自动控制理论第五章习题汇总
- 格式:doc
- 大小:1.40 MB
- 文档页数:29
第五章 线性系统的频域分析与校正练习题及答案——25-12 已知)(1s G 、)(2s G 和)(3s G 均为最小相角传递函数,其近似对数幅频特性曲线如图5-79所示。
试概略绘制传递函数 G s G s G s G s G s 412231()()()()()=+的对数幅频、对数相频和幅相特性曲线。
解:(1) ✈L K 11204511()lg .ω== ∴=K 1180则: G s K 11()=(2) G s K s s 22081()(.)=+20201022lg /lg K K ω== , K 21= (3) ✈L K K 333202001110()lg lg .ωω===s s K s G K 9)(,9111.01333====∴(4) ✈G s G G G G 412231()=+ 将G G G 123,,代入得:G s s s 41801251()(.)=+对数频率特性曲线如图解5-12(a)所示,幅相特性曲线如图解5-12(b)所示:图解5-12 (a) Bode图 (b) Nyquist图5-13 试根据奈氏判据,判断题5-80图(1)~(10)所示曲线对应闭环系统的稳定性。
已知曲线(1)~(10)对应的开环传递函数如下(按自左至右顺序)。
题号开环传递函数P N NPZ2-=闭环稳定性备注1G sKT s T s T s()()()()=+++1231110-12不稳定2G sKs T s T s()()()=++1211000稳定3G sKs Ts()()=+210-12不稳定4 G s K T s s T s T T ()()()()=++>12212110 0 0 稳定 5 G s K s ()=30 -1 2 不稳定 6 G s K T s T s s ()()()=++123110 0 0 稳定 7 G s K T s T s s T s T s T s T s ()()()()()()()=++++++5612341111110 0 0 稳定 8 G s KT s K ()()=->1111 1/2 0 稳定 9 G s KT s K ()()=-<1111 0 1 不稳定 10G s Ks Ts ()()=-11-1/22不稳定5-14 已知系统开环传递函数,试根据奈氏判据,确定其闭环稳定的条件:)1)(1()(++=s Ts s Ks G ; )0,(>T K(1)2=T 时,K 值的范围; (2)10=K 时,T 值的范围; (3)T K ,值的范围。
自动控制理论(二) 第五章测试题一、单项选择题(每小题2分)1、系统特征方程式的所有根均在根平面的左半部分是系统稳定的( )A.充分条件B.必要条件C.充分必要条件D.以上都不是 2、下列判别系统稳定性的方法中,哪一个是在频域里判别系统稳定性的判据( ) A.劳斯判据 B.赫尔维茨判据 C.奈奎斯特判据 D.根轨迹法 3、设单位负反馈系统的开环传函为G(s)=3)1s (22+,那么它的相位裕量γ的值为( ) A.15º B.60º C.30º D.45º4、 系统稳定的充分必要条件是其特征方程式的所有根均在根平面的( ) A. 实轴上 B. 虚轴上 C. 左半部分 D. 右半部分5、下列频域性能指标中,反映闭环频域性能指标的是( ) A.谐振峰值M r B.相位裕量γ C.增益裕量K g D.剪切频率ωc6、在经典控制理论中,临界稳定被认为是( )A.稳定B.BIBO 稳定C.渐近稳定D.不稳定 7、奈奎斯特稳定性判据是利用系统的( )来判据闭环系统稳定性的一个判别准则。
A.开环幅值频率特性B.开环相角频率特性C.开环幅相频率特性D.闭环幅相频率特性 8、系统的开环传递函数由1)s(s K +变为2)1)(s s(s K++,则新系统( )。
A.稳定性变好 B.稳定性变坏C.稳定性不变D.相对稳定性变好 9、利用奈奎斯特图可以分析闭环控制系统的( ) A.稳态性能 B.动态性能C.稳态和动态性能D.抗扰性能 10、设单位负反馈控制系统的开环传递函数G o (s)=)a s (s K+,其中K>0,a>0,则闭环控制系统的稳定性与( ) A.K 值的大小有关 B.a 值的大小有关 C.a 和K 值的大小有关 D.a 和K 值的大小无关11、已知系统的特征方程为(s+1)(s+2)(s+3)=s+4,则此系统的稳定性为( ) A .稳定 B .临界稳定 C .不稳定 D .无法判断12、已知系统前向通道和反馈通道的传递函数分别为G (s )=s K 1)s (H ,)1s (s 10h +=-,当闭环临界稳定时,K h 值应为( ) A .