒,50C ∠=︒,通过尺规作图,得到直线DE 和射线AF ,仔细观察作图痕迹,求EAF ∠的度数______.16.如图,在ABCD 中,AB AD >,按以下步骤作图:①以点A 为圆心,小于AD 的长为半径画弧,分别交AD AB 、于点E 、F ;②分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ;③作射线AG 交CD 于点H .若点H 分边DC 为1:2两部分,当3AB =时,ABCD 的周长为______________.17.如图,在Rt ABC 中,90C ∠=︒,以点A 为圆心,任意长为半径画弧,分别交边AB 、AC 于点D 、E ,分别以点D 、E 为圆心,以大于12DE 的长为半径画弧,两弧交于点F ,连接AF 并延长交BC 于点P ,过点P 作PH AB ⊥于点H ,在AC 上取点G ,使得CG BH =,连接PG ,若8AG =,2CG =,则AB 的长为______.三、解答题试卷第6页,共8页18.如图,在等腰Rt △ABC 中,将线段AC 绕点A 顺时针旋转()090αα︒<<︒,得到线段AD ,连接CD ,作∠BAD 的平分线AE ,交BC 于E.(1)①根据题意,补全图形;②请用等式写出∠BAD 与∠BCD 的数量关系.(2)分别延长CD 和AE 交于点F ,①直接写出∠AFC 的度数;②用等式表示线段AF ,CF ,DF 的数量关系,并证明.19.如图,已知BD 是矩形ABCD中的对角线.(1)用尺规作出BD 的垂直平分线,交AD 于E ,交BC 于F ,在图中标出相应的字母,请用实线保留必要的作图痕迹;(2)若3AE =,=5DE ,求tan ABD ∠.(解题时若添加的辅助线,请用虚线)试卷第7页,共8页20.如图,在△ABC中:(1)用尺规作出边AB 的垂直平分线MN (保留作图痕迹,不写作法);(2)在(1)的图形中,设MN 交AB 于点E ,交BC 于点D ,连接AD ,若AE =5,△ACD 的周长为21,求△ABC 的周长.21.下面是小雅同学设计的“作已知圆的内接正三角形”的尺规作图过程.已知:O .求作:O 的内接正三角形ABC .作法:如图,①在O 上取任意一点P ,以点P 为圆心,OP 长为半径作弧,交O 于A 、B 两点;②以A 为圆心,AB O 交于点C ;③连接AB ,BC ,AC .所以ABC ∆就是所求的三角形.请你根据小雅同学设计的尺规作图过程,完成证明过程:连接OA 、OB 、OP 、PA 、PB,OA OB OP PA PB ==== ,OPA ∴∆和OPB ∆是,120AOB AOP BOP ∴∠=∠+∠=︒,AB AB= ,1260 ACB AOB∴∠=∠=︒()(填推理依据),AB=,ABC∴∆是等边三角形.试卷第8页,共8页答案第1页,共1页参考答案:1.B 2.C 3.A 4.D 5.D 6.D 7.C 8.A 9.210.1011.13012.SSS 13.4314.515.23°16.8或1017.1218.(1)①见解析;②2BAD BCD ∠=∠(2)①45AFC ∠=︒;②()2AF DF CF =+19.(2)220.(2)3121.等边三角形,同弧所对的圆周角是圆心角的一半,AC答案第2页,共1页。
2023年河南省中考数学模拟题知识点分类汇编:尺规作图一.选择题(共28小题)
1.(2022•河南模拟)如图所示,平行四边形ABCD中,AB=3,AD=5,按以下步骤作图:①以点B为圆心,适当长为半径画弧,分别交BA于点E,交BC于点F;②分别以点E,
F
为圆心,大于的长为半径画弧,两弧在∠ABC内相交于点P;③画射线BP,交
AD于点Q,交对角线AC于点O.若BA⊥CA,则AO的长度为(
)
A .
B .
C .
D .2.(2022•濮阳二模)如图,菱形ABCD的边长为4,∠A=45°,分别以点A和点B为圆
心,大于的长为半径作弧,两弧相交于M,N两点,直线MN交AD于点E,连接CE,则CE的长是(
)
A .
B .
C .
D .3.(2022•许昌二模)根据以下尺规作图痕迹,在一个平行四边形内作出的四边形ABCD中,无法确定是菱形的是()
A .
第1页(共51页)。
2023年中考数学解答题专项复习:尺规作图1.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.
求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.
2.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.
(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.
3.(2021•襄阳)如图,BD为▱ABCD的对角线.
(1)作对角线BD的垂直平分线,分别交AD,BC,BD于点E,F,O(尺规作图,不写作法,保留作图痕迹);
(2)连接BE,DF,求证:四边形BEDF为菱形.
4.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、
C的距离相等.(尺规作图,保留作图痕迹,不写作法)
第1 页共13 页。
2024学年全国中考数学必刷好题(通用版)专项(尺规作图及简单几何证明)练习1.如图,在四边形ABCD中,AB=AD,AD∥BC.(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.2.如图,在矩形ABCD中,AO=OC.(1)用尺规过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E,F,连接AF,CE.(用基本作图,保留作图痕迹,不写作法、结论)(2)求证:四边形AFCE是菱形.3.如图,已知等边△ABC中边AB=10,按要求解答下列问题:(1)尺规作图:作∠ABC的角平分线BP,射线BP交边AC于点P.(不写作法,用2B 铅笔作图并保留痕迹)(2)在(1)作图中,若点D在线段BP上,且使得AD=5,求BD的长.(结果保留根号)4.在△ABC中,AB=AC,AD⊥BC于点D.(1)尺规作图:作边AB的垂直平分线EF,分别与线段AB、AC,AD交于点E、F,G;(不写作法,保留作图痕迹)(2)连接BG、CG,若AG=1,∠BAC=45°,求△BGC的面积.5.求证:等腰三角形两腰上的中线相等.(1)请用尺规作出△ABC两腰上的中线BD、CE(保留痕迹,不写作法);(2)结合图形,写出已知、求证和证明过程.6.如图,在△ABC中,AB=AC,且∠BAC=120°.(1)作AB的垂直平分线,交AB于点D,交BC于点E,连接AE,延长CA,交直线DE于点F;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,求证:AC=AF.7.如图,在△ABC中,AB=8,∠ABC=30°,∠ACB=45°.(1)用尺规作图的方法作出AC边的中垂线;(保留作图痕迹,不写作法)(2)求△ABC的面积.8.如图,已知四边形ABCD是平行四边形.(1)请用直尺和圆规在AB上取一点E,使得EA=ED;(2)在(1)的条件下,连接CE,若∠A=60°,AB=6,AD=4,求线段CE的长.9.如图,BD是△ABC的角平分线.(1)用直尺和圆规过点D作DF⊥BC,垂足为F(不要求写作法,保留作图痕迹);(2)若BC=5,AB=6,S△ABC=11,求DF的长.10.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M. (1)尺规作图:作∠BCD的平分线CN,交BD于点F.(基本作图,保留作图痕迹,不写作法,并标明字母)(2)求证:AE=CF.11.如图,在△ABC中,AB=AC,D是边BC的中点,连接AD,E是边CA延长线上一点,射线AF平分∠BAE.(1)过点B作AF的垂线,垂足为G(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)所作的图中,求证:四边形BDAG是矩形.12.如图,在平行四边形ABCD中,CF平分∠BCD交B于点F.(1)尺规作图:过点A作AE平分∠BAD交BD于点E;注意:不写作法,保留作图痕迹,并标明字母.(2)求证:AE=CF.13.如图,△ABC中,BA⊥AC,∠B=31°.(1)尺规作图:作线段BC的垂直平分线交AB于点D,交BC于点E;(2)在(1)作图的基础上,连接AE、CD,求∠AED的度数.14.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.15.如图,在平行四边形ABCD中,按下列步骤作图:①以点B为圆心,以适当长为半径作弧,交AB于点N,交BC于点M;②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G;③作射线BG交AD于F;④作FE∥AB交BC于E;⑤连接AE交BF于点P;(1)求证:四边形ABEF是菱形;(2)连接CP,若AB=8,AD=12,∠ABC=60°,求CP的长.16.如图,在矩形ABCD中,AB=3,BC=5,P是边AD上一点,将△ABP沿着直线PB 折叠,得到△EBP.(1)请在备用图上用没有刻度的直尺和圆规,在边AD上作出一点P,使BE平分∠PBC,并求出此时△BEC的面积;(作图要求:保留作图痕迹,不写作法.)(2)连接CE并延长交线段AD于点Q,则AQ的最大值为.(直接写出答案)17.如图,已知⊙O,请用无刻度的直尺和圆规按要求画图(不写画法,保留作图痕迹)(1)图1中,若点P为⊙O外一点,请过点P作⊙O的一条切线PM(点M为切点);(2)图2中,若点Q为⊙O外一点,点C为优弧AB上一点,试确定点C,使得CQ平分∠ACB.18.如图,四边形ABCD为正方形.(1)请用直尺(不含刻度)与圆规在正方形内作一点P,使得点P到AB、CD的距离相等,且点P到BC的距离等于P A的长;(不要求写做法,但要保留作图痕迹)(2)在(1)的条件下,若正方形的边长为4,求P A的长.19.已知:∠AOB和线段a.求作:⊙P,使它与∠AOB的两边相切,半径等于线段a.20.下面是小文设计的“过圆外一点作圆的切线”的作图过程. 已知:⊙O和圆外一点P.求作:过点P的⊙O的切线.作法:①连接OP;②以OP为直径作⊙M,交⊙O于点A,B;③作直线P A,PB;所以直线P A,PB为⊙O的切线.根据小文设计完成作图(保留作图痕迹)及证明.证明:连接OA,OB.∵OP为⊙M的直径,∴∠OAP=∠OBP= °,()(填推理的依据) ∴OA⊥AP, ⊥BP.∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线.()(填推理的依据)参考答案1.如图,在四边形ABCD中,AB=AD,AD∥BC.(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.【详细解答】解:(1)如图:(2)证明:如图,连接DF,∵AD∥BC,∴∠ADE=∠EBF,∵AF垂直平分BD,∴BE=DE.在△ADE和△FBE中,,∴△ADE≌△FBE(ASA),∴AE=EF,∴BD与AF互相垂直且平分,∴四边形ABFD为菱形.2.如图,在矩形ABCD中,AO=OC.(1)用尺规过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E,F,连接AF,CE.(用基本作图,保留作图痕迹,不写作法、结论)(2)求证:四边形AFCE是菱形.【详细解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵AC的中点是O,∴OA=OC,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA),∴OE=OF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.3.如图,已知等边△ABC中边AB=10,按要求详细解答下列问题:(1)尺规作图:作∠ABC的角平分线BP,射线BP交边AC于点P.(不写作法,用2B铅笔作图并保留痕迹)(2)在(1)作图中,若点D在线段BP上,且使得AD=5,求BD的长.(结果保留根号)【详细解答】解:(1)如图所示,射线BP即为所求.(2)∵△ABC为等边三角形,∠PBA=30°,∴BP平分∠ABC,∴BP⊥AC,在Rt△ABP中,BP=AP=5,∴AP=AB=5<5,在Rt△ADP中,PD===5,∴BD=BP﹣PD=5﹣5.4.在△ABC中,AB=AC,AD⊥BC于点D.(1)尺规作图:作边AB的垂直平分线EF,分别与线段AB、AC,AD交于点E、F,G;(不写作法,保留作图痕迹)(2)连接BG、CG,若AG=1,∠BAC=45°,求△BGC的面积.【详细解答】解:(1)如图,直线EF即为所求作.(2)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD=∠BAC=22.5°,BD=CD,∵GB=GC,∵EF垂直平分线段AB,∴GA=GB=GC=1,∴∠GBA=∠BAG=22.5°,∠GCA=∠GAC=22.5°,∴∠BGD=∠GBA+∠GAB=45°,∠CGD=∠GCA+∠GAC=45°,∴∠BGC=90°,∴S△BGC=•BG•GC=.5.求证:等腰三角形两腰上的中线相等.(1)请用尺规作出△ABC两腰上的中线BD、CE(保留痕迹,不写作法);(2)结合图形,写出已知、求证和证明过程.【详细解答】解:(1)如图所示,中线BD、CE即为所求;(2)已知:△ABC中,AB=AC,AD=DC,AE=EB,求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,∴DC=BE,∠DCB=∠EBC.∵BC=CB,∴△BDC≌△CEB(SAS).∴BD=CE.即等腰三角形的两腰上的中线相等.6.如图,在△ABC中,AB=AC,且∠BAC=120°.(1)作AB的垂直平分线,交AB于点D,交BC于点E,连接AE,延长CA,交直线DE于点F;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,求证:AC=AF.【详细解答】(1)解:如图,EF为所作;(2)证明:连接AE,如图,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=×(180°﹣120°)=30°,∵DE垂直平分AB,∴∠ADF=90°,EB=EA,而∠DAF=180°﹣∠BAC=60°,∠EAB=∠B=30°,∴∠DF A=90°﹣60°=30°,∠EAF=90°,∴∠EF A=∠C,∴EF=EC,而EA⊥CF,∴AC=AF.7.