测定细胞转染率的方法
- 格式:doc
- 大小:37.13 KB
- 文档页数:2
细胞转染是基因工程、分子生物学研究等领域中常用的一种技术,用于将外源基因或RNA导入细胞内,研究基因表达、基因调控等功能。
本实验旨在利用脂质体介导的方法将目的基因转染入HEK293细胞,并观察转染效率及目的基因的表达情况。
二、实验材料1. 细胞:HEK293细胞2. 载体:pEGFP-C1(绿色荧光蛋白基因)3. 试剂:胎牛血清、DMEM培养基、转染试剂(如Lipofectamine 3000)、Trizol 试剂、PCR试剂盒、DNA marker等三、实验方法1. 细胞培养:将HEK293细胞接种于6孔板,培养于含10%胎牛血清的DMEM培养基中,置于37℃、5%CO2的培养箱中培养至对数生长期。
2. 转染:按照Lipofectamine 3000说明书进行操作,将pEGFP-C1质粒与转染试剂混合,室温孵育5分钟,然后加入细胞培养液中,将细胞培养板放入培养箱中继续培养。
3. 检测转染效率:转染后24小时,观察细胞绿色荧光表达情况,以判断转染效率。
4. RT-PCR检测目的基因表达:收集转染后的细胞,使用Trizol试剂提取细胞总RNA,进行RT-PCR扩增目的基因,以判断目的基因的表达情况。
5. Western blot检测目的蛋白表达:收集转染后的细胞,提取细胞总蛋白,进行SDS-PAGE电泳,转膜,加入一抗和二抗,进行Western blot检测目的蛋白表达。
四、实验结果1. 转染效率:转染后24小时,显微镜下观察细胞绿色荧光表达情况,结果显示大部分细胞呈现出绿色荧光,说明转染效率较高。
2. RT-PCR结果:RT-PCR扩增目的基因,结果显示目的基因扩增条带清晰,说明目的基因已成功转染入细胞。
3. Western blot结果:Western blot检测目的蛋白表达,结果显示目的蛋白条带清晰,说明目的蛋白已成功表达。
1. 脂质体介导的转染方法具有操作简单、转染效率高、安全性好等优点,适用于多种细胞类型的转染。
实验十二细胞转染实验一、实验目的学习和掌握外源基因导入真核细胞的主要方法——脂质体介导的转染。
二、实验原理脂质体是磷脂分散在水中时形成的脂质双分子层,又称为人工生物膜。
可用于外源物质进入细胞的载体。
阳离子脂质体表面带正电荷,能与核酸的磷酸根通过静电作用将DNA分子包裹,形成DNA/脂质复合体。
其能被表面带负电荷的细胞膜吸附,再通过膜融合或细胞的内吞作用,也可通过直接渗透作用,将DNA 传递进入细胞。
三、实验材料与试剂1、材料:(1)CV-1细胞或293细胞;(2)携带增强型绿色荧光蛋白(EGFP)的哺乳动物细胞表达质粒pN31-EGFP;(3)24孔细胞培养板;(4)经无菌处理的0.5mL Eppendorf离心管。
2、试剂:(1)脂质体转染试剂;(2)DMEM基础培养基;(3)DMEM完全培养基(10%胎牛血清,链霉素/青霉素);(4)细胞胰酶消化液(0.25%Trypsin)3、仪器:(1)二氧化碳培养箱;(2)超净工作台;(3)倒置荧光显微镜。
四、实验步骤1、待转染细胞的准备(所有步骤均在超净工作台中完成,确保进行无菌操作):(1)取贴壁接近90%的CV1 或293细胞,弃去原培养皿中的培养基,加入1mL Versene液洗细胞一次,弃去Versene液,再加入1mL 0.25%Trypsin消化2分钟(37℃,5%CO2 )。
(2)加入1 mL的DMEM完全培养基终止反应。
(3)用吹管多次吹吸,使细胞完全分散开。
(4)用DMEM完全培养基重悬细胞,计数,在24孔细胞培养板的每个孔中加入2*105个细胞。
(5)细胞摇匀后将细胞培养板转入5%CO2培养箱中培养,准备用于第2天转染。
2. 脂质体转染实验(所有步骤均在超净工作台中完成,确保进行无菌操作):(1)脂质体/DNA复合物的制备:A. 在一无菌0.5 mL离心管A中,将20 μL pN31-EGFP质粒(2 μg)稀释于80 μL无血清DMEM培养基中,轻轻混匀。
细胞转染实验总结引言细胞转染是生物学研究中常用的实验技术,用于将外源DNA、RNA或蛋白质引入到目标细胞中。
通过细胞转染,可以实现基因表达、基因敲除、蛋白质定位等多种研究目的。
本文总结了细胞转染实验的基本原理、常用方法和注意事项。
基本原理细胞转染实验的基本原理是通过物理或化学方法将外源DNA、RNA或蛋白质传递到目标细胞内。