-1 B .-0.1 C .0.1 D .113、闭环系统特征方程为G(s)H(s)=-1,其中G(s)H(s)的矢量表示为( ) A .1/(2l+1)π B .1/±(2l+1)π C .1/(±2l π) D .1/(±l π) (各备选项中l =0,1,2……)14、若系统的特征方程式为 s 3+4s+1=0 ,则此系统的稳定性为 ( ) A .稳定 B .临界稳定 C .不稳定 D .无法判断 15、已知单位负反馈控制系统的开环传递函数为)5s )(1s (s )1s (10)s (G +-+=,该系统闭环系统是( )A .稳定的B .条件稳定的C .临界稳定的D .不稳定的 16、系统的开环传递函数为)1TS (s 2)s (G k +=,当T=1s 时,系统的相位裕量为( )A .30° B .45° C .60° D .90° 17、设某闭环传递函数为1s 101)s (R )s (Y +=,则其频带宽度为( ) A .0~10 rad/s B .0~1 rad/s C .0~0.1 rad/sD .0~0.01 rad/s18、已知某单位负反馈系统的开环传递函数为 G(s)= ,则相位裕量 γ 的值为( ) A . 30° B . 45° C . 60° D . 90°19、若一系统的特征方程式为 (s+1)2(s - 2)2+3 = 0 ,则此系统是( ) A .稳定的 B .临界稳定的 C .不稳定的 D .条件稳定的 20、在奈氏判据中,若F(s)在F(s)平面上的轨迹顺时针包围原点两次,则N 的值为( )A .-2 B .-1 C .1 D .221、若劳斯阵列表中第一列的系数为(3,1,ε,2-ε1,12)T ,则此系统的稳定性为( )A .稳定B .临界稳定C .不稳定D .无法判断 22、设开环系统频率特性为G (j ω)=)12)(1(1++ωωωj j j ,则其频率特性的奈氏图与负实轴交点的频率值ω为( ) A .rad 22/s B .1rad /s C .2rad/s D .2rad/s 23、已知单位负反馈控制系统的开环传递函数为G (s )=1-s K,则系统稳定时K的范围为( )A .K <0B .K >0C .K >1D .K >224、某单位反馈控制系统开环传递函数G (s )=21s s +α,若使相位裕量γ=45°,α的值应为多少?( )A .21 B .21 C .321 D .42125、已知单位负反馈系统的开环传递函数为G (s )=12)1(223++++s as s s ,若系统以ωn =2rad/s的频率作等幅振荡,则a 的值应为( )A .0.4B .0.5C .0.75D .126、设G (s )H (s )=)5)(2()10(+++s s s k ,当k 增大时,闭环系统( )A .由稳定到不稳定B .由不稳定到稳定C .始终稳定D .始终不稳定二、填空题(每小题1分)1、已知单位反馈系统的开环传递函数为)1Ts (s K)s (G +=,若要求带宽增加a 倍,相位裕量保持不变,则K 应为 ,T 应为 。
自动控制原理第五章课后习题答案(免费)5-1设单位反馈系统的开环传递函数为对系统进行串联校正,满足开环增益 及 解:① 首先确定开环增益K,00()12lim v s K SG S k →===② 未校正系统开环传函为:012()(1)G s s s =+M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = 70.5 dB (at 200 rad/sec) , P m = 16.5 deg (at 3.39 rad/sec)Frequency (rad/sec)③ 绘制未校正系统的开环对数频率特性,得到幅穿频率 3.4c ω=,对应相位角'0()164,16c G j ωγ∠=-∴=,采用超前校正装置,最大相角 0(180())4016630m c G j ϕγωγ=-+∠+=-+=④ 11sin ,31m αϕαα--=∴=+ 0()(1)KG s s s =+40γ=︒112K s -=⑤ 在已绘图上找出10lg 10lg3 4.77α-=-=-的频率 4.4m ω=弧度/秒 令c m ωω=⑥0.128/,0.385/m T s T s ωα=⇒==∴=校正装置的传函为:110.385()110.128Ts s G s Ts s α++==++校正后的开环传函为:012(10.39)()()()(1)(10.13)c s G s G s G s s s s +==++ 校正后1801374340γ=-=>,满足指标要求.-100-50050100M a g n i t u d e (d B )101010101010P h a s e (d e g )Bode DiagramGm = 99.2 dB (at 1.82e+003 rad/sec) , P m = 42.4 deg (at 4.53 rad/sec)Frequency (rad/sec)5-2设单位反馈系统的开环传递函数为要求 设计串联迟后校正装置。