如图,在△ABC中,AB=8,∠ABC=30°,∠ACB=45°. (1)用尺规作图的方法作出AC边的中垂线;(保留作图痕迹,不写作法) (2)求△ABC的面积.【详细解答】解:(1)如图(1)所示:EF即为所求;(2)如图(2),过A作AD⊥BC于D,在Rt△ABD中,∵AB=8,∠ABC=30°,∴AD=AB=4,∴BD==4,在Rt△ACD中,∵∠ACB=45°,∴∠CAD=45°,∴CD=AD=4,∴BC=BD+CD=4+4,∴S△ABC=BC•AD=×(4+4)×4=8+8,即△ABC的面积为8+8.8.如图,已知四边形ABCD是平行四边形.(1)请用直尺和圆规在AB上取一点E,使得EA=ED;(2)在(1)的条件下,连接CE,若∠A=60°,AB=6,AD=4,求线段CE的长.【详细解答】解:(1)如图,线段DE即为所求作.(2)过点E作EH⊥CD于H.∵∠A=60°,EA=ED,∴△ADE是等边三角形,∴∠AED=60°,AEB=AD=DE=4,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠CDE=∠AED=60°,∵∠DHE=∠CHE=90°,∴DH=DE•cos60°=2,EH=DE•sin60°=2,∵AB=CD=6,∴CH=CD﹣DH=4,∴EC===2.9.如图,BD是△ABC的角平分线.(1)用直尺和圆规过点D作DF⊥BC,垂足为F(不要求写作法,保留作图痕迹);(2)若BC=5,AB=6,S△ABC=11,求DF的长.【详细解答】解:(1)如图,DF为所作;(2)作DE⊥AB于E,如图,∴BD是△ABC的角平分线.∴DE=DF,∵S△ABC=S△ABD+S△DBC=AB•DE+BC•DF,∴DF(5+6)=11,∴DF=2.10.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M. (1)尺规作图:作∠BCD的平分线CN,交BD于点F.(基本作图,保留作图痕迹,不写作法,并标明字母)(2)求证:AE=CF.【详细解答】(1)解:如图,CN为所作;(2)证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∠BAC=∠BCD,∵AE平分∠BAD,CN平分∠BCD,∴∠BAE=∠BAD,∠DCF=∠BCD,∴∠ABE=∠DCF,∵AB∥CD,∴∠ABE=∠CDF,在Rt△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF.11.如图,在△ABC中,AB=AC,D是边BC的中点,连接AD,E是边CA延长线上一点,射线AF平分∠BAE.(1)过点B作AF的垂线,垂足为G(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)所作的图中,求证:四边形BDAG是矩形.【详细解答】(1)解:如图,BG为所作;(2)证明:∵AB=AC,D是边BC的中点,∴AD⊥BC,∠ABC=∠ACB,∵射线AF平分∠BAE,∴∠EAF=∠BAF,∵∠EAB=∠ABC+∠ACB,即∠EAF+∠BAF=∠ABC+∠ACB,∴∠EAF=∠ACB,∴AF∥BC,∴AD⊥AF,∴∠ADB=∠DAG=90°,∵BG⊥AF,∴∠BGA=90°,∴四边形ADBG为矩形.12.如图,在平行四边形ABCD中,CF平分∠BCD交B于点F. (1)尺规作图:过点A作AE平分∠BAD交BD于点E;注意:不写作法,保留作图痕迹,并标明字母.(2)求证:AE=CF.【详细解答】(1)解:如图,AE为所作;(2)证明:∵AE平分∠BAD,CF平分∠BCD,∴∠ABE=BAD,∠DCF=∠BCD,∵四边形ABCD为平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠BAE=∠DCF,∵AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF.13.如图,△ABC中,BA⊥AC,∠B=31°.(1)尺规作图:作线段BC的垂直平分线交AB于点D,交BC于点E;(2)在(1)作图的基础上,连接AE、CD,求∠AED的度数.【详细解答】解:(1)如图所示;(2)∵DE垂直平分BC,∴BE=CE,∠BED=90°,∵BA⊥AC,∴∠CAB=90°,∴AE=BE,∴∠EAB=∠B=31°,∴∠AEB=180°﹣(∠EAB+∠B)=118°,∴∠AED=∠QEB﹣∠BED=118°﹣90°=28°.14.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.【详细解答】解:结论:CE=OF.理由:图形如图所示:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,AD∥BC,∵AE⊥BC,OF⊥AD,∴AE⊥AD,∴∠AEC=∠DAE=∠AOD=∠DFO=90°,∴∠EAC+∠DAO=90°,∠FDO+∠DAO=90°,∴∠CAE=∠ODF,∵OD=2AO,AC=2AO,∴AC=OD,在△AEC和△DFO中,,∴△AEC≌△DFO(AAS),∴CE=OF.15.如图,在平行四边形ABCD中,按下列步骤作图:①以点B为圆心,以适当长为半径作弧,交AB于点N,交BC于点M;②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G;③作射线BG交AD于F;④作FE∥AB交BC于E;⑤连接AE交BF于点P;(1)求证:四边形ABEF是菱形;(2)连接CP,若AB=8,AD=12,∠ABC=60°,求CP的长.【详细解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∵EF∥CD,∴EF∥AB,∵AF∥BE,∴四边形ABEF为平行四边形,由作法得BF平分∠ABE,即∠ABF=∠EBF,∵AD∥BC,∴∠AFB=∠EBF,∴∠ABF=∠AFB,∴AB=AF,∴平行四边形ABEF为菱形;(2)解:过P点作PH⊥BC于H,如图,∵四边形ABEF是菱形,∴∠PBH=∠ABC=×60°=30°,BP⊥PE,BE=BA=8,在Rt△PBE中,PE=BE=4,∴BP=PE=4,在Rt△BPH中,PH=BP=2,∴BH=PH=2×=6,∴CH=BC﹣BH=12﹣6=6,∴PC==4.16.如图,在矩形ABCD中,AB=3,BC=5,P是边AD上一点,将△ABP沿着直线PB 折叠,得到△EBP.(1)请在备用图上用没有刻度的直尺和圆规,在边AD上作出一点P,使BE平分∠PBC,并求出此时△BEC的面积;(作图要求:保留作图痕迹,不写作法.)(2)连接CE并延长交线段AD于点Q,则AQ的最大值为1.(直接写出答案)【详细解答】解:(1)如图,点P即为所求作.过点E作EH⊥BC于H,由作图可知,∠EBC=30°,∴EH=BE=,∴S△BCE=•BC•EH=×5×=.(2)如图2中,由题意,BE=BA,可知点E的运动轨迹是⊙B,当EC与⊙B相切时,AQ的值最大,此时P,Q重合,∵∠BEC=90°,BC=5,BE=AB=3,∵EC===4,∵AD∥BC,∴∠BCE=∠CPD,∵∠BEC=∠D=90°,∴△BCE∽△CPD,∴=,∴=,∴PD=4,∴AQ的最大值=5﹣4=1.故答案为:1.17.如图,已知⊙O,请用无刻度的直尺和圆规按要求画图(不写画法,保留作图痕迹)(1)图1中,若点P为⊙O外一点,请过点P作⊙O的一条切线PM(点M为切点);(2)图2中,若点Q为⊙O外一点,点C为优弧AB上一点,试确定点C,使得CQ平分∠ACB.【详细解答】解:(1)如图,直线PM即为所求作.(2)如图,点C即为所求作.18.如图,四边形ABCD为正方形.(1)请用直尺(不含刻度)与圆规在正方形内作一点P,使得点P到AB、CD的距离相等,且点P到BC的距离等于P A的长;(不要求写做法,但要保留作图痕迹)(2)在(1)的条件下,若正方形的边长为4,求P A的长.【详细解答】解:(1)如图,点P为所作;(2)设P A=x,则PE=x,∴PF=4﹣x,在Rt△APF中,AF=2,∴22+(4﹣x)2=x2,解得x=,即AP的长为.19.已知:∠AOB和线段a.求作:⊙P,使它与∠AOB的两边相切,半径等于线段a.【详细解答】解:如图,⊙P为所作.20.下面是小文设计的“过圆外一点作圆的切线”的作图过程.已知:⊙O和圆外一点P.求作:过点P的⊙O的切线.作法:①连接OP;②以OP为直径作⊙M,交⊙O于点A,B;③作直线P A,PB;所以直线P A,PB为⊙O的切线.根据小文设计完成作图(保留作图痕迹)及证明.证明:连接OA,OB.∵OP为⊙M的直径,∴∠OAP=∠OBP= 90°,(直径所对的圆周角为直角 )(填推理的依据) ∴OA⊥AP, OB⊥BP.∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线.(过半径的外端与半径垂直的性质为圆的切线 )(填推理的依据)【详细解答】解:如图,证明:连接OA,OB,∵OP为⊙M的直径,∴∠OAP=∠OBP=90°,(直径所对的圆周角为直角)∴OA⊥AP,OB⊥BP,∵OA,OB为⊙O的半径,∴直线P A,PB为⊙O的切线.(过半径的外端与半径垂直的性质为圆的切线)故答案为90°,直径所对的圆周角为直角;OB;过半径的外端与半径垂直的性质为圆的切线.。
中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。
人教版九年级数学中考尺规作图专项练习A 级 基础题1.下列各条件中,不能作出唯一三角形的条件是( ) A .已知两边和夹角B .已知两边和其中一条边所对的角C .已知两角和夹边D .已知两角和其中一角的对边2.如图X6-3-1,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )图X6-3-1A .7B .14C .17D .203.如图X6-3-2,点C 在∠AOB 的OB 边上,用尺规作出了CN ∥OA ,在作图痕迹中,是( )图X6-3-2A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧4.下列关于作图的语句,正确的是( ) A .画直线AB =10厘米 B .画射线OB =10厘米C .已知A ,B ,C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线AB 平行5.已知线段AB 和CD ,如图X6-3-3,求作一线段,使它的长度等于AB +2CD .图X6-3-36.试把如图X6-3-4所示的角四等分(不写作法).图X6-3-47.已知等腰△ABC的顶角∠A=36°(如图X6-3-5).(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);(2)通过计算,说明△ABD和△BDC都是等腰三角形.图X6-3-58.某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图X6-3-6,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).图X6-3-69.如图X6-3-7已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.图X6-3-710.如图X6-3-8,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD =114°,求∠MAB 的度数;(2)若CN ⊥AM ,垂足为N ,求证:△ACN ≌△MCN .图X6-3-811.如图X6-3-9,已知△ABC ,画它的内切圆⊙O .图X6-3-9作法:(1)分别作____________,两平分线交于点O ; (2)过点O 作____的垂线段,交BC 于点D ; (3)以点__为圆心,以____的长为半径,画圆, 那么,所画的⊙O 就是△ABC 的______. 12.如图X6-3-10,已知线段a 和h .求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.图X6-3-10B 级 中等题13.如图X6-3-11,画一个等腰△ABC ,使得底边BC =a ,它的高AD =h .图X6-3-1114.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A,B,C不在同一直线上,地理位置如图X6-3-12),请你用尺规作图的方法确定点P的位置.要求:写出已知,求作,不写作法,保留作图痕迹.解:已知:求作:图X6-3-12C级拔尖题15.如图X6-3-13,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(不必证明).图X6-3-1316.如图X6-3-14,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A,B,C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD,CD;(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________,D__________;②⊙D的半径=____________(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.图X6-3-14选做题17.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 作法:如图X6-3-15(1),①在OA 和OB 上分别截取OD ,OE ,使OD =OE .②分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C .③作射线OC ,则OC 就是∠AOB 的平分线.小聪的作法步骤:如图X6-3-15(2),①利用三角板上的刻度,在OA 和OB 上分别截取OM ,ON ,使OM =ON .②分别过M ,N 作OM ,ON 的垂线,交于点P . ③作射线OP ,则OP 为∠AOB 的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是______; (2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法(要求:作出图形,写出作图步骤,不予证明).(1)(2)图X6-3-15参考答案1.B 2.C 3.D 4.D 5.略6.略 提示:首先把∠O 二等分,再把得到的两部分分别再二等分即可.