细胞内的转染物质可以在细胞内进行表达、干扰或定位,从而实现对目标细胞功能的研究。
常见的细胞转染方法包括:1.电穿孔法:通过应用电流使细胞膜发生临时孔洞,从而使转染物质进入细胞内。
2.化学转染法:利用聚合物、脂质体等化学物质,将目标物质载体化,并与细胞膜结合,实现内源化学转染。
3.病毒载体介导转染法:利用病毒(如腺病毒、逆转录病毒等)作为载体,传递目标物质到细胞内。
常用方法1. 电穿孔法电穿孔法是细胞转染中常用的物理方法之一。
通过应用高电压或脉冲电场,可以使细胞膜发生临时性孔洞,从而使外源DNA、RNA或蛋白质进入细胞内。
常用的电穿孔方法包括:•电转染:将转染物质与细胞悬浮液混合后施加电脉冲,使细胞膜发生孔洞并吸收转染物质。
•静电转染:将转染物质与带正电荷的载体(如聚乙烯亚胺)混合后,与带负电荷的细胞膜相互吸引,从而将转染物质导入细胞内。
2. 化学转染法化学转染法是一种通过化学物质介导的细胞转染方法。
常用的化学转染法有:•使用聚合物:聚合物(如聚乙烯亚胺、聚合丙烯酸等)能与转染物质结合成复合物,使其稳定且易于细胞摄取。
•脂质体转染:脂质体是由磷脂、胆固醇等成分构成的脂质双层结构,可以包裹转染物质形成脂质体-转染物复合物,通过与细胞膜融合实现内源转染。
3. 病毒载体介导转染法病毒载体介导转染法是细胞转染中较常用的方法之一。
常见的病毒载体包括:•腺病毒:腺病毒是一种双链DNA病毒,可以携带大片段的外源DNA,并有效地传递到目标细胞内。
•逆转录病毒:逆转录病毒(如 lentivirus、retrovirus等)可以将外源RNA逆转录成DNA,然后整合到宿主细胞基因组中。
细胞转染的原理操作步骤以及小技巧细胞转染是一种将外源DNA、RNA、蛋白质等分子导入到细胞内的实验技术。
这种技术可以用来研究基因功能、发现新的信号通路和治疗基因疾病等。
下面将介绍细胞转染的原理、操作步骤以及一些小技巧。
一、细胞转染的原理:细胞转染主要通过三种方法实现:物理法、化学法和生物学法。
1.物理法:通过高压、电穿孔、微射流等方式,使细胞膜发生瞬时破裂,从而使DNA、RNA等外源分子进入细胞。
常用的物理法有电穿孔法和基因枪法。
2.化学法:通过化学物质,如聚吡咯、脂质体等,使外源分子与细胞膜结合,从而实现转染。
常用的化学法有聚乙烯亚胺(PEI)法、磷酸钙共沉淀法等。
3.生物学法:通过利用病毒载体将外源基因导入目标细胞,实现基因的转移。
常用的生物学法有腺相关病毒(AAV)转染、逆转录病毒(RETRO)转染等。
二、细胞转染的操作步骤:1.细胞的预处理:根据细胞类型和实验要求,将细胞培养至合适的状态。
通常细胞应处于快速生长期,但还未达到接触抑制的阶段。
对于一些特定的细胞,如悬浮细胞,可能需要将其转接至适当的培养基中。
2.外源分子的准备:将外源DNA、RNA等转染载体制备好。
如将DNA克隆并纯化至高质量的质粒DNA,或将RNA合成或纯化。
根据实验要求选择合适的转染载体。
3.转染方法的选择:根据实验要求选择合适的转染方法,如物理法、化学法或生物学法。
一般情况下,物理法适用于悬浮细胞,化学法适用于贴壁细胞,而生物学法适用于大多数细胞类型。
4.细胞转染操作:a.物理法:i.电穿孔法:将细胞悬浮于含有外源分子的缓冲液中,然后通过电穿孔仪的电极或电穿孔板进行电穿孔。
ii. 基因枪法:使用基因枪将外源分子直接“枪”入目标细胞中。
b.化学法:i.PEI法:将PEI与外源DNA或RNA按一定比例混合,在适当条件下形成复合物,然后添加至目标细胞中。
ii. 磷酸钙共沉淀法:将外源DNA与磷酸钙按比例混合,并静置形成磷酸钙- DNA沉淀,然后加入至目标细胞中。
细胞转染RNAi效果检测方法及步骤siRNA 细胞转染条件优化证实siRNA 的作用效果和优化转染条件的最佳方法就是:特异基因的siRNA处理的细胞与阴性对照siRNA处理的细胞,通过qRT-PCR检测靶基因转录水平。
荧光显微镜或流式细胞仪观察细胞转染情况6-24 小时后(取决于转染情况及细胞生长速率)不同转染条件24-72 小时后确定最佳转染条件Real-TimePCR RNAi 效果检测定量PCR 是在传统PCR 反应体系的基础上添加了具有荧光标记的探针,并通过检测PCR 反应管内荧光信号的变化情况来实时监测PCR 反应进行的情况。