第五章5-1 已知单位反馈系统的开环传递函数,试绘制其开环频率特性的极坐标图(1)解:幅频特性:相频特性:列表取点并计算。
0.5 1.0 1.5 2.0 5.010.01.790.7070.370.2240.0390.0095-116.6-135-146.3-153.4-168.7-174.2系统的极坐标图如下:(2)解:幅频特性:相频特性:列表取点并计算。
00.20.50.8 1.0 2.0 5.010.910.630.4140.3170.1720.01950-15.6-71.6-96.7-108.4-139.4-162.96系统的极坐标图如下:(3)解:幅频特性:相频特性:列表取点并计算。
0.20.30.51254.55 2.74 1.270.3170.0540.0039-105.6-137.6-161-198.4-229.4-253系统的极坐标图如下:(4)解:幅频特性:相频特性:列表取点并计算。
0.20.250.30.50.60.8122.7513.87.86 2.520.530.650.317-195.6-220.6-227.6-251.6-261.6-276.7-288.4系统的极坐标图如下:5-2 试绘制上题中各系统的开环对数频率特性(伯德图)。
(1)解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,在处与=20=0相交。
环节的交接频率,斜率下降20dB/dec,变为-40dB/de c。
系统的伯德图如图所示:(2)解:伯德图起始为0dB线,的交接频率,斜率下降20dB/dec,变为-20dB/de c。
的交接频率,斜率下降20dB/dec,变为-40dB/de c。
系统的伯德图如图所示。
(3)解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,其延长线在=1处与=20=0相交。
的交接频率,斜率下降20dB/dec,变为-40dB/de c。
的交接频率,斜率下降20dB/dec,变为-60dB/de c。
第 五 章5-2 若系统单位阶跃响应为49()1 1.80.8tth t ee--=-+试确定系统的频率特性。
分析 先求出系统传递函数,用j ω替换s 即可得到频率特性。
解:从()h t 中可求得:(0)0,(0)0h h '==在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为()()()H s s R s =Φ⋅即()()()H s s R s Φ=其中()s Φ为系统的传递函数,又1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++1()[()]R s L r t s ==则()36()()(4)(9)H s s R s s s Φ==++令s j ω=,则系统的频率特性为()36()()(4)(9)H j j R j j j ωωωωωΦ==++5-7 已知系统开环传递函数为)1s T (s )1s T (K )s (G 12++-=;(K、T1、T2>0)当取ω=1时, o180)j (G -=ω∠,|G(jω)|=0.5。
当输入为单位速度信号时,系统的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。
分析:根据系统幅频和相频特性的表达式,代入已知条件,即可确定相应参数。