图D737.解:(1)如图D73,BD 即为所求. (2)∵∠A =36°,∴∠ABC =∠C =(180°-36°)÷2=72°. ∵BD 平分∠ABC ,∴∠ABD =∠DBC =72°÷2=36°. ∴∠CDB =180°-36°-72°=72°.∵∠A =∠ABD =36°,∠C =∠CDB =72°, ∴AD =DB ,BD =BC .∴△ABD 和△BDC 都是等腰三角形. 8.解:如图D74.图D749.解:如图D75,①以α的顶点为圆心,任意长为半径画弧,交α的两边分别为A ′,C ′;②以相同长度为半径,B 为圆心画弧,交BC 于点F ,以F 为圆心,C ′A ′为半径画弧,交AB 于点E ;③在BF 上取点C ,使CB =a ,以B 为圆心,c 为半径画圆交BE 的延长线于点A ,连接AC ,则△ABC 即为所求的三角形.图D7510.(1)解:∵AB ∥CD , ∴∠ACD +∠CAB =180°. 又∵∠ACD =114°, ∴∠CAB =66°.由作法知,AM 是∠CAB 的平分线,∴∠AMB =12∠CAB =33°.(2)证明:∵AM 平分∠CAB , ∴∠CAM =∠MAB . ∵AB ∥CD ,∴∠MAB =∠CMA . ∴∠CAM =∠CMA .又∵CN⊥AM,∴∠ANC=∠MNC.在△ACN和△MCN中,∵∠ANC=∠MNC,∠CAM=∠CMN, CN=CN,∴△ACN≌△MCN.11.解:(1)∠A,∠B的平分线(2)BC(3)O OD内切圆12.解:如图D76.图D7613.略14.解:已知:A,B,C三点不在同一直线上.求作:一点P,使P A=PB=PC(或经过A,B,C三点的外接圆圆心P).正确作出任意两条线段的垂直平分线,并标出交点P,如图D77.图D77图D7815.解:(1)如图D78.(2)直线BD与⊙A相切.∵∠ABD=∠BAC,∴AC∥BD.∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC.∴直线BD与⊙A相切.16.解:(1)如图D79:图D79(2)①(6,2)(2,0)②2 5③54π④相切.理由:∵CD=2 5,CE=5,DE=5,∴CD2+CE2=25=DE2.∴∠DCE=90°,即CE⊥CD.∴直线CE与⊙D相切.17.解:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS.故答案为SSS.(2)小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°.图D80在Rt△OMP和Rt△ONP中,∵OP=OP,OM=ON,∴Rt△OMP≌Rt△ONP(HL).∴∠MOP=∠NOP.∴OP平分∠AOB.(3)如图D80,步骤:①利用刻度尺在OA,OB上分别截取OG=OH.②连接GH,利用刻度尺作出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.。
初三尺规作图练习题及答案一、作图题:1. 作图:在空白平面上画一条长为5cm的线段AB;2. 作图:在平面上任意选择一点O,画一条长为3cm的线段OA,并作出∠AOB为45°的角;3. 作图:在空白平面上画一条长为4cm的线段OA,再在OA上作一点B,且OB=2cm;4. 作图:已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC;5. 作图:已知四边形ABCD,其中AB=3cm,BC=4cm,∠C=90°,CD=5cm,画出该四边形;6. 作图:在平面上画一条直线,再取一点P,使得P到该直线的距离为4cm;7. 作图:在空白平面上画一条长为6cm的线段AB,然后以B为圆心,AB为半径作弧线;8. 作图:一个正方形边长为8cm,画出该正方形;9. 作图:在空白平面上任意选择一点O,以O为圆心,3cm为半径画出一个圆;10. 作图:在平面上给定一条线段AB和一点O,作出以线段AB为一边,点O为顶点的角。
二、答案及解析:1. 题目要求画一条长为5cm的线段AB,可以任意选择一个点作为起点,然后使用尺规在平面上作一条长为5cm的线段。
最终得到的线段即为所求的AB线段。
2. 题目要求画一条长为3cm的线段OA,并作出∠AOB为45°的角。
先在平面上选取一个点O,再利用尺规作出线段OA。
接着,以O为圆心,半径为3cm作一个圆,并选择圆上任意一点B。
最后,使用尺规作出∠AOB为45°的角。
3. 题目要求画一条长为4cm的线段OA,再在OA上任意选择一点B,且OB=2cm。
首先,利用尺规作出长度为4cm的线段OA。
然后,在OA上以O为起点,用尺子量取2cm并在该位置上作一点B。
最终得到的OB线段长度为2cm。
4. 题目要求已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC。
首先,利用尺规作出线段AB的长度为3cm。
2023年江苏省中考数学模拟题知识点分类汇编:尺规作图一.选择题(共7小题)1.(2022•丰县二模)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=4,则△AFH的周长为()A.8B.6C.4D.2.(2021•东海县模拟)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.S△ABC=BC•AH B.AC平分∠BADC.BH垂直平分线段AD D.AB=AD3.(2021•广陵区二模)用直尺和圆规作已知角∠AOB的平分线的作法如图,能得出∠AOC =∠BOC的依据是()A.(SAS)B.(SSS)C.(AAS)D.(ASA)4.(2021•天宁区校级二模)如图,在△ABC中,∠ABC=90°,分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N,作直线MN交AC于点E,交BC于点F,若=,则tan∠ACB的值为()A.B.C.D.5.(2021•邗江区一模)如图,根据图中尺规作图痕迹,计算∠1的度数是()A.22°B.32°C.34°D.68°6.(2021•邗江区二模)如图,已知∠MON=α,以点O为圆心,适当长度为半径作弧,分别交边OM,ON于点C,D,再分别以点C,D为圆心,大于CD的长为半径作弧,两弧在∠MON内交于点P,作射线OP,若A是OP上一点,过点A作ON的平行线交OM 于点B,且AB=6,则直线AB与ON之间的距离d的范围是3<d<3,则α的度数可能是()A.15°B.30°C.45°D.60°7.(2020•广陵区校级二模)如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.二.填空题(共6小题)8.(2022•宿豫区二模)如图,在Rt△ABC中,∠C=90°,BC=9,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC、AB于点M、N;②分别以点M、N 为圆心,以大于的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC 于点D.若CD=4,则AC的长为.9.(2022•如皋市二模)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠ABC的内部交于点F;③作射线BF,交AC于点G.如果AB=6,BC=9,△ABG的面积为9,则△ABC的面积为.10.(2022•宿城区二模)如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是.11.(2022•盐城二模)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=.12.(2020•滨海县一模)如图,在△ABC中,∠C=90°,∠B=15°,AC=2,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN交BC于点D,连接AD,则AD的长为.13.(2020•崇川区校级一模)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A、B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC,若OA=5,AB=6,则点B到AC的距离为.三.解答题(共17小题)14.(2022•淮安二模)如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图①中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图②中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).(3)如图③,▱ABCD中,CM⊥BD于点M,若AN⊥BD于点N,请仅用无刻度的直尺在图③中作出符合题意的点N.(不要求写作法,但要保留作图痕迹)15.(2022•鼓楼区校级二模)尺规作图:如图,已知正方形ABCD,在边CD上求作一点P,使∠PBC=15°.(保留作图痕迹,不写作法)16.(2022•江都区二模)如图,在四边形ABCD中,AD∥BC,AD≠BC,将四边形ABCD 折叠,使A,C两点重合,折痕与AD,AC,BC分别交于点E,O,F.(1)请用尺规作出直线EF;(保留作图痕迹,不写作法)(2)连接AF,CE,判断四边形AFCE的形状,并说明理由.17.(2022•海陵区二模)已知,在平面直角坐标系中,有反比例函数y=的函数图象.(1)如图1,点A是该函数图象第一象限上的点,且横坐标为a(a>0),延长AO使得AO=A'O,判断点A'是否为该函数图象第三象限上的点,并说明理由;(2)如图2,点B、C均为该函数图象第一象限中的点,连接BC,点D为线段BC的中点,请仅用一把无刻度的直尺作出点D关于点O的对称点D'.(不写作图过程,保留作图痕迹)18.(2022•靖江市二模)如图,在△ABC中,∠BAC>90°,AB=AC,点D在BC上,且BD=BA.(1)尺规作图:请在BC的延长线上找一点E,使得;(不写作图,保留作图痕迹)(2)在(1)的条件下探索AC与CE的数量关系,并说明理由.19.(2022•泗洪县三模)如图,在△ABC中,∠B=42°,∠C=50°,通过尺规作图,得到直线DE和射线AF,仔细观察作图痕迹,完成下列问题:(1)直线DE是线段AB的线,射线AF是∠EAC的线;(2)求∠EAF的度数.20.(2022•常州一模)如图,四边形ABCD中,∠DAC=∠BCA=90°,∠ABC=∠D.(1)求证:四边形ABCD是平行四边形;(2)用尺规在CB的延长线上找一点E,使得AB平分∠EAC(保留作图痕迹,不要求写作法);(3)在(2)的条件下,若tan∠AEC=,BE=5,求AD的长.21.(2022•南京二模)△ABC是一块三角形铁皮,如何按要求从中剪一个面积最大的圆?【初步认识】(1)请用无刻度直尺和圆规在图①中作出面积最大的圆(不写作法,保留作图痕迹).【继续探索】(2)若三角形铁皮上有一破损的孔点D(孔径大小忽略不计),要求剪一个面积最大的圆且圆面无破损,请用无刻度直尺和圆规在图②中作出满足要求的圆(保留作图痕迹,写出必要的文字说明).【问题解决】(3)如图③,若AB=AC=10,BC=12,E、F分别是AB、AC的中点,破损的孔点D 位于EF上(孔径大小忽略不计).设DE=x,剪出面积最大的圆(圆面无破损)的半径为r,直接写出x和r的关系式及对应x的取值范围.22.(2022•广陵区二模)请用圆规和不带刻度的直尺按要求作图(不要求写作法,但要保留作图痕迹),并简要说明作图的道理.(1)如图1,在▱ABCD中,在边BC上作点P,使得=;(2)如图2,在▱ABCD中,在边AD上作点Q,使得=.23.(2022•姜堰区二模)如图,在⊙O中,AB是直径,弦EF∥AB.(1)在图1中,请仅用不带刻度的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)如图2,在(1)的条件下连接OP、PF,若OP交弦EF于点Q,现有以下三个选项:①△PQF的面积为;②EF=6;③PF=,请你选择两个合适选项作为条件,求⊙O的半径,你选择的条件是.(填序号)24.(2022•淮阴区校级一模)平行四边形ABCD的面积为4,E为AD的中点,请仅用无刻度的直尺完成下列画图(不写画法,保留画图痕迹).(1)如图1,在BD上找出一点N,使点N是BD的一个三等分点,此时△DEN的面积为;(2)如图2,在BD上找出一点N,使点N是BD的一个四等分点,此时△DEN的面积为.25.(2022•建邺区二模)尺规作图:如图,已知AB是⊙O的直径.用两种不同的方法作圆的内接四边形ABCD,要求AB∥CD且∠A=60°.(不写作法,保留作图痕迹.)26.(2022•镇江二模)如图,△ABC的顶点均在边长为1的正方形网格格点上.(1)只用不带刻度的直尺,在AC边上找一点D,使得D到AB、BC两边距离相等(不写作法,保留作图痕迹);(2)D到AB的距离是.27.(2021•常州模拟)图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点在格点上,在图①、图②、图③中,只用无刻度的直尺,按下列要求画图,所画图形的顶点均在格点上,只保留作图痕迹,不要求写出画法.(1)在图①中以AB为边画一个钝角三角形ABC,使tan∠CAB=;(2)在图②中以AB为边画一个Rt△ABD,使tan∠DAB=1;(3)在图②中以AB为边画一个△ABE,使tan∠AEB=.28.(2021•无锡模拟)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹).29.(2020•惠山区校级二模)如图,已知点M在直线l外,点N在直线l上,请用无刻度的直尺和圆规完成下列作图,要求保留作图痕迹,不写作法.(1)在图①中,以线段MN为一条对角线作菱形MPNQ,使菱形的边PN落在直线l上;(2)在图②中,作⊙O,使⊙O过点M,且与直线l相切于点N.30.(2020•滨湖区模拟)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,AC<BC.(1)试用无刻度的直尺和圆规,在BC上作一点E,使得直线ED平分ABC的周长;(不要求写作法,但要保留作图痕迹).(2)在(1)的条件下,若DE分Rt△ABC面积为1:2两部分,请探究AC与BC的数量关系.2023年江苏省中考数学模拟题知识点分类汇编:尺规作图参考答案与试题解析一.选择题(共7小题)1.