应用定量PCR 检测RNAi 效果只需要总RNA 抽提及qRT-PCR 两步。
新鲜组织和细胞总RNA分离纯化试剂盒中的EZOL 试剂是用于总RNA 抽提的试剂,适用于人类、动物、植物、细菌等组织或细胞的总RNA 提取。
样本经EZOL 充分裂解后加入氯仿离心,形成上清层、中间层和有机层,收集上清层用异丙醇沉淀RNA。
□ 产品特点可获得高纯度、高产率的RNA。
适用于多种细胞或组织总RNA 的提取。
无论是小量的细胞(5×106)或组织(50-100mg)还是大量的细胞(10)或组织(>1g)都可得到出色的结果。
操作简便,可实现RNA 的快速抽提。
20毫克组织或106-107个细胞/ml Ezol混匀后室温搁置15min 按200μl 氯仿/ml Ezol加入氯仿,振荡混匀,冰上放置10 分钟4°C12,000rpm 15min取上层水相移入0.5mlEP 管内,加入等体积预冷的异丙醇颠倒混匀,室温搁置10-15 分钟4°C12,000rpm 10min轻倒上清,吸水纸上沾干,按1ml 乙醇/ml 抽提液加入75%冰乙醇轻旋颠倒洗涤4°C12,000 rpm 5min轻倒上清,吸水纸上倒扣沾干,适度干燥DEPC H2O 或TE 溶液溶解RNA1.总RNA抽提(新鲜组织和细胞总RNA分离纯化试剂盒)RT反应获得cDNART 反应混合物的配置过程应在冰上完成:各试剂使用前最好振荡混匀。
细胞转染的技巧细胞转染是研究细胞分子生物学的关键技术之一,广泛应用于基因表达、基因敲除和功能分析等领域。
本文将详细介绍细胞转染的原理、方法和优化技巧。
细胞转染的原理主要基于外源DNA的纳入细胞内,并表达目的基因。
目前常用的转染方法包括化学法、电穿孔法、病毒介导法和基因枪法等。
一、化学法化学法是最常用的细胞转染方法之一,其基本原理是通过化学试剂破坏细胞膜屏障,使外源DNA能够进入细胞内。
常用的转染试剂包括聚乙烯亚胺(Polyethylenimine, PEI)、脂质体和阳离子聚合物等。
在化学转染过程中,需要注意以下几个关键环节:1. 细胞密度:化学转染对细胞密度有一定的要求,通常细胞密度应保持在80%~90%的对数生长期,以保证转染效果。
2. 转染试剂的浓度和比例:不同的转染试剂适用于不同的细胞系,需要根据实验需求进行优化。
一般情况下,转染试剂的浓度和DNA的比例为1:3~6。
3. 转染时间和转染条件:化学转染的时间和条件也需要进行优化。
过短的转染时间会导致转染效率低,而过长的转染时间可能会对细胞造成毒性影响。
二、电穿孔法电穿孔法通过电场脉冲的作用使细胞膜发生短暂的孔洞形成,从而实现外源DNA的转染。
电穿孔法具有转染效率高、转染速度快等优点,但对细胞需求较高,且操作较为繁琐。
在电穿孔转染过程中,需要注意以下几个环节:1. 电脉冲的参数:电脉冲参数包括电压、脉冲宽度和脉冲数等,需要根据细胞类型和实验需求进行优化。
2. 转染缓冲液的配方:转染缓冲液通常包含含有机磷盐的缓冲液或无机盐溶液,可用于增加细胞的导电性和缓解电穿孔过程中对细胞的损伤。
3. 转染后的细胞培养:电穿孔转染后,应及时将细胞转移到无血清培养基中,以减少电穿孔对细胞的影响。
三、病毒介导法病毒介导法是一种高效、稳定的转染方法,常用于长期表达和基因敲除实验。
病毒载体(如腺病毒、逆转录病毒等)可携带外源DNA进入细胞并整合到基因组中,从而实现目的基因的表达。
荧光siRNA产品使用说明RN:R11077.1 产品简介荧光标记的siRNA是检测转染效率、优化转染方法最常用的一种方法。
荧光标记的siRNA转染细胞后,可以直接使用荧光显微镜、激光共聚焦显微镜观察,也可以通过流式细胞仪检测,确定是否有效转染及转染效率的高低。
荧光标记的siRNA还可用作追踪siRNA在胞内的定位及分布的情况。
运输保存产品以冻干粉的形式储存于棕色管中,常温运输。
收到产品后,请于-20℃~-80℃保存,冻干粉可以稳定保存一年。
使用前瞬时离心,用RNase-free HO或灭菌ddH2O,配制成20μM储存液,分装避光保存,避免反复冻融(不超过5次)。
2表1 20μM储存液的配置参考注:所有过程请注意避光!使用方法使用前须知1)我们提供三种荧光基团标记的siRNA,进行实验前请先了解检测仪器的配置和参数,选择合适的荧光标记。
表2 锐博生物荧光标记siRNA可选荧光2)请先熟悉转染操作,以快速准确的完成荧光标记siRNA的转染。