解: 由题意知:()G j ω=21()90arctan arctan G j T T ωωω∠=---因为该系统为Ⅰ型系统,且输入为单位速度信号时,系统的稳态误差为0.1,即1()lim ()0.1ss s e E s K→∞===所以:10K =当1ω=时,(1)0.5G j ==21(1)90arctan arctan 180G j T T ∠=---=-由上两式可求得1220,0.05T T ==,因此10(0.051)()(201)j G j j j ωωωω-+=+5-14 已知下列系统开环传递函数(参数K 、T 、T i>0,i=1,2,…,6)(1))1s T )(1s T )(1s T (K)s (G 321+++=(2))1s T )(1s T (s K)s (G 21++=(3))1Ts (s K )s (G 2+=(4))1s T (s )1s T (K )s (G 221++=(5)3s K )s (G =(6)321s)1s T )(1s T (K )s (G ++=(7))1s T )(1s T )(1s T )(1s T (s )1s T )(1s T (K )s (G 432165++++++=(8)1Ts K)s (G -=(9)1Ts K )s (G +--=(10))1Ts (s K)s (G -=其系统开环幅相曲线分别如图5-6(1)~(10)所示,试根据奈氏判据判定各系统的闭环稳定性,若系统闭环不稳定,确定其s 右半平面的闭环极点数。
第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。
137习 题5-1 某系统的单位阶跃响应为c (t ) = 1-e -t +e -2t- e -4t ,试求系统的频率特性。
解:238s+8G(s)(1)(2)(4)s s s s +=+++,将s =j ω代入,得23()8+8()(1)(2)(4)j j G j j j j ωωωωωω+=+++5-2 设系统传递函数为1)1()()(12++=s T s T K s R s C 当输入信号r (t )=A sin ωt 时,试求系统的稳态输出。
解:系统的稳态输出为21()arc tan -arc tan )ss C t t T T ωωω=+5-3画出下列传递函数的Bode 图。
(1) G (s )=1121++s T s T , ( T 1 > T 2 > 0 ) ; (2) G (s )=1121+-s T s T , ( T 1 > T 2 > 0 )(3) G (s )=1121++-s T s T , ( T 1 > T 2 > 0 )解:答案见胡寿松主编《自动控制原理习题集》Page709,B5-13。
5-4画出下列传递函数对数幅频特性的渐近线和相频特性曲线。
(1) G (s )=)18)(12(2++s s ; (2) G (s )=)16)(1(5022+++s s s s(3) G (s )=)1.0()2.0(102++s s s ; (4) G (s )=)254)(1()1.0(822+++++s s s s s s解:对数幅频特性的渐近线和相频特性曲线如习题5-4(1)~ 5-4(4)答案图所示。
M a g n i t u d e (d B )1010101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(1)答案图 习题5-4(2)答案图138M a g n i t u d e (d B )10101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )10101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(3)答案图 习题5-4(4)答案图5-5系统开环传递函数如下。
自动控制理论第五章习题汇总填空题1、系统的频率响应与正弦输入信号之间的关系称为频率响应2、在正弦输入信号的作用下,系统输入的稳态分量称为频率响应简答题:5-2、什么是最小相位系统及非最小相位系统?最小相位系统的主要特点是什么?答在s平面上,开环零、极点均为负实部的系统称为最小相位系统;反之,开环零点或极点中具有正实部的系统称为非最小相位系统。
最小相位系统的主要特点是:相位滞后最小,并且幅频特性与相频特性有惟一的确定关系。
如果知道最小相位系统的幅频特性,可惟一地确定系统的开环传递函数。
5-3、什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-3所示,称这种过程为系统的频率响应。
图5-3称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
计算题5-1、设某控制系统的开环传递函数为)()(s H s G =)10016()12.0(752+++s s s s 试绘制该系统的Bode 图,并确定剪切频率c ω的值。
解:Bode 图如下所示剪切频率为s rad c /75.0=ω。