(2022•丰县二模)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=4,则△AFH的周长为()A.8B.6C.4D.【考点】作图—基本作图;线段垂直平分线的性质.【专题】作图题;线段、角、相交线与平行线;几何直观.【分析】由题意可得DE是线段AB的垂直平分线,AF=AH,可得AF=BF=AH,由∠ACB=90°,可得CF=CH,则△AFH的周长为AF+AH+FH=2BF+2FC=2(BF+FC)=2BC=8.【解答】解:由题意可得DE是线段AB的垂直平分线,AF=AH,则AF=BF,∴AF=BF=AH,∵∠ACB=90°,∴CF=CH,∴△AFH的周长为AF+AH+FH=2BF+2FC=2(BF+FC)=2BC=8.故选:A.【点评】本题考查作图﹣基本作图、线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解答本题的关键.2.(2021•东海县模拟)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.S△ABC=BC•AH B.AC平分∠BADC.BH垂直平分线段AD D.AB=AD【考点】作图—基本作图;线段垂直平分线的性质.【专题】作图题;几何直观.【分析】根据线段的垂直平分线的判定解决问题即可.【解答】解:如图,连接CD,BD.由作图可知,CA=CD,BA=BD,∴BH垂直平分线段AD,故选:C.【点评】本题考查作图﹣基本作图,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3.(2021•广陵区二模)用直尺和圆规作已知角∠AOB的平分线的作法如图,能得出∠AOC =∠BOC的依据是()A.(SAS)B.(SSS)C.(AAS)D.(ASA)【考点】作图—基本作图;角平分线的定义;全等三角形的判定.【专题】作图题;几何直观.【分析】根据SSS证明三角形全等即可.【解答】解:由作图可知,OD=OE,PD=PE,在△OPD和△OPE中,,∴△OPD≌△OPE(SSS),∴∠AOC=∠BOC,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.4.(2021•天宁区校级二模)如图,在△ABC中,∠ABC=90°,分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N,作直线MN交AC于点E,交BC于点F,若=,则tan∠ACB的值为()A.B.C.D.【考点】作图—基本作图;解直角三角形;线段垂直平分线的性质.【专题】作图题;几何直观;推理能力.【分析】连接AF,设AF=CF=5k,BF=3k,利用勾股定理求出AB,可得结论.【解答】解:连接AF.由作图可知,MN垂直平分线段AC,∴FA=FC,∵BF:FC=3:5,∴可以假设BF=3k,CF=AF=5k,∵∠B=90°,∴AB===4k,∴BC=BF+CF=8k,∴tan∠ACB===,故选:D.【点评】本题考查作图﹣基本作图,线段的垂直平分线,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.5.(2021•邗江区一模)如图,根据图中尺规作图痕迹,计算∠1的度数是()A.22°B.32°C.34°D.68°【考点】作图—基本作图.【专题】作图题;线段、角、相交线与平行线;运算能力;推理能力.【分析】由矩形的性质得到∠BCD=90°,求得∠ACD=90°﹣68°=22°,根据线段垂直平分线的性质得到AE=CE,根据等腰三角形的性质即可得到结论.【解答】解:如图,∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ACB=68°,∴∠ACD=90°﹣68°=22°,由作图得EF垂直平分AC,∴AE=CE,∴∠1=∠ACE=22°,故选:A.【点评】本题考查了作图﹣基本作图,矩形的性质,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.6.(2021•邗江区二模)如图,已知∠MON=α,以点O为圆心,适当长度为半径作弧,分别交边OM,ON于点C,D,再分别以点C,D为圆心,大于CD的长为半径作弧,两弧在∠MON内交于点P,作射线OP,若A是OP上一点,过点A作ON的平行线交OM 于点B,且AB=6,则直线AB与ON之间的距离d的范围是3<d<3,则α的度数可能是()A.15°B.30°C.45°D.60°【考点】作图—基本作图;估算无理数的大小;平行线之间的距离;角平分线的性质.【专题】作图题;几何直观.【分析】利用作法得到OP平分∠MON,则∠MOA=∠NOA,再证明∠BOA=∠BAO得到BO=BA=6,过B点作BH⊥ON于H,如图,利用正弦的定义得到sin∠BOH=,则<sin∠BOH<,所以sin30°<sin∠BOH<sin60°,于是可对各选项进行判断.【解答】解:由作法得OP平分∠MON,∴∠MOA=∠NOA,∵AB∥ON,∴∠NOA=∠BAO,∴∠BOA=∠BAO,∴BO=BA=6,过B点作BH⊥ON于H,如图,则3<BH<3,∵sin∠BOH=,∴<sin∠BOH<,即sin30°<sin∠BOH<sin60°,∴30°<∠BOH<60°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作已知角的角平分线).也考查了特殊角的三角函数值.7.(2020•广陵区校级二模)如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.【考点】作图—复杂作图.【专题】作图题;几何直观.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.二.填空题(共6小题)8.(2022•宿豫区二模)如图,在Rt△ABC中,∠C=90°,BC=9,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC、AB于点M、N;②分别以点M、N 为圆心,以大于的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC 于点D.若CD=4,则AC的长为12.【考点】作图—复杂作图;角平分线的性质.【专题】作图题;几何直观;推理能力.【分析】过D点作DH⊥AB于H点,如图,利用基本作图得到AD平分∠BAC,则根据角平分线的性质得到DH=DC=4,再利用勾股定理计算出BH=3,然后证明△BHD∽△BCA,从而利用相似比可计算出AC的长.【解答】解:过D点作DH⊥AB于H点,如图,由题中作法得AD平分∠BAC,∵DC⊥AC,DH⊥AB,∴DH=DC=4,∵BC=9,∴BD=BC﹣CD=5,在Rt△BDH中,BH==3,∵∠DBH=∠ABC,∠BHD=∠BCA,∴△BHD∽△BCA,∴=,即=,∴AC=12.故答案为:12.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质相似三角形的判定与性质.9.(2022•如皋市二模)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠ABC的内部交于点F;③作射线BF,交AC于点G.如果AB=6,BC=9,△ABG的面积为9,则△ABC的面积为.【考点】作图—复杂作图;角平分线的性质.【专题】作图题;几何直观;推理能力.【分析】如图,过点G作GM⊥AB于点M,GN⊥CB于点N.首先证明GM=GN,利用三角形面积公式求出GM,再求出△BCG的面积,可得结论.【解答】解:如图,过点G作GM⊥AB于点M,GN⊥CB于点N.由作图可知BG平分∠ABC,∵GM⊥AB,GN⊥CB,∴GM=GN,=×6×GM=9,∵S△ABG∴GM=GN=3,=•BC•GN=×9×3=,∴S△CBG=S△ABG+S△BCG=9+=,∴S△ABC故答案为:.【点评】本题考查作图﹣复杂作图,角平分线的性质,三角形的面积等知识,解题的关键是掌握角平分线的性质,属于中考常考题型.10.(2022•宿城区二模)如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【考点】作图—基本作图;三角形内角和定理.【专题】尺规作图;几何直观;推理能力.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,故答案为:35°.【点评】本题考查作图﹣基本作图,三角形内角和定理等知识,解题的关键是读懂图象信息,熟练掌握线段垂直平分线和角平分线的作法.11.(2022•盐城二模)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=105°.【考点】作图—基本作图;线段垂直平分线的性质;等腰三角形的性质.【专题】作图题;几何直观.【分析】根据要求先画出图形,利用等腰三角形的性质以及三角形外角定理求出∠DCB 和∠ACD即可.【解答】解:如图所示:∵MN垂直平分BC,∴CD=BD,∴∠DBC=∠DCB∵CD=AC,∠A=50°,∴∠CDA=∠A=50°,∵∠CDA=∠DBC+∠DCB,∴∠DCB=∠DBC=25°,∠DCA=180°﹣∠CDA﹣∠A=80°,∴∠ACB=∠DCB+∠ACD=25°+80°=105°.故答案为:105°.【点评】本题考查基本作图、垂直平分线的性质、三角形的外角定理、等腰三角形的性质等知识,解题的关键是灵活应用这些性质解决问题,属于中考常考题型.12.(2020•滨海县一模)如图,在△ABC中,∠C=90°,∠B=15°,AC=2,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN交BC于点D,连接AD,则AD的长为4.【考点】作图—基本作图.【专题】作图题;几何直观.【分析】直接利用线段垂直平分线的性质与作法得出AD=BD,再利用等腰三角形的性质以及直角三角形的性质得出AD的长.【解答】解:∵分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN交BC于点D,∴MN垂直平分AB,∴AD=BD,∴∠DAB=∠B=15°,∴∠ADC=30°,∵∠C=90°,AC=2,∴AD=2AC=4.故答案为:4.【点评】此题主要考查了基本作图,正确掌握线段垂直平分线的性质是解题关键.13.(2020•崇川区校级一模)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A、B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC,若OA=5,AB=6,则点B到AC的距离为.【考点】作图—基本作图;角平分线的性质.【专题】作图题.【分析】根据题意,作出合适的辅助线,然后根据角平分线的性质、等腰三角形的性质和勾股定理可以求得点B到AC的距离,本题得以解决.【解答】解:由题意可得,OC为∠MON的角平分线,∵OA=OB,OC平分∠AOB,∴OC⊥AB,设OC与AB交于点D,作BE⊥AC于点E,∵AB=6,OA=5,AC=OA,OC⊥AB,∴AC=5,∠ADC=90°,AD=3,∴CD=4,∵=.∴=,解得,BE=,故答案为:.【点评】本题考查角平分线的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三.解答题(共17小题)14.(2022•淮安二模)如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图①中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图②中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).(3)如图③,▱ABCD中,CM⊥BD于点M,若AN⊥BD于点N,请仅用无刻度的直尺在图③中作出符合题意的点N.(不要求写作法,但要保留作图痕迹)【考点】作图—应用与设计作图;全等三角形的判定与性质;平行四边形的判定与性质.【专题】作图题;几何直观.【分析】(1)根据平行四边形的定义画出图形即可;(2)根据AC=3,BC=4,AB=5,可知AC+BC=12,在AC上取一点F,使得AF=1,作直线BF即可;(3)连接AC交BD于点O,延长CM交AD于点J,连接JO,延长JO交CB于点K,连接AK交BD于点N,点N即为所求.【解答】解:(1)如图①中,四边形ABDE即为所求(答案不唯一);(2)如图②中,直线l即为所求(答案不唯一);(3)如图③中,点N即为所求.【点评】本题考查作图﹣应用与设计作图,平行四边形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.15.(2022•鼓楼区校级二模)尺规作图:如图,已知正方形ABCD,在边CD上求作一点P,使∠PBC=15°.(保留作图痕迹,不写作法)【考点】作图—复杂作图;正方形的性质.【专题】作图题;几何直观.【分析】作线段AB的垂直平分线交AB于点E,交CD于点F,以B为圆心,BC为半径作弧交EF于点G,作BH平分∠GBC交CD于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,正方形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(2022•江都区二模)如图,在四边形ABCD中,AD∥BC,AD≠BC,将四边形ABCD 折叠,使A,C两点重合,折痕与AD,AC,BC分别交于点E,O,F.(1)请用尺规作出直线EF;(保留作图痕迹,不写作法)(2)连接AF,CE,判断四边形AFCE的形状,并说明理由.【考点】作图—复杂作图;翻折变换(折叠问题);平行线的性质.【专题】作图题;几何直观;推理能力.【分析】(1)利用基本作图,作AC的垂直平分线即可;(2)先根据折叠的性质得到EA=EC,FA=FC,OA=OC,再根据平行线的性质得到∠EAO=∠FCO,接着证明△AOE≌△COF得到AE=CF,所以AE=EC=CF=AF,然后根据菱形的判定方法可判断四边形AFCE为菱形.【解答】解:(1)如图,EF为所作;(2)四边形AFCE为菱形.理由如下:∵四边形ABCD折叠,使A,C两点重合,∴EA=EC,FA=FC,OA=OC,∵AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,∴AE=EC=CF=AF,∴四边形AFCE为菱形.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质和折叠的性质.17.(2022•海陵区二模)已知,在平面直角坐标系中,有反比例函数y=的函数图象.