3)储存、使用过程中及检测过程中请注意避光。
4)检测前请先熟悉检测仪器的操作,若使用荧光显微镜或激光共聚焦检测,检测时不宜同一位置曝光时间过长,应对好焦后马上拍照,防止曝光时间过长而荧光淬灭。
1,转染具体操作请参考使用的转染试剂说明,最好设置合适的转染试剂浓度及荧光标记siRNA浓度梯度,综合考虑转染率及转染试剂副作用,以选择合适的浓度进行RNAi实验。
以下为以riboFectTM CP Reagent 转染siRNA于24孔板,转染浓度为50nM为例:a. 稀释siRNA:用50μl 1X riboFectTM CP Buffer(v1)稀释1.25μl 20μM siRNA储存液(v2),轻轻混匀,室温孵育5min。
b. 混合液制备:加入5μl riboFectTM CP Reagent(v3),轻轻吹打混匀,室温孵育0~15min。
c. 将riboFectTM CP混合液加入到443.75μl细胞培养基(v4)中,轻轻混匀。
一、实验背景细胞转染技术是现代分子生物学研究中的一种重要技术手段,它可以将外源DNA、RNA或其他生物大分子导入细胞内,从而实现对细胞功能的研究和调控。
本实验旨在通过细胞转染技术将目的基因导入细胞内,研究该基因在细胞中的表达情况和生物学功能。
二、实验目的1. 确保目的基因成功导入细胞内;2. 观察目的基因在细胞中的表达情况;3. 分析目的基因在细胞中的生物学功能。
三、实验方法1. 细胞培养:将HEK293细胞在含有10%胎牛血清的DMEM培养基中培养至对数生长期;2. 基因构建:通过PCR扩增目的基因,克隆至载体pEGFP-C1中;3. 转染:采用脂质体转染试剂将目的基因导入细胞内;4. 重组蛋白表达检测:通过Western blot检测目的蛋白的表达情况;5. 细胞功能分析:通过细胞实验(如细胞增殖、细胞凋亡等)分析目的基因在细胞中的生物学功能。
四、实验结果1. 成功构建目的基因表达载体:PCR扩增目的基因片段长度符合预期,测序结果与预期序列一致;2. 成功导入目的基因:转染后,细胞中绿色荧光蛋白(GFP)表达阳性;3. 目的蛋白表达:Western blot检测结果显示,转染细胞中目的蛋白表达水平显著高于未转染细胞;4. 细胞功能分析:通过细胞实验发现,目的基因的过表达对细胞增殖、细胞凋亡等生物学功能有显著影响。
1. 本实验成功构建了目的基因表达载体,并通过脂质体转染技术将目的基因导入细胞内;2. 目的基因在细胞内得到了有效表达,且表达水平显著高于未转染细胞;3. 目的基因的过表达对细胞增殖、细胞凋亡等生物学功能有显著影响,表明该基因在细胞中具有一定的生物学功能。
本实验结果表明,细胞转染技术是研究目的基因在细胞中表达和生物学功能的有效手段。
在今后的研究中,我们将进一步探讨目的基因在细胞中的具体作用机制,为相关疾病的诊断和治疗提供理论依据。
以下是对实验结果的详细分析:1. 成功构建目的基因表达载体:在实验过程中,我们通过PCR扩增目的基因,并克隆至载体pEGFP-C1中。
sirna转染实验步骤及实验要点siRNA转染实验步骤如下:1.细胞接种:提前一天将细胞种植在24孔板中,以转染时细胞汇合度在30%左右为宜,转染前全培养基总量为0.45ml。
2.转染过程:•取0.67μg (50pmol) 的siRNA,加入一定量无血清稀释液,充分混匀,制成RNA稀释液,终体积为25μl。
注意:无血清稀释液建议采用OPTI-MEM、无血清DMEM或1640。
•取1μl的EntransterTM-R4000,然后加入24μl无血清稀释液体,充分混匀,制成EntransterTM-R4000稀释液,终体积为25μl。
室温静置5分钟。
•将EntransterTM-R4000稀释液和RNA稀释液充分混合(可用振荡器振荡或用加样器吹吸10次以上)混合,室温静置15分钟。
转染复合物制备完成。
•将50μl转染复合物滴加到有0.45ml全培养基(可含10%血清和抗生素)的细胞上,前后移动培养皿,混合均匀。
注意:对本试剂,采用含血清的全培养基有助于提升转染效率。
•转染后6小时观察细胞状态,如状态良好可不必更换培养基,继续培养24-96小时得到结果。
3.观察和检测:根据具体实验需求,可以在转染后的不同时间点观察细胞状态、检测基因表达、蛋白质表达等。
实验要点:1.细胞接种密度要适宜,一般在30%左右汇合度较好。