5-2、某系统的结构图和Nyquist 图如图(a)和(b)所示,图中2)1(1)(+=s s s G 23)1()(+=s s s H 试判断闭环系统稳定性,并决定闭环特征方程正实部根的个数。
解:由系统方框图求得内环传递函数为:ss s s s s s H s G s G +++++=+23452474)1()()(1)( 内环的特征方程:04742345=++++s s s s s由Routh 稳定判据:1:0310:16:44:171:01234s s s s s由此可知,本系统开环传函在S 平面的右半部无开环极点,即P=0。
由Nyquist 图可知N=2,故整个闭环系统不稳定,闭环特征方程实部为正的根的个数为Z=N+P=2。
5-3、已知最小相位开环系统的渐进对数幅频特性曲线如图3所示,试:(1)求取系统的开环传递函数 (2)利用稳定裕度判断系统稳定性解:(1))1101)(11.01(++s s s K10=K(2) ︒=0γ 临界稳定5-4、已知最小相位系统Bode 图如图5-4所示 ,试求系统传递函数。
图5-4解:︒==++++51 )2(8.0 )1)(12.01)(1002.01()102.01(1γK s s s s s K )(5-5、已知某最小相位系统的幅相曲线如题图5-5所示,系统的开环传递系数,由图,确定使系统稳定的的取值范围。
解:因为系统为最小相位系统,故P=0,要使系统稳定,奈氏曲线不应环绕(-1,j0)点,所以有(1),即(2),即,在以上K的取值范围内,系统稳定。
当时,系统不稳定。
5-6、如题图5-6所示系统,且知,试选择,使系统的相位裕量不低于,同时有尽可能快的响应速度。
解:用的零点消去中较大的一个时间常数,应取,系统的开环传递函数为,可知,当处,相角裕量为。
故应取,为使开环对数幅频特性在此频率处过零分贝线,只须选即可。
5-7、设控制系统的开环传递函数为试分析不同K值时系统的稳定性;解:不同K值时曲线如题图5-7所示,令虚部为零,得闭环系统稳定时,必须满足:即所以,,当时,曲线不包围(-1,j0)点,闭环系统稳定;当,曲线正好通过(-1,j0)点,系统临界稳定;当 时,曲线包围 (-1,j0)点,闭环系统不稳定。
将和K=0.75代入,得5-8、设系统开环传函为()()111)(-+=s Ts s W k τ,试分别大致画出τ<T ,τ=T, τ>T 三种情况下的奈氏图。
解:1()(1)(1)K W s Ts s τ=+-()arctan arctan T ϕωωπωτ=--+222222221(1)(1)(1)(1)()(1)(1)(1)(1)(1)(1)(1)K j T j j T j W j j T j T T ωωτωωτωωωτωωτωωτ-+-+===+--+-⋅++⋅+2222222221()(1)(1)(1)(1)T T j T T ωτωτωωτωωτ+-=-+++++()0P ω<,()Q ω看T 与τ之间的关系0 () 1 ()0P Q ωωω==-=()0 ()0P Q ωωω=∞==①T τ<时,()0P ω<,()0Q ω>②T τ=时,221()1P T ωω=-+,()0Q ω=③T τ>时,()0P ω<,()0Q ω<5-9系统的单位阶跃响应t t e e t c 948.08.11)(--+-=,试确定系统的频率特性。
解:s s s s C 1361336)(2++=,361336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=;2/122/12)81()16(36|)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。
或:)(2.7)()(94t te e t c t g ---== ;361336)]([)(2++==s s t g L s G ;5-10设系统如下图所示,试确定输入信号)452cos()30sin()( --+=t t t r作用下,系统的稳态误差)(t e ss 。
解:21)(++=Φs s s e ; )452sin()30sin()(+-+=t t t r6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ;7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ;答案:)4.632sin(7906.0)4.48sin(6325.0)(+-+=t t t e ss 。
5-11、设单位反馈控制系统的开环传递函数为(1) 绘制时系统的伯德图;(2) 确定使系统在闭环时处于临界稳定的速度误差系数;(3) 确定幅值裕量为10分贝时的速度误差系数及相应的相角裕量。