(1)如图1,点A是该函数图象第一象限上的点,且横坐标为a(a>0),延长AO使得AO=A'O,判断点A'是否为该函数图象第三象限上的点,并说明理由;(2)如图2,点B、C均为该函数图象第一象限中的点,连接BC,点D为线段BC的中点,请仅用一把无刻度的直尺作出点D关于点O的对称点D'.(不写作图过程,保留作图痕迹)【考点】作图—复杂作图;坐标与图形变化﹣旋转;反比例函数的图象.【专题】作图题;反比例函数及其应用;几何直观.【分析】(1)结论:点A'是该函数图象第三象限上的点.如图1中,过点A作AE⊥x轴于点E,过点A′作A′F⊥x轴于点F.证明△AOE≌△A′OF(AAS),推出AE=A′F,OE=OF,可得结论;(2)连接BO,延长BO交反比例函数的图象于点B′,同法作出点C的对应点C′,连接B′C′,DOM延长DO交B′C′于点D′,点D′即为所求.【解答】解:(1)结论:点A'是该函数图象第三象限上的点.理由:如图1中,过点A作AE⊥x轴于点E,过点A′作A′F⊥x轴于点F.在△AOE和△A′OF中,,∴△AOE≌△A′OF(AAS),∴AE=A′F,OE=OF,设A(m,n),则A′(﹣m,﹣n),∵点A在y=的图象上,∴mn=3,∴﹣m×(﹣n)=mn=3,∴A′在反比例函数y=的图象上.即点A'是该函数图象第三象限上的点;(2)如图,点D′即为所求.【点评】本题考查作图﹣复杂作图,反比例函数的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.18.(2022•靖江市二模)如图,在△ABC中,∠BAC>90°,AB=AC,点D在BC上,且BD=BA.(1)尺规作图:请在BC的延长线上找一点E,使得;(不写作图,保留作图痕迹)(2)在(1)的条件下探索AC与CE的数量关系,并说明理由.【考点】作图—复杂作图;全等三角形的判定与性质.【专题】作图题;几何直观.【分析】(1)作AT平分∠BAC,作∠DAE=∠CAT即可;(2)结论:CA=CE.证明∠CAE=∠CEA即可.【解答】解:(1)如图,点E即为所求;(2)结论:CA=CE.理由:由作图可知AT平分∠BAC,∠DAE=∠BAC,∴∠DAE=∠CAT,∴∠CAE=∠DAT,∵AB=AC,AT平分∠BAC,∴AT⊥BD,∴∠DAT+∠ADT=90°,∵BA=BD,∴∠BAD=∠BDA,∴∠B+2∠ADT=180°,∴∠B+∠ADT=90°,∴∠DAT=∠B,∴∠B=∠ACB,∵∠ACB=∠CAE+∠AEC,∴∠CAE=∠AEC,∴CA=CE.【点评】本题考查作图﹣复杂作图,等腰三角形的性质和判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(2022•泗洪县三模)如图,在△ABC中,∠B=42°,∠C=50°,通过尺规作图,得到直线DE和射线AF,仔细观察作图痕迹,完成下列问题:(1)直线DE是线段AB的垂直平分线,射线AF是∠EAC的角平分线;(2)求∠EAF的度数.【考点】作图—基本作图;三角形内角和定理.【专题】作图题;线段、角、相交线与平行线;推理能力.【分析】(1)根据作图痕迹判断即可.(2)由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:(1)通过观察尺规作图的痕迹,可以发现直线DE是线段AB的垂直平分线,射线AF是∠EAC的角平分线.故答案为:垂直平分,角平分;(2)∵DE垂直平分线段AB,∴EA=EB,∴∠BAE=∠B=42°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣42°﹣50°=88°,∴∠CAE=∠BAC﹣∠BAE=88°﹣42°=46°,∵AF平分∠CAE,∴∠FAE=∠CAE=×46°=23°.【点评】本题考查作图﹣基本作图,三角形内角和定理等知识,解题的关键是读懂图象信息,熟练掌握线段垂直平分线和角平分线的作法.20.(2022•常州一模)如图,四边形ABCD中,∠DAC=∠BCA=90°,∠ABC=∠D.(1)求证:四边形ABCD是平行四边形;(2)用尺规在CB的延长线上找一点E,使得AB平分∠EAC(保留作图痕迹,不要求写作法);(3)在(2)的条件下,若tan∠AEC=,BE=5,求AD的长.【考点】作图—复杂作图;解直角三角形;勾股定理;平行四边形的判定与性质.【专题】作图题;几何直观;推理能力.【分析】(1)先证明AD∥BC,再利用等角的余角相等得到∠BAC=∠ACD,所以AB∥CD,则根据平行四边形的判定方法得到结论;(2)利用基本作图,作∠BAE=∠CAB即可;(3)在Rt△ACE中根据正切的定义得到tan∠AEC==,设AC=3x,CE=4x,则AE=5x,再根据角平分线的性质得到点B到AE和AC的距离相等,根据三角形面积公:S△ACB=AE:AC=BE:BC=5:3,从而得到BC=3,然后根据平行四边式得到S△ABE形的性质得到AD的长.【解答】(1)证明:∵∠DAC=∠BCA=90°,∴AD∥BC,∵∠ABC=∠D,∴∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形;(2)解:如图,点E为所作;(3)解:在Rt△ACE中,tan∠AEC==,设AC=3x,CE=4x,∴AE==5x,∵AB平分∠CAE,∴点B到AE和AC的距离相等,:S△ACB=AE:AC=5x:3x=5:3,∴S△ABE:S△ACB=BE:BC,∵S△ABE∴BE:BC=5:3,而BE=5,∴BC=3,∵四边形ABCD是平行四边形,∴AD=BC=3.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质和解直角三角形.21.(2022•南京二模)△ABC是一块三角形铁皮,如何按要求从中剪一个面积最大的圆?【初步认识】(1)请用无刻度直尺和圆规在图①中作出面积最大的圆(不写作法,保留作图痕迹).【继续探索】(2)若三角形铁皮上有一破损的孔点D(孔径大小忽略不计),要求剪一个面积最大的圆且圆面无破损,请用无刻度直尺和圆规在图②中作出满足要求的圆(保留作图痕迹,写出必要的文字说明).。
人教版初中数学2023中考专题尺规作图特训(一)打印版含答案时间:40分钟满分:52分1.(8分)如图,在△ABC中,AC=12 cm,BC=16 cm,AB=20 cm,∠CAB的平分线AD交BC于点D.(1)根据题意将图形补画完整(要求:尺规作图,保留作图痕迹,不写作法);(2)求△ABD的面积.(第1题)2.(8分)如图,在△ABC中,∠ACB的平分线交AB于点D.已知点E是AC上一点,且满足CE=DE.(1)尺规作图:在图中确定点E的位置;(要求保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2a,BD=3a(a>0),BC=10,求DE的长.(第2题)3.(8分)如图,菱形ABCD中,E是BC边上一点.(1)在BC的右侧作△AEF,使得EF∥BD,且EF=12BD;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若∠EAF=12∠ABC,求证:AE=2EF.(第3题)4.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在BC边上找一点E,使得△DCE∽△CBF;(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若点E为BC的中点,AD=8,BF=3,求AB的长.(第4题)5.(10分)如图,∠MAN=90°,点O在AN上,⊙O经过点A,点B在AM上.(1)过点B作⊙O的切线BC,切点为D,交AN于点C;(要求尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AB=6,BC=10,求⊙O的半径.(第5题)6.(10分)如图,在△ABC中,P是BC边的中点,∠BAP=α(α为锐角).把点P 绕点A顺时针旋转得到点Q,旋转角为2α.(1)求作以A,B,P,D为顶点的四边形,使得点Q是该四边形AD边的中点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AD=BC,探究直线PQ与直线BD的位置关系,并说明理由.(第6题)答案1.解:(1)如图所示.(2)如图,过点D 作DE ⊥AB 于点E , ∵AC 2+BC 2=122+162=202=AB 2, ∴△ABC 是直角三角形,且∠ACB =90°. 又∵AD 平分∠CAB ,DE ⊥AB ,∴CD =DE . ∵S △ABC =S △ABD +S △ACD , ∴12BC ·AC =12AB ·DE +12AC ·CD , ∴10DE +6CD =96,即16DE =96,∴DE =6 cm , ∴S △ABD =12AB ·DE =12×20×6=60(cm 2).(第1题) (第2题)2.解:(1)如图,点E 即为所作.(2)如图,∵CE =DE ,∴∠EDC =∠ECD . ∵CD 平分∠ACB ,∴∠ACD =∠BCD , ∴∠BCD =∠EDC ,∴DE ∥BC . ∴△ADE ∽△ABC , ∴AD AB =DE BC ,即2a 2a +3a=DE10,解得DE =4. 3.(1)解:如图①,△AEF 即为所求.① ② (第3题)(2)证明:如图②,延长EF 交AD 的延长线于点G .∵EF=12BD,∴BD=2EF.∵四边形ABCD是菱形,∴AD∥BC,∠CBD=12∠ABC.又∵EF∥BD,∴四边形BEGD是平行四边形,∴EG=BD=2EF,∠G=∠CBD.∵∠CBD=12∠ABC,∠EAF=12∠ABC,∴∠EAF=∠CBD=∠G,又∵∠AEF=∠GEA,∴△EAF∽△EGA,∴EFAE=AEEG,∴AE2=EF·EG=EF·2EF=2EF2,∴AE=2EF.4.解:(1)如图所示.(第4题)(2)∵四边形ABCD是平行四边形,∴AB=CD,BC=AD=8.∵点E为BC的中点,∴CE=12BC=4.∵△DCE∽△CBF,∴CDCB=CEBF,即CD8=43,∴CD=323,∴AB=323.5.解:(1)如图①所示,BC是⊙O的切线,切点为D.①②(第5题)(2)如图②,连接OD,∵BC是⊙O的切线,∴OD⊥BC.在Rt△ABC中,AB=6,BC=10,∴AC=8. 设⊙O的半径为r,则CO=8-r.∵∠ODC=∠BAC=90°,∠OCD=∠BCA,∴△COD∽△CBA,∴ODAB=OCCB,即r6=8-r10,解得r=3,∴⊙O的半径是3.6.解:(1)如图,四边形ADBP即为所求作.(第6题)(2)直线PQ与直线BD平行.理由如下:∵把点P绕点A顺时针旋转得到点Q,旋转角为2α,且∠BAP=α,∴AQ=AP,∠QAB=α.∵P是BC边的中点,∴BP=12BC.∵Q是AD边的中点,∴AQ=DQ=12AD.∵AD=BC,∴AQ=DQ=BP.∴AP=BP.∴∠ABP=∠BAP=α.∴∠ABP=∠QAB.∴AD∥BC,即DQ∥BP.∴四边形BPQD为平行四边形.∴BD∥PQ.。
尺规作图一、作图题(共14 题;共133 分)1.如图,AD 是△ABC的角平分线F;.)2)连接DE、DF,四边形AEDF是_____ 形.(直接写出答案)2.如图,中,,,.1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)2)若(1)中所作的垂直平分线交于点,求的长.保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求△ BCD是等腰三角4. 如图,AB为⊙O 的直径,点C在⊙O 上.(1)尺规作图:作∠BAC的平分线,与⊙O 交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.5. 在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ ABC的平分线(保留作图痕迹,不写作法).6. 如图,在中,,,,D、E 分别是斜边AB、直角边BC上的点,把沿着直线DE 折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.7. 如图,BD 是菱形ABCD的对角线,∠CBD=75°,1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)2)在(1)条件下,连接BF,求∠DBF的度数.8. 如图,在△ABC中,∠ ABC=90°.(1)作∠ ACB的平分线交AB边于点O,再以点O 为圆心,OB 的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O 的位置关系,直接写出结果.9. 如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.10.如图,在中.P,使得点P 到AB 的距离的长等于PC的长;② 利用尺规作图,作出(1)中的线段PD.要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑(1)作图,作BC 边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C 的余弦值.12. 如图,点 D 在△ABC的AB 边上,且∠ ACD=∠ A。