2.无血清稀释液的选择对于siRNA的稳定性和转染效率至关重要。
建议采用OPTI-MEM、无血清DMEM或1640等品牌。
3.在制备转染复合物时,要保证各个步骤的混合均匀,避免产生气泡。
4.在将转染复合物加入细胞时,要保证细胞的生存环境,避免对细胞造成损伤。
5.在转染后的观察和检测中,要注意保证实验结果的准确性和可靠性。
以上信息仅供参考,建议查阅专业文献获取更准确的信息。
细胞转染效率计算
细胞转染是一种在细胞中引入外源DNA或RNA分子的技术,以研究基因功能和表达等生物学问题。
在进行细胞转染实验时,通常需要计算转染效率,即成功转染的细胞数量占总细胞数量的比例。
计算细胞转染效率的方法可以根据实验设计和具体实验情况进行选择。
以下是一些常用的计算方法:
1.荧光染料检测法:将荧光染料加入到细胞培养基中,转染后通过荧光显微镜观察细胞内是否有荧光信号,并计算荧光阳性细胞的比例。
2.流式细胞术:将转染后的细胞通过流式细胞术进行分析,计算荧光阳性细胞数量的比例。
3.基因表达检测法:通过检测转染后目标基因的表达量,计算转染效率。
在进行细胞转染实验时,需要注意一些影响转染效率的因素,例如细胞状态、DNA/RNA质量、转染剂浓度和培养时间等。
为了获得准确的转染效率,应该对这些因素进行优化和控制。
- 1 -。
流式检测细胞周期与凋亡样品处理流程1.胰蛋白酶消化法收集细胞,做成单细胞悬液2.1000r/min离心5min,收集沉淀。
3.沉淀用PBS洗2次,1000r/min离心5min,收集沉淀。
4.细胞沉淀用4℃预冷的70%的冰乙醇1ml重悬,4℃过夜。
即可送检。
备注:1.每个细胞样品细胞量需达到106(细胞沉淀要打散,避免细胞聚集),细胞量少可能测不出结果,或结果不太准确。
2.样品可在-20℃保存一个月流式检测细胞DNA倍体样品处理流程1.胰蛋白酶消化法收集细胞,做成单细胞悬液2.1000r/min离心5min,收集沉淀。
3. 沉淀用PBS洗2次,加入相应种属的淋巴细胞或鸡红细胞做为内参,内参与预检测细胞的比例为1:34. 1000r/min离心5min,收集沉淀。
5. 细胞沉淀用4℃预冷的70%的冰乙醇1ml重悬,4℃过夜。
即可送检。
备注:1.每个细胞样品细胞量需达到106(细胞沉淀要打散,避免细胞聚集),细胞量少可能测不出结果,或结果不太准确。
2.样品可在-20℃保存一个月检测胞内蛋白上机前细胞处理流程1.收集实验处理好的细胞,用PBS洗2次,2%多聚甲醛固定15min。
2.离心弃掉多聚甲醛,再用70%的冰乙醇固定过夜(4℃)。
3.离心弃掉乙醇,PBS洗一遍,加破膜剂0.5%TritonX-100 50ul/106个细胞15min。
4.直接在0.5%TritonX-100中加一抗室温孵育30min,离心,用PBS洗一次,加荧光标记二抗(需进口二抗,国内的效价比较低效果不好),总体系为100ul,总体系中应含0.25%(体积分数)的TritonX-100,室温孵育30min。
5.也可以直接加FITC直标的一抗。
6.离心,用PBS洗一次,用2%的多聚甲醛固定,4℃存放待测。
备注:1. 市面上的多聚甲醛多为4%的,可用PBS稀释。
如果用两步标记,应做不加一抗,只加二抗的对照管2. 未染色的新鲜标本贮存方法如下:10%二甲基亚砜,90%小牛血清,5×106~1×107细胞在-70℃过夜,然后置液氮中可长期保存。
引言概述:siRNA(小干扰RNA)是一种小分子RNA片段,具有靶向特异性和高效沉默靶基因的能力。
本文将详细介绍siRNA的使用说明,主要包括siRNA的设计、转染方法、转染效率的评估、靶基因沉默效果的验证以及操作注意事项。
通过本文的阐述,用户能够更好地了解和掌握siRNA的使用方法,从而实现对目标基因表达的特异沉默。
正文内容:一、siRNA的设计1.确定靶基因:首先需要明确自己要沉默的目标基因,可以通过文献调研、数据库查询等方式确定目标基因。
2.设计siRNA序列:根据目标基因的序列信息,可以使用在线工具或者软件进行siRNA序列的设计。
siRNA的设计需要满足一定的规则,如目标序列的选择、GC含量、二次结构等方面的考虑。
二、siRNA的转染方法1.载体选择:siRNA可以通过多种载体转染到细胞内,如质粒转染、病毒载体转染等。
根据实验需要和细胞特性,选择适合的转染载体。
2.转染试剂:根据实验需要,选择适合的转染试剂,如化学转染试剂、电穿孔法等。