解:时系统的伯德图如题图5-11所示。
对于临界稳定系统,图5-22中的幅值曲线应提高,满足 。
如图中虚线所示。
延长斜率为-20分贝/十倍频程虚线段与零分贝线相交,交点处所对应的频率为。
所以,系统在闭环时处于临界稳定的速度误差系数(1/秒)。
在题图5-11上量取10分贝的幅值裕量,(1/秒),。
5-12已知系统开环传递函数)1()1()(2++=Ts s s K s G τ,0,,>T K τ, 试分析并绘制T >τ和τ>T 情况下的概略幅相曲线。
解:其中2/12231)(2-+=ττT K A ;T K A ττ=2;2/1223)(τ+=T KT A ;)/arctan(451τφT -= ;]))((5.0arctan[2/1--=T T m ττφ;ωτωωωωτωωωτωωτωωω)()1()()1()1()1()1()(2022222222-+-+-++--=+-+=⇒→T K j K T T K j T T K jT j K j G 。
5-13已知系统开环传递函数)2)(1(1)(++=s s s s G v, 试分别绘制4,3,2,1=v 时的概略开环幅相曲线。
解:∞=|)0(|j G ,90)0(⨯-=∠v j G ;0|)(|=∞j G ,90)2()(⨯+-=∞∠v j G ;2/122/12)4()1(|)(|---++=ωωωωv j G 和ωωω5.0arctan arctan 90)(--⨯-=∠ v j G 都是递减函数。
所有幅相曲线的终止相角均小于起始相角180o ,以90)2(⨯+-v 趋于原点。
当1=v 时,有22=ω,204.0|)(|=j G ω,与负实轴有交点)0,204.0(j -。
5-14已知系统开环传递函数)1()1()(12++-=s T s s T K s G ,0,,21>T T K ,当取1=ω时,180)(-=∠ωj G ,5.0|)(|=ωj G 。
当输入为单位速度信号时,系统的稳态误差为0.1。
试写出)(ωj G 的表达式。
解:据题义有下列结果,10=K ; 180arctan 90arctan 12-=---T T ;2/1212/122)1(5.0)1(10T T +=+;90)]1/()arctan[(2121=-+T T T T ,121=T T ;201=T ,05.02=T 。
所求的表达式为 )201()05.01(10)(ωωωωj j j j G +-=。
5-15已知系统开环传递函数)15.0)(12(10)(2+++=s s s s s G , 试分别计算5.0=ω和2=ω时,开环频率特性的幅值|)(|ωj G 和相位)(ωj G ∠。
解:5.0=ω,89.17791.0414.15.010|)(|=⨯⨯=ωj G , 4.1534.184590)(-=---=∠ωj G ;2=ω,383.0162.3123.4210|)(|=⨯⨯=ωj G6.3274.181800.7690)(-=+---=∠ωj G 。
5-16已知系统开环传递函数解:5-17 绘制下列开环传递函数的对数渐近幅频特性曲线:(1))18)(12(2)(++=s s s G ;(2))110)(1(200)(2++=s s s s G ; (3))12/)(1()11.0/(8)(2++++=s s s s s s G ; (4))11.0/)(1()110/400/(10)(2++++=s s s s s s G 。
解:(1) 125.01=ω,5.02=ω; (2) 1.01=ω,12=ω;(3) 1.01=ω,12=ω,23=ω; (4) 1.01=ω,12=ω,203=ω;5-18 已知最小相位系统的对数渐近幅频特性如下试确定系统的开环传递函数。
解:(a) )1)(1()1()(312+++=s T s T s T K s G ;01.01003==T K ,1001.012==T T ;)101.0)(1100()11.0(100)(+++=s s s s G 。
(b) )1()1()(221++=s T s s T K s G ;101001==ωK ,101002=ω,00316.0316.021==T T ;)100316.0()1316.0(100)(2++=s s s s G 。
(c) )1)(12()(212212+++=s T s T s T Ks s G ζ;05.010==ζK ,1.0121==T T ;)11.0)(11.0(10)(22+++=s s s s s G 。