2023年中考数学一轮复习《尺规作图》测试卷(含答案)一、选择题1.尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )2.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )3.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是( )4.用尺规作图,已知三边作三角形,用到的基本作图是( )A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线5.已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是( )A.SASB.ASAC.AASD.SSS6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.如图,∠BAC内有一点P,过点P作直线L∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q,R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l∥AC,交直线AB于F点,并连结EF;1∥EF,分别交两直线AB,AC于Q,R两点,则Q,R即为所求.②过P作直线l2乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q,R即为所求.下列判断正确的是( )A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确8.已知:∠AOB作法:(1)作射线O'A'.(2)以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D. (3)以点O'为圆心,以OC长为半径作弧,交O’A'于C'.(4)以点C'为圆心,以CD长为半径作弧,交前弧于D'.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是( )A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线9.已知:∠AOB.作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于12DE的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求的射线.这个作图是( )A.平分已知角B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线10.如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C 为圆心,CA 长为半径画弧①;步骤2:以点B 为圆心,BA 长为半径画弧②,交弧①于点D ;步骤3:连结AD ,交BC 的延长线于点H .下列叙述正确的是( )A.BH 垂直平分线段ADB.AC 平分∠BADC.S △ABC =BC ·AHD.AB=AD二、填空题11.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为________________.12.如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点; ②作直线MN 交BC 于点D ,连结AD.若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为______.13.如图,▱ABCD 中,AB =7,BC =3,连结AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连结AE ,则△AED 的周长是________.14.如图,在半径为1的⊙O上任取一点A,连续以1为半径在⊙O上截取AB=BC=CD,分别以A,D为圆心,A到C的距离为半径画弧,两弧交于E,以A为圆心,O 到E的距离为半径画弧,交⊙O于F,则△ACF面积是__________.三、作图题15.如图,三条公路两两相交于点A,B,C,现在要在公路边建一所加油站,要求加油站的位置到三条公路的距离都相等,则符合要求的位置有几个?请你找出所有加油站的位置(要求:尺规作图,保留作图痕迹,写出结论).四、解答题16.如图,已知△ABC,按如下步骤作图:①以点A为圆心,AB长为半径画弧.②以点C为圆心,CB长为半径画弧,两弧交于点D.③连结BD,与AC交于点E,连结AD,CD.求证:△ABE≌△ADE.17.如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)18.在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图;(保留画图痕迹,不写画法)(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10 m,请你求出这个环形花坛的面积.参考答案1.B2.D.3.A.4.C5.D6.D7.A8.B9.A10.A.11.答案为:(-1,0)12.答案为:9 3 13.答案为:1014.答案为:3+3415.解:如解图所示,P 1,P 2,P 3,P 4即为加油站的位置,共有4个符合要求的位置.16.证明:在△ABC 与△ADC 中,∵⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC .在△ABE 和△ADE 中,∵⎩⎨⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴ABE ≌ADE(SAS).17.解:(1)⊙O 如图所示.(2)如图,作OH ⊥BC 于H.∵AC 是⊙O 的切线,∴OE ⊥AC ,∴∠C =∠CEO =∠OHC =90°, ∴四边形ECHO 是矩形,∴OE =CH =52,BH =BC -CH =32. 在Rt △OBH 中,OH =(52)2-(32)2=2, ∴EC =OH =2,BE =EC 2+BC 2=2 5. ∵∠EBC =∠EBD ,∠BED =∠C =90°, ∴△BCE ∽△BED ,∴DE EC =BD BE ,∴DE 2=525, ∴DE = 5.18.解:(1)如图,点O 即为所求.(2)如图,设EF 与小圆切点为C ,连结OM ,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5 m,∴OM2-OC2=CM2=25,∴S=π·OM2-π·OC2=25π(m2).圆环。
尺规作图一.选择题(共10小题)1.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P.连接AP 并延长交BC于点D,则下列说法中:①AD平分∠BAC;②∠ADC=60°;③点D在AB 的垂直平分线上;④S△ABD=2S△ACD.其中正确的个数是()A.1B.2C.3D.42.如图,以∠CAB顶点A为圆心,适当长为半径画弧,分别交AB,AC于点E、F,再分别以点E、F为圆心,大于长为半径画弧,两弧交于点D,作射线AD,则说明∠CAD=∠DAB的依据是()A.SSS B.SAS C.ASA D.AAS3.用三角尺可以画角平分线:如图所示,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M画OA的垂线,过点N画OB的垂线,两垂线交于点P,画射线OP.可以得到△OMP ≌△ONP,所以∠AOP=∠BOP.那么射线OP就是∠AOB的平分线.△OMP≌△ONP的依据是()A.SAS B.ASA C.HL D.SSS4.过△ABC的顶点A,作BC边上的高,下列作法正确的是()A.B.C.D.5.如图所示,利用尺规作∠AOB的平分线,做法如下:①在OA、OB上分别截取OD、OC,使OD=OC;②分别以D、C为圆心,大于DC的长为半径画弧,两弧在∠AOB内交于一点E;③画射线OE,射线OE就是∠AOB的角平分线.在用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.ASA C.AAS D.SAS6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,BG=1,AC=3,则△ACG的面积是()A.1B.C.2D.7.在△ABC的BC边上找一点P,使得P A+PC=BC.下面找法正确的是()A.B.C.D.8.小华利用已学知识用尺规作一个角等于已知角,具体情况如图所示,则小华得到△OCD与△O'C'D'全等的依据是()A.AAS B.ASA C.SAS D.SSS9.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC 于点D.若BD=3,BC=5,则点D到AB边的距离是()A.1B.2C.3D.410.如图,在长方形中,∠ACB=72°,依据尺规作图的痕迹,则∠α的度数是().A.126°B.72°C.63°D.54°二.填空题(共5小题)11.如图,长方形OABC中,OC=12,OA=5.以原点O为圆心,对角线OB长为半径画弧交数轴于点D,则数轴上点D表示的数是.12.如图,∠AOB=30°,以点O为圆心,任意长为半径作弧分别交OB,OA于点C,D,分别以点C,D为圆心,大于CD的长为半径作弧,两弧交于点E,过E点作EF∥OB,EG⊥OB于点G,若OF=2,则EG的长为.13.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则S△DAC:S△ABC=.14.如图,用直尺和圆规作一个角等于已知角的过程中,依据全等三角形的性质可得∠O=∠O',这里判断△C'O'D'≌△COD的依据是.15.如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以B为圆心,以任意长为半径作弧,分别交AB,BC于点M,N;②分别以M,N为圆心,以大于的长为半径作弧,两弧在∠ABC 内交于点P;③作射线BP,交AC于点D.若S△ABD=16,AB=8,则线段CD的长为.三.解答题(共6小题)16.尺规作图.在三角形ABC中,以点A为顶点作菱形ADEF,使点D、E、F分别在边AC、BC和AB上.17.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).18.小明在做浙教版七上课本第75页第6题:“利用如图4×4方格(每个方格边长为1),作出面积为8的正方形”时,发现利用分割正方形的方法,可以作出面积为8的正方形(如图1阴影部分),进一步开展探究活动:[探究1]图1中正方形边长为.[探究2]仿照上述作法,小明又作出一个正方形(如图2阴影部分),则该正方形面积为,边长为.[探究3]如图3,是5×5方格(每个方格边长为1),仿照上述作法,请你画出一个面积为13的正方形.19.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.20.如图,在△ABC中,∠BAC的角平分线交BC于点D.(1)用尺规完成以下基本作图:作AD的垂直平分线分别与AB、AC、AD交于点E、点F、点H.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE、DF,完成下面证明HE=HF的过程.证明:∵∠BAC的角平分线交BC于点D,∴∠BAD=①.∵EF垂直平分AD,∴∠AHF=∠DHE=90°,AH=②,③,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴△AHF≌④(ASA).∴HE=HF.21.如图,在直角坐标系中A(﹣3,4)、B(2,1)、C(3,3).(1)在平面直角坐标系中画出△ABC;(2)三角形ABC的面积为;(3)P是x轴上的动点,则P A+PB的最小值为.2023年中考数学专题复习--尺规作图参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P.连接AP 并延长交BC于点D,则下列说法中:①AD平分∠BAC;②∠ADC=60°;③点D在AB 的垂直平分线上;④S△ABD=2S△ACD.其中正确的个数是()A.1B.2C.3D.4【分析】由题意得AD是∠BAC的平分线,可判断说法①;由已知条件可得∠BAC=60°,则∠CAD=∠BAD=∠BAC=30°,根据∠ADC=∠B+∠BAD可判断说法②;过点D作DE⊥AB于点E,易知△ABD为等腰三角形,则DE为△ABD的中线,即点D在AB的垂直平分线上,可判断说法③;证明△ACD≌△AED,△ADE≌△BDE,可得S△ACD=S△ADE=S△BDE,即可判断说法④.【解答】解:由题意可得,AD是∠BAC的平分线,故说法①正确;∵∠C=90°,∠B=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴∠CAD=∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=60°,故说法②正确;过点D作DE⊥AB于点E,∵∠B=∠BAD=30°,∴△ABD为等腰三角形,∴DE为△ABD的中线,∴点D在AB的垂直平分线上,故说法③正确;∵AD是∠BAC的平分线,∠C=∠AED=90°,∴CD=DE,∵∠CAD=∠BAD,∴△ACD≌△AED(AAS),∴S△ACD=S△ADE,∵∠AED=∠BED=90°,AE=BE,DE=DE,∴△ADE≌△BDE(SAS),∴S△ADE=S△BDE,∴S△ACD=S△ADE=S△BDE,∴S△DAC:S△ABC=1:3,∴S△ABD=2S△ACD.故说法④正确.∴正确的说法有4个,故选:D.【点评】本题考查作图﹣基本作图,尺规作图、角平分线的性质、等腰三角形的性质、全等三角形的判定与性质,熟练掌握相关知识点是解答本题的关键.2.如图,以∠CAB顶点A为圆心,适当长为半径画弧,分别交AB,AC于点E、F,再分别以点E、F为圆心,大于长为半径画弧,两弧交于点D,作射线AD,则说明∠CAD=∠DAB的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据作图过程可得,AF=AE,DF=DE,又AD=AD,可以证明△F AD≌△EAD,即可得结论.【解答】解:根据作图过程可知:AF=AE,DF=DE,又AD=AD,∴△F AD≌△EAD(SSS),∴∠CAD=∠BAD.故选:A.【点评】本题考查了作图﹣基本作图、全等三角形的判定与性质、角平分线的性质,解决本题的关键是掌握基本作图方法.3.用三角尺可以画角平分线:如图所示,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M画OA的垂线,过点N画OB的垂线,两垂线交于点P,画射线OP.可以得到△OMP ≌△ONP,所以∠AOP=∠BOP.那么射线OP就是∠AOB的平分线.△OMP≌△ONP的依据是()A.SAS B.ASA C.HL D.SSS【分析】根据作图过程可以证明Rt△OMP≌Rt△ONP(HL),进而可得结论.【解答】解:∵∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠POM=∠PON,∴射线OP就是∠AOB的平分线.故选:C.【点评】本题考查全等三角形的判定和性质,作图﹣复杂作图,角平分线的判定等知识,解题的关键是正确寻找全等三角形解决问题.4.过△ABC的顶点A,作BC边上的高,下列作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:△ABC中BC边上的高的是D选项.故选:D.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.5.