3.转染条件优化:对于每个细胞系和siRNA,转染条件需要进行优化,包括转染试剂浓度、转染时间、细胞密度等。
三、siRNA转染效率的评估1.转染效率的检测:可以通过荧光探针标记siRNA,利用荧光显微镜观察转染效率。
2.实时荧光定量PCR:通过检测靶基因mRNA的降解情况,来评估siRNA的沉默效果。
3.Westernblot:通过检测靶基因蛋白的表达水平,来评估siRNA的沉默效果。
四、靶基因沉默效果的验证1.实时荧光定量PCR:通过检测靶基因mRNA的降解情况,可以验证siRNA的沉默效果。
2.Westernblot:通过检测靶基因蛋白的表达水平,来验证siRNA的沉默效果。
3.功能实验:通过观察细胞的表型变化、增殖能力的变化等方面,来验证siRNA的沉默效果。
五、操作注意事项1.siRNA的保存:应在20°C下保存,避免反复冻融。
2.转染前的细胞处理:细胞的状态和密度对转染效率有影响,应注意细胞的处理方法和细胞密度的选择。
细胞转染是一种常用的生物技术,用于将外源基因或药物引入细胞中。
下面是细胞转染的实验原理、所需试剂和耗材、实验仪器、准备工作、实验方法、注意事项、常见问题及解决方法。
一、实验原理细胞转染是利用细胞膜的通透性,将带有特定基因或药物的载体分子导入细胞内。
常用的载体分子包括病毒载体和非病毒载体。
病毒载体如腺病毒、逆转录病毒等,能将外源基因高效地导入细胞中,但可能对细胞产生一定毒性。
非病毒载体如脂质体、阳离子聚合物等,相对安全,但导入效率较低。
通过细胞转染,可以实现对基因的表达调控,探索基因功能和药物筛选等研究。
二、所需试剂和耗材1.试剂:o培养基:如DMEM、F12等,用于细胞培养。
o血清:如胎牛血清,提供细胞生长所需的营养物质。
o抗生素:如青霉素、链霉素等,用于防止细胞污染。
o转染试剂:如Lipofectamine、Effectene等,用于细胞转染。
o DNA或RNA:携带目的基因的质粒或寡核苷酸。
2.耗材:o细胞培养瓶、板:用于细胞培养。
o离心管:用于细胞转染后洗涤和离心。
o移液器及枪头:用于精确加样。
o过滤器:用于过滤溶液中的杂质。
o无菌水:用于稀释和配制溶液。
三、实验仪器1.实验室搅拌器:用于混合溶液。
2.高速冷冻离心机:用于离心和分离细胞。
3.水浴锅:用于加热溶液。
4.无菌工作台或超净工作台:用于进行无菌操作。
5.分光光度计:用于测量细胞生长状况和转染效率。
6.荧光显微镜:用于观察细胞转染后荧光蛋白的表达情况。
7.CO2培养箱:提供细胞培养所需的气体环境。
四、准备工作1.仔细阅读实验步骤和注意事项,了解所需的试剂和耗材及其使用方法。
2.准备好所需的试剂和耗材,并确保它们处于保质期内。
3.检查实验室内是否具备上述实验仪器,并确保其正常运行。
4.用70%乙醇擦拭实验台面,以确保无菌环境。
5.用高压蒸汽灭菌法灭菌所有的实验器具,包括离心管、移液器等,需在适当的压力和温度下进行灭菌处理,以消除所有潜在的污染源。
细胞转染的方法和基本原理细胞转染是生物学研究中常用的实验技术,用于将外源DNA、RNA或蛋白质引入到靶细胞中。
本文将介绍细胞转染的方法和基本原理。
一、细胞转染的方法1. 化学法转染:化学法转染是最常用的细胞转染方法之一。
通过利用化学物质如聚乙烯亚胺(PEI)或脂质体等,将外源DNA或RNA 包裹成复合物,与细胞膜结合后进入细胞。
这种方法操作简单、成本低廉,适用于多种细胞类型。
但转染效率较低,对细胞有一定毒性。
2. 病毒载体转染:病毒载体转染是一种高效的细胞转染方法。
病毒载体可以将外源基因嵌入病毒基因组中,然后通过感染细胞的方式将基因导入细胞内。
常用的病毒载体有腺病毒、逆转录病毒等。
这种方法转染效率高,适用于多种细胞类型,但需要特殊设备和技术,同时也有一定的生物安全风险。
3. 电穿孔法转染:电穿孔法利用高压脉冲作用于细胞膜,破坏细胞膜结构,从而使外源DNA或RNA进入细胞。
这种方法操作简单,转染效率较高,但对细胞有一定的毒性,并且只适用于某些特定的细胞类型。
4. 基因枪法转染:基因枪法是一种生理穿孔法,通过利用高压气体或火药驱动基因枪,将外源DNA或RNA以微粒形式直接射入细胞。
这种方法适用于多种细胞类型,转染效率较高,但需要特殊设备和技术,并且对细胞有一定的毒性。