如图所示,利用尺规作∠AOB的平分线,做法如下:①在OA、OB上分别截取OD、OC,使OD=OC;②分别以D、C为圆心,大于DC的长为半径画弧,两弧在∠AOB内交于一点E;③画射线OE,射线OE就是∠AOB的角平分线.在用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.ASA C.AAS D.SAS【分析】利用基本作图得到OC=OD,CE=DE,加上OE为公共边,则利用“SSS”可判断△OCE≌△ODE,从而得到∠EOC=∠EOD.【解答】解:由作法得OC=OD,CE=DE,而OE=OE,所以△OCE≌△ODE(SSS),所以∠EOC=∠EOD,即射线OE就是∠AOB的角平分线.故选:A.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,BG=1,AC=3,则△ACG的面积是()A.1B.C.2D.【分析】利用基本作图得到AG平分∠BAC,利用角平分线的性质得到G点到AC的距离为1,然后根据三角形面积公式计算△ACG的面积.【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×3×1=.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质.7.在△ABC的BC边上找一点P,使得P A+PC=BC.下面找法正确的是()A.B.C.D.【分析】先利用已知条件证明P A=PB,根据线段垂直平分线的性质得到P点为AB的垂直平分线与BC的交点,然后利用基本作图对各选项进行判断.【解答】解:∵P A+PC=BC,而BC=BP+PC,∴P A=PB,∴P点为AB的垂直平分线与BC的交点.故选:D.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.8.小华利用已学知识用尺规作一个角等于已知角,具体情况如图所示,则小华得到△OCD与△O'C'D'全等的依据是()A.AAS B.ASA C.SAS D.SSS【分析】利用作图痕迹得到OC=OD=OC′=OD′,CD=C′D′,则根据全等三角形的判定方法得到△OCD≌△O'C'D',所以有∠O=∠O′,【解答】解:由作图痕迹得OC=OD=OC′=OD′,CD=C′D′,所以△OCD≌△O'C'D'(SSS),所以∠O=∠O′.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了全等三角形的判定.9.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC 于点D.若BD=3,BC=5,则点D到AB边的距离是()A.1B.2C.3D.4【分析】由作法得AD平分∠BAC,过D点作DH⊥AB于H,根据角平分线的性质得到DH =DC.【解答】解:∵BD=3,BC=5,∴DC=BC﹣BD=2,由作法得AD平分∠BAC,过D点作DH⊥AB于H,如图,∵AD平分∠BAD,∠C=90°,DH⊥AB,∴DH=DC=2,.故选:B.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图和角平分线的性质.10.如图,在长方形中,∠ACB=72°,依据尺规作图的痕迹,则∠α的度数是().A.126°B.72°C.63°D.54°【分析】依据作图痕迹可得,EF是AC的垂直平分线,BE是∠BAD的角平分线.根据对顶角相等、平行线的性质以及三角形内角和定理,即可得到∠α的度数.【解答】解:∵AD∥BC,∴∠DAC=∠ACB=72°,又∵AE平分∠DAC,∴∠EAC=∠DAC=36°,又∵EF垂直平分AC,∴∠AFE=90°,∴∠AEF=54°,∴∠α=54°,故选:D.【点评】本题主要考查了基本作图,线段垂直平分线以及角平分线的定义,掌握对顶角相等、平行线的性质以及三角形内角和定理是解决问题的关键.二.填空题(共5小题)11.如图,长方形OABC中,OC=12,OA=5.以原点O为圆心,对角线OB长为半径画弧交数轴于点D,则数轴上点D表示的数是﹣13.【分析】利用作法得到OD=OB,再利用勾股定理得到OB=13,则OD=13,然后利用数轴表示数的方法得到点D表示的数.【解答】解:由作法得OD=OB,∵四边形ABCO为矩形,∴∠BCO=90°,∵OC=12,OA=5,∴OB==13,∴OD=13,∴数轴上点D表示的数是﹣13.故答案为:﹣13.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了数轴和勾股定理.12.如图,∠AOB=30°,以点O为圆心,任意长为半径作弧分别交OB,OA于点C,D,分别以点C,D为圆心,大于CD的长为半径作弧,两弧交于点E,过E点作EF∥OB,EG⊥OB于点G,若OF=2,则EG的长为1.【分析】过E点作EH⊥OA于H,如图,利用基本作图得到OE平分∠AOB,根据角平分线的性质得到∠HOE=∠EOG,EG=EH,再根据平行线的性质得到∠EFH=30°,∠FEO=∠EOG,接着证明FE=FO=2,然后利用含30度角的直角三角形三边的关系得到EH的长,从而得到EG的长.【解答】解:过E点作EH⊥OA于H,如图,由作法得OE平分∠AOB,则∠HOE=∠EOG,∵EG⊥OB,EH⊥OA,∴EG=EH,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠EOG,∴∠HOE=∠FEO,∴FE=FO=2,在Rt△EFH中,∵∠EFH=30°,∴EH=EF=1.故答案为:1.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了平行线的性质和角平分线的性质.13.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则S△DAC:S△ABC=1:3.【分析】利用基本作图得AD平分∠BAC,利用角平分线的定义计算出∠BAD=∠CAD=30°,由∠BAD=∠B得到DA=DB,利用含30度的直角三角形三边的关系得到AD=2CD,则BD=2CD,所以BC=3CD,然后根据三角形面积公式可得结论.【解答】解:由作法可知:AD平分∠BAC,∵∠C=90°,∠B=30°,∴∠BAC=60°,∵∠BAD=∠CAD=30°,∵∠BAD=∠B,∴DA=DB,∵AD=2CD,∴BD=2CD,∴BC=3CD,∴S△DAC:S△ABC=1:3,故答案为:1:3.【点评】本题考查了作图﹣基本作图,角平分线的性质,含30度角的直角三角形,熟练掌握基本作图方法是解决问题的关键.14.如图,用直尺和圆规作一个角等于已知角的过程中,依据全等三角形的性质可得∠O=∠O',这里判断△C'O'D'≌△COD的依据是SSS.【分析】利用作图痕迹得OC=OD=OC′=OD′,CD=C′D′,则根据“SSS”可判断△C'O'D'≌△COD,从而得到∠O=∠O′.【解答】解:由作图痕迹得OC=OD=OC′=OD′,CD=C′D′,∴△C'O'D'≌△COD(SSS),∴∠O=∠O′.故答案为:SSS.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.15.如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以B为圆心,以任意长为半径作弧,分别交AB,BC于点M,N;②分别以M,N为圆心,以大于的长为半径作弧,两弧在∠ABC 内交于点P;③作射线BP,交AC于点D.若S△ABD=16,AB=8,则线段CD的长为4.【分析】过D点作DH⊥AB于H,如图,利用基本作图得到BD平分∠ABC,则根据角平分线的性质得到DH=DC,再利用三角形面积公式计算出DH,从而得到DC的长.【解答】解:过D点作DH⊥AB于H,如图,由作法得BD平分∠ABC,∴DH=DC,∵S△ABD=16,∴AB•DH=16,∴DH==4,∴DC=4.故答案为:4.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.三.解答题(共6小题)16.尺规作图.在三角形ABC中,以点A为顶点作菱形ADEF,使点D、E、F分别在边AC、BC和AB上.【分析】作△ABC的角平分线AE,作线段AE的垂直平分线交AB于D,交AC于F,连接DE,EF,四边形ADEF即为所求【解答】解:先作∠BAC的平分线交BC边于点E,再作线段AE的垂直平分线交AC于点D,交AB于点F,连接DE、EF,则四边形ADEF即为所求.证明:△EAD≌△EAF(SAS),则F A=DA,而由线段的垂直平分线的性质可得DA=DE、F A=FE,∴F A=DA=DE=FE,∴四边形ADEF为菱形,则菱形ADEF即为所求作的菱形.【点评】本题考查了菱形的判定和线段的垂直平分线的性质在几何作图中的应用,熟练掌握相关性质及定理是解题的关键.17.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为、2、的线段,画三角形即可.(3)利用勾股定理作一个边长为的正方形即可得.【解答】解:(1)如图1所示,Rt△ABC即为所求;(2)如图所示,Rt△DEF即为所求;(3)如图所示,OPQ即为所求.【点评】此题主要考查了作图与应用作图.本题需仔细分析题意,结合图形,利用勾股定理即可解决.18.小明在做浙教版七上课本第75页第6题:“利用如图4×4方格(每个方格边长为1),作出面积为8的正方形”时,发现利用分割正方形的方法,可以作出面积为8的正方形(如图1阴影部分),进一步开展探究活动:[探究1]图1中正方形边长为2.[探究2]仿照上述作法,小明又作出一个正方形(如图2阴影部分),则该正方形面积为10,边长为.[探究3]如图3,是5×5方格(每个方格边长为1),仿照上述作法,请你画出一个面积为13的正方形.【分析】[探究1]利用勾股定理求解;[探究2]利用勾股定理求出正方形的边长即可;[探究3]利用数形结合的思想解决问题即可.【解答】解:[探究1]图1中,正方形的边长==2.故答案为:2.[探究2]如图2中,正方形的边长==10,面积为10.故答案为:10,;[探究3]如图3中,正方形ABCD即为所求.【点评】本题考查作图﹣应用与设计作图,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.【分析】图(1)中取AB,BC,AC的中点E,D,F,连接AD,DE,DF即可;图(2)中取AB,BC,AC的中点E,D,F,连接EF,DE,DF即可;图(3)中取线段BC的三等分点D,E,F,连接AD,AE,AF即可.【解答】解:图形如图所示:【点评】本题考查作图﹣应用与设计作图,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.如图,在△ABC中,∠BAC的角平分线交BC于点D.(1)用尺规完成以下基本作图:作AD的垂直平分线分别与AB、AC、AD交于点E、点F、点H.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE、DF,完成下面证明HE=HF的过程.证明:∵∠BAC的角平分线交BC于点D,∴∠BAD=①∠CAD.∵EF垂直平分AD,∴∠AHF=∠DHE=90°,AH=②DH,③AE=DE,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴△AHF≌④△DHE(ASA).∴HE=HF.【分析】(1)根据题意作出图形即可;(2)根据角平分线定义得到∠BAD=①∠CAD.根据线段垂直平分线的性质得到∠AHF =∠DHE=90°,AH=②DH,③AE=DE,根据全等三角形的判定和性质是解题的关键.【解答】解:(1)直线EF即为所求;(2)证明:∵∠BAC的角平分线交BC于点D,∴∠BAD=①∠CAD.∵EF垂直平分AD,∴∠AHF=∠DHE=90°,AH=②DH,③AE=DE,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴△AHF≌④△DHE(ASA).∴HE=HF.故答案为:∠CAD,DH,AE=DE,△DHE.【点评】本题考查了作图﹣基本作图,角平分线定义,全等三角形的判定和性质,线段垂直平分线的性质,正确都作出图形是解题的关键.21.如图,在直角坐标系中A(﹣3,4)、B(2,1)、C(3,3).(1)在平面直角坐标系中画出△ABC;(2)三角形ABC的面积为;(3)P是x轴上的动点,则P A+PB的最小值为5.【分析】(1)根据A(﹣3,4)、B(2,1)、C(3,3),即可在平面直角坐标系中画出△ABC;(2)根据割补法即可求出三角形ABC的面积;(3)找点B关于x轴的对称点B′,连接AB′交x轴于点P,可得P A+PB的最小值为AB′的长即可.【解答】解:(1)如图,△ABC即为所求;(2)三角形ABC的面积=4×6﹣×3×5﹣×1×2﹣×1×6=;故答案为:;(3)如图,点B关于x轴的对称点B′,连接AB′交x轴于点P,∴PB=PB′,∴P A+PB的最小值=AB′==5.故答案为:5.【点评】本题考查了作图﹣复杂作图,坐标与图形性质,三角形的面积,轴对称﹣最短路线问题,解决本题的关键是掌握轴对称的性质.。
人教版备考2023中考数学二轮复习专题23 尺规作图一、作图题1.(2022九上·深圳期中)定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,在5×5的正方形网格中,若每一个小正方形的边长均为1,请仅用无刻度直尺按要求画图.(1)在图①中画一个以AB为边画一个格点正方形ABCD.(2)在图②中画一个格点平行四边形AEBF,使平行四边形面积为6.(3)在图③中画一个格点菱形AMBN,AMBN不是正方形(温馨提示:请画在答题卷相对应的图上)【答案】(1)解:画一个以AB为边画一个格点正方形ABCD,如图所示,(2)解:画一个格点平行四边形AEBF.如图所示,S▱AEBF=2×3=6;(3)解:画一个格点菱形AMBN,AMBN不是正方形,如图所示,【知识点】平行四边形的判定;正方形的判定;作图-直线、射线、线段【解析】【分析】(1)根据题意作图即可;(2)根据题意作图,再利用平行四边形的面积公式计算求解即可;(3)根据题意作图即可。
2.(2022七下·浑南期末)如图,在正方形网格中,△ABC的三个顶点均在格点上.(1)画出△A1B1C1,使得△A1B1C1和△ABC关于直线l对称;(2)过点C作线段CD,使得CD∥AB,且CD=AB.【答案】(1)解:△A1B1C1如图所示:(2)解:如图,CD1、CD2即为所求.【知识点】作图﹣轴对称;作图-直线、射线、线段【解析】【分析】(1)利用轴对称的性质找出点A、B、C的对应点,再连接即可;(2)根据要求作出图形即可。
3.(2022八上·瑞安月考)在5×5的正方形网格中,点A,点B均在格点上,连结AB,请根据要求完成下列作图:(1)在图1中找一个格点C,使得△ABC是直角三角形.(2)在图2中找一个格点D,使得△ABD是三个内角都是锐角的等腰三角形.【答案】(1)解:当∠A=90°或∠B=90°时;当∠C=90°时(2)当AB=BD时【知识点】等腰三角形的性质;勾股定理;作图-三角形【解析】【分析】(1)要使△ABC是直角三角形,分情况讨论,画出图形,当∠A=90°,当∠B=90°,当∠C=90°,分别画出符合题意的三角形.(2)利用勾股定理,根据两边相等的三角形是等腰三角形:当AB=BD时;当AB=AD时,画出三个角都是锐角的等腰三角形即可.4.(2022八上·北仑期中)如图,已知在△ABC中,∠A=120°,∠B=20°,∠C=40°,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)【答案】解:如图,【知识点】等腰三角形的性质;作图-三角形【解析】【分析】由∠A=120°,可过点A作∠BAP=20°,则∠PAC=100°,∠APC=40°,则△APB、△APC 均为等腰三角形;可过点A作∠BAP=80°,则∠PAC=40°,∠APC=100°,则△APB、△APC均为等腰三角形;5.(2022八上·青田期中)如图,在△ABC中,点E在AB边上,请用直尺和圆规求作一点F,使得FE=FA,且F点到AB和BC的距离相等.(保留作图痕迹,不写作法)【答案】解:如图,点F为所作.【知识点】作图-角的平分线;作图-线段垂直平分线【解析】【分析】分别作∠ABC的平分线,线段AE的垂直平分线,两直线的交点即为点F. 6.(2022九上·博白月考)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m//AB;(2)在图2中作出矩形ABCD的对称轴n,使n//AD.【答案】(1)解:如图1中,直线m即为所求;(2)解:如图2中,直线n即为所求;【知识点】矩形的性质;作图-平行线【解析】【分析】(1)由矩形的性质作矩形的对角线,两条对角线的交点为O,过点O作AD的垂线交AD于点E,直线OE即为所求;(2)结合(1)的作法,过点O作OE的垂线交AB于点R,直线OR即为所求.7.(2022八上·嘉兴期中)如图,在△ABC中,AC=BC.尺规作图(保留作图痕迹,不写作法)⑴作边AC的垂直平分线;⑵在△ABC内确定一点O,使得点O到三个顶点的距离相等.【答案】解:解:⑴如图,直线l为所作;⑵如图,点O为所作.【知识点】作图-线段垂直平分线【解析】【分析】(1)根据垂直平分线的作法作图即可;(2)作出线段AB的垂直平分线,与AC的垂直平分线的交点即为点O.8.如图方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,ΔABC的顶点都在格点上,且三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).⑴画出△ABC关于原点O的中心对称图形△A′B′C′,并写出点B的对应点B′的坐标.⑵画出将△ABC绕原点O逆时针方向旋转90度后的图形△A′′B′′C′′.【答案】解:⑴如图,ΔA′B′C′即为所求,则点B′(−3,−4)⑵如图,ΔA′′B′′C′′即为所求.【知识点】作图﹣旋转【解析】【分析】(1)利用中心对称的性质,作出点A,B,C分别关于原点的对称点A′,B′,C′,再画出△A′B′C′,写出点B′的坐标.(2)利用旋转的性质,将△ABC绕着点O逆时针旋转90°,可得到对称点A",B",C",再画出△A"B"C".9.(2022八上·宝安期末)如图,在边长为1的小正方形所组成的网格上,每个小正方形的顶点都称为“格点”,△ABC的顶点都在格点上,用直尺完成下列作图.(1)作出△ABC关于直线MN的对称图形;(2)在网格中建立直角坐标系,使点A坐标为(−1,3);(3)在直线MN上取一点P,使得AP+CP最小.【答案】(1)解:作出点A、B、C关于MN的对称点A′、B′、C′,顺次连接,则ΔA′B′C′即为所求作的三角形,如图所示:(2)解:由点A坐标为(−1,3)可知,坐标原点在点A右侧一个单位,下方3个单位处,然后建立平面直角坐标系,如图所示:(3)解:连接A′C,交MN于点P,则点P即为所求,如图所示:【知识点】作图﹣轴对称;轴对称的应用-最短距离问题;平面直角坐标系的构成【解析】【分析】(1)利用轴对称的性质找出点A、B、C的对应点,再连接即可;(2)根据点A的坐标建立平面直角坐标系即可;(3)连接A′C,交MN于点P,则点P即为所求。
2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。
5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。
专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。
2023年陕西省中考数学模拟题知识点分类汇编:尺规作图一.解答题(共30小题)
1.(2022•蒲城县二模)如图,在Rt△ABC中,∠B=90°,请用尺规作图法在△ABC外求作一点D,使得四边形ABCD为矩形.(保留作图痕迹,不写作法)
2.(2022•碑林区校级模拟)如图,已知等边△ABC,射线AM,请用尺规作图法,在射线AM上找一点D,使得∠BDC=120°.(保留作图痕迹,不写作法)
3.(2022•碑林区校级模拟)如图,已知直线m及m外一点A.请用尺规作图法,求作一条过点A的直线n,使n∥m.(保留作图痕迹,不写作法)
4.(2022•蒲城县一模)如图,已知:∠BOC及其射线OC上的一点A,请利用尺规作图法在∠BOC内部作射线AP,使得AP∥OB.(不写作法,保留作图痕迹)
5.(2022•碑林区校级模拟)如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在BC上,请利用尺规作图法,求作∠BEF,使得∠BEF=∠BAD,EF与AB边交于点F.(保留作图痕迹,不写作法)
第1页(共27页)。
中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。
完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。
以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。
2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。
3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。
4.等长的线段的画法:直接用圆规量取即可。
5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。
需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。
在作图时,如果有多个要求,应逐个满足并取公共部分。
例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。
以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。
作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。
例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。
作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。
例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。
作法如下:作出AB的垂直平分线,与BC交于点P。
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
2023年九年级数学中考专题:尺规作图类训练题
一、单选题
1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )
A .
B .
C .
D .
2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于1
2AC
长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )
A .
B .5
C .6
D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于1
2BC 长为半径画弧,两弧相交
于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )
A .A
B B
C + B .BC AC + C .+AB AC
D .AB AC BC ++
4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )
A .SAS
B .AAS
C .SSS
D .SSA
5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若
28AOB ∠︒=,则BOD ∠的补角的度数为( )
A .124︒
B .39︒
C .56︒
D .144︒
6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌
△△得知,其依据分别是( )
A .SSS ;SAS
B .SAS ;SSS
C .SSS ;HL
D .SAS ;HL
7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )
A .7
B .8
C .9
D .10
8.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段
OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于
点M .下列结论中不正确的是( )
A .CEO DEO ∠=∠
B .CM MD =
C .OC
D ECD ∠=∠
D .1
2
OCED S CD OE =⋅四边形
二、填空题
9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交
AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G
两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.
10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于1
2
DE 为长的半径作弧,两
弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP
的最小值为______.
11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.
12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于
点D ,再分别以点C ,D 为圆心,大于1
2CD 长为半径画弧,两弧交于点E ,作射线BE
交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.
13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于
1
2
AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.
14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC
于点M ,N ;①分别以M ,N 为圆心1
2MN 的长为半径作弧,两弧在ABC ∠内交于点P ,
交AC 于点D .若16,8ABD
S
AB ==,则线段CD 的长为 ___________.
15.如图,在
ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为
圆心,大于1
2
BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,
6BF =,5AB =,则AE 的长为 ___________.
16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于
点E ,分别以点C ,E 为圆心、大于1
2CE 的长为半径作弧,两弧交于点P ,作射线BP
交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.
三、解答题
17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)
18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方
法即可)
(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;
(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)
19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.
(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .
(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.
20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.
(1)在图①中BC 上找一点E ,使1
2
BE BC =
; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使1
2
MN BC =
.
参考答案:1.B
2.A
3.C
4.C
5.A
6.C
7.A
8.C
9.36126
10.12 5
11.30 12.54 13.45︒14.4 15.8
16
.
18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC
=,
答案第1页,共1页。