二、细胞转染的基本原理细胞转染的基本原理是通过一定的方法将外源DNA、RNA或蛋白质引入靶细胞,使其在细胞内表达或功能发挥。
转染后的细胞可以用于研究基因功能、蛋白质表达及相互作用等。
细胞转染的基本原理可以分为三个步骤:吸附、内化和表达。
1. 吸附:在化学法转染中,外源DNA或RNA会与载体相结合形成复合物,通过静电作用与细胞膜结合。
在病毒载体转染中,病毒载体会与细胞膜表面的受体结合。
吸附是转染的第一步,直接影响转染效率。
2. 内化:吸附后,外源DNA、RNA或蛋白质需要进入细胞内部。
在化学法转染中,复合物通过细胞膜的内吞作用或直接渗透进入细胞质。
细胞转染方法根据不同的试验目的,外源DNA导入哺乳细胞有两种类型:瞬时转染和稳定转染。
瞬时转染是指外源基因进入受体细胞后,存在于游离的载体上,不整合到细胞的染色体上,在外源基因导入细胞1-4天后收获细胞进行分析;稳定转染需要外源基因整合到细胞的染色体上,从而得到稳定的转染细胞株。
下面介绍几种转染方法:DEAE-葡聚糖:这是早在1965年出现的转染方法。
带正电的DEAE-葡聚糖或polybrene(多聚季胺)多聚体可以结合带负电的DNA分子,使得DNA复合物结合在带负电的细胞表面。
通过使用DMSO或甘油获得的渗透休克,也可能是细胞内吞作用使得DNA复合体进入细胞。
DEAE-葡聚糖仅限于瞬时转染,可重复性好,转染时要除掉血清。
磷酸钙共沉淀转染:最早在1973年开始采用。
氯化钙+DNA+磷酸缓冲液按一定的比例混和,形成极小的磷酸钙-DNA复合物沉淀黏附在细胞膜表面,借助内吞作用进入细胞质。
沉淀颗粒的大小和质量对于转染的成功至关重要,pH值、钙离子浓度、DNA浓度、沉淀反应时间、细胞孵育时间乃至各组分加入顺序和混合的方式都可能对结果产生影响,重复性不佳。
此法较易得到稳定转染,但转染原代细胞比较困难。
电穿孔法:通过短暂的高电场电脉冲处理细胞,沿细胞膜的电压差异会导致细胞膜的暂时穿孔。
DNA被认为是穿过孔扩散到细胞内的。
电脉冲和场强的优化对于成功的转染非常重要,因为过高的场强和过长的电脉冲时间会不可逆地伤害细胞膜而裂解细胞。
理论上说电穿孔法可用于各种细胞,且不需要另外采购特殊试剂,但需要昂贵的电转仪。
此法每次转染需要更多的细胞和DNA,因为细胞的死亡率高。
每种细胞电转的条件都需要进行多次优化。
脂质体法:中性脂质体是利用脂质膜包裹DNA,借助脂质膜将DNA 导入细胞膜内。
带正电的阳离子脂质体则不同,DNA并没有预先包埋在脂质体中,而是带负电的DNA自动结合到带正电的脂质体上,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,经过内吞被导入细胞。
G418筛选稳定表达细胞系经验总结我做了稳定转染,从G418浓度确定到最后的单克隆化鉴定。
有自己的体会也有其他战友遇到的情况, 和大家分享. 没有总结好的地方,大家补充。
筛选之前确定G418浓度:1、由于每种细胞对G418的敏感性不同,而且不同的厂家生产的G418有效成分的比重不同,一般1g的粉剂中有效的G418含量大约为0.722g。
2、G418是新霉素的类似物,两者都是通过抑制核糖体的功能和蛋白质的合成而杀死细胞的。
但是新霉素对真核细胞无作用而G418对细菌和真核细胞都起作用。
neo就是编码3‘磷酸转移酶的基因,它表达的蛋白能够分解新霉素G418。
在进行转染时细胞膜受到影响,抗生素可能对细胞产生较大影响,加上G418有杀菌作用,所以有人主张转转染时不加其它抗生素。
3、汇合度对G418筛选结果的影响很大,一般筛选时汇合度不宜超过50%4,G418的活性不尽相同,所以在筛选之前,一定要确定G418的最佳筛选浓度。
具体如下:将细胞稀释到1000个细胞/ml,在100ug/ml~1mg/ml的G418浓度范围内进行筛选,选择出在10~14天内使细胞全部死亡的最低G418浓度来进行下一步的筛选试验。
一个具体试验:3x106个细胞电转后,分别接种1/4000,1/1000,1/300细胞到24孔板中,48h后加药筛选,此时1/300细胞孔内大约50%汇合度。
理论上1/4000孔内应有4%的汇合度。
筛选9天后,观察1/4000孔内有两三个克隆,按比例1/300孔内应该有几十个克隆,事实上,它们几乎全死光了,只有几个克隆。
加药时间和维持浓度1,由于基因转染到细胞内之后要一段时间才能表达出蛋白质。
所以筛选不能太早;但是也不能太晚,因为转染了外源基因的细胞代谢负荷较大,增值较慢,时间长了就会被没有外源基因转入的细胞所淹没,最终导致筛选不出阳性克隆,一般要在转染24小时之后才开始加G418筛选。
随着细胞的代谢G418的浓度和活性都会下降,所以每3~5天都要更换一次含有G418的筛选液。
带Luciferin荧光素酶细胞转染实验的具体步骤及方法一、细胞名称LLC-GFP-luc二、组织小鼠肺癌细胞系三、母细胞来源ATCC四、转染方法与标记过程的描述慢病毒转染Hygromycin筛选(一) 质粒部分1.酶切载体:pGL4.10(luc2)由酶切获得1400bp的luc2基因片断;EGFP片段由PCR扩增获得700-800bp左右片段;pSin-hyg-T2A载体酶切线性化。
2.电泳和胶回收:上述酶切产物DNA电泳,TAKARA试剂盒胶回收,回收产物取少量电泳鉴定。
3.连接载体与目的片段:使用Invitrogen T4连接酶连接luc2、EGFP片段和pSin-hyg-T2A线性化载体,连接使用20ul体系,25℃,10min。
4.转化:感受态菌One Shot Stbl3在冰上融化后,加入连接产物,静置25min 后在水浴42℃,45sec热休克,后加入250ul无抗培养基225转摇菌1h,将转化的菌铺于有氨苄抗性平板37度过夜。
5.挑取单克隆:观察平板后挑取15个单克隆至含2ml氨苄抗性LB培养基摇菌管中,255转摇菌6.5h。
6.小抽质粒与鉴定:使用碱裂解法小抽,质粒用25ul含RNA酶ddH2O溶解;酶切鉴定: 重组质粒用通过酶切鉴定。
7.荧光素表达鉴定: 重组质粒pSin-hyg-GFP/luc2(以下简称Gluc)转染293T 细胞:DNA定量后,使用PEI转染Gluc至24孔板已预铺的293T细胞中。
转染采用脂质体法转染,试剂采用JetPEI (Polyplus公司)。
两管EP管中分别加入50ul生理盐水,其中一管加入1ug量的质粒(DNA体积=1ug/DNA浓度),轻轻震荡混匀,再轻微离心;在另一管中加入PEI 2ul轻轻震荡混匀,轻微离心,然后把PEI管中的溶液加入含有的质粒管中,室温孵育20min。
将脂质体包绕DNA的混合液加入需要转染的24孔内,37 ℃、5 % CO2条件下培养,8小时后换培养液。
测定细胞转染率的方法
测定细胞转染率的方法包括但不限于以下几种:
1. 流式细胞术:使用流式细胞仪检测细胞中转染的荧光酶或核酸基因编码蛋白,从而估计出转染效率。
2. 西方印迹:使用含有转染基因的质粒和拷贝上载到细胞中,然后浸泡混合物在Tris-HCL液中,用十种或十种以上的底物H2O2转染,在光面板之前通过特殊仪器识别和检测,从而使得转染成功的拷贝被荧光染料打上标签,最终通过流式细胞术的仪器实现图像计数的方式,从而得出细胞转染效率。
3. Smoke一次实验:将带有“正向和反向质粒”备份体系(也称为插入串)转染到细胞中,每个细胞同时转染2-4种质粒,用特殊的染料标记每一次转染,通过流式细胞技术检测和图像分析仪识别和计数,结合正反质粒的表达情况,加以计算得出转染效率。
4. 对比序列分析法:在转染前后对某个区域的DNA序列进行对比,如果DNA片段数量较大,说明转染效率也就相对较高。
5. 实时定量PCR检测:实时荧光定量PCR (Quantitative Real-time PCR)
是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循
环后产物总量的方法。
通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。
Real-time PCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。
由于在PCR扩增的指数时期,模板的Ct值和该
模板的起始拷贝数存在线性关系,所以成为定量的依据。
但是,荧光定量PCR 所检测的是转染后细胞中待测基因的mRNA的表达水平,对于目的基因的蛋白表达水平不能够检测。
6. Wester Blot检测:Western Blot又称蛋白质免疫印迹(免疫印迹实验),其基本原理是通过特异性抗体对凝胶电泳处理过的细胞或者生物组织样品进行着色,并通过分析着色的位置和着色的深度获得特定蛋白在所分析的细胞或者组织中表达情况的信息。
以上方法仅供参考,具体操作请根据实际情况调整。