机械优化设计复习题及答案
- 格式:docx
- 大小:114.79 KB
- 文档页数:10
《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。
A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。
A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。
A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。
A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。
A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。
A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。
A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。
机械优化设计复习题.单项选择题1. 一个多元函数F X 在X*附近偏导数连续,则该点位极小值点的充要条件为( )A. i F X =0B. F X = 0, H X 为正定C. H X* R0D. 'F X* ]=0, H X* 为负定2. 为克服复合形法容易产生退化的缺点,对于n 1 乞K 乞2n D. n 乞K 乞2n — 1A . K _n 1 B. K _2n C.n维问题来说,复合形的顶点数K应()3. 目标函数F ( x) =4x2+5X;,具有等式约束,其等式约束条件为h(x)=2x计3x2-6=0,则目标函数的极小值为( )A 1 B. 19.05 C. 0.25 D. 0.14. 对于目标函数 F(X)=ax+b受约束于g(X)=c+x _0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式①(X,M(k))为()。
A. ax+b+M (k){min :0,c+x : }2, MT 为递增正数序列B. ax+b+M (k){min :0,c+x : }2, MT 为递减正数序列C. ax+b+M (k){max [c+x,0 ] }2, M(k)为递增正数序列 hnD. ax+b+M (k){max [c+x,0 ] }2, MT 为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A19. B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5. 黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。
A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[X1,X3] 上为单峰函数,X2为区间中一点,X4为利用二次插值法公式求得的近似极值点。
如 X4- X2>0,且 F(X4)>F(X 2),那么为求F(X) 的极小值,X4点在下一次搜索区间内将作为( )°A.x 1B.x 3C.X 2D.X47.已知二元二次型函数F(X)= 】X T AX ,其中A=12, 则该二次型是()的。
机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
欢迎阅读机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X * 附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.34.其6.F(X) A.x 17. A.8. A.9.多元函数F(X)在点X *附近的偏导数连续,∇F(X *)=0且H(X *)正定,则该点为F(X)的( )。
A.极小值点B.极大值点C.鞍点D.不连续点10.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( )。
A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 11.在单峰搜索区间[x 1 x 3] (x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1 x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( )。
A. [x 1 x 4]B. [x 2 x 3]C. [x 1 x 2]D. [x 4 x 3]12.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) A. n 次 B. 2n 次 C. n+1次 D. 2次 13.在下列特性中,梯度法不具有的是( )。
A.二次收剑性 B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向 14. A.15. A C.16.和λi≥0 A. D.17 A.18.( A. Ф C. Ф19. A. 梯度法 B. Powell 法 C. 共轭梯度法 D. 变尺度法1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 20. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( )A. [0,0.382]B. [0.382,1]C. [0.618,1]D. [0,1] 21. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hessian 矩阵是( ) A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--3223 22. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )A. ∇F(X)=∑=∇λm1 iii(X)g,其中λi为拉格朗日乘子B. -∇F (X)= ∑=∇λm1 iii(X)g,其中λi为拉格朗日乘子C. ∇F(X)= ∑=∇λq1 iii(X)g,其中λi为拉格朗日乘子,q为该设计点X处的约束面数D. -∇F(X)= ∑∇λq i i(X)g,其中λi为拉格朗日乘子,q为该设计点X处的约束面数23.A. SB. SC. SD. S24.25.26.A.C.27. 优化设计的维数是指( )A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab软件使用中,如已知x=0:10,则x有______个元素。
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(x x f ,若在),(x 0x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( ) A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤-3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。
A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。
A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数 C X B HX X T T ++21的梯度为HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数 C X B HX X T T ++21的梯度为 HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[,]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ,充分条件是 (正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [ 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X 附近偏导数连续,则该点位极小值点的充要条件为A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应 A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数Fx=4x 21+5x 22,具有等式约束,其等式约束条件为hx=2x 1+3x 2-6=0,则目标函数的极小值为A .1B . 19.05C .D .4.对于目标函数FX=ax+b 受约束于gX=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式ΦX,M k 为 ; A. ax+b+M k {min0,c+x}2,M k 为递增正数序列 B. ax+b+M k {min0,c+x}2,M k 为递减正数序列 C. ax+b+M k {maxc+x,0}2,M k 为递增正数序列hn D. ax+b+M k {maxc+x,0}2,M k 为递减正数序列10C. 13A 16 D 0.186 CX 在区间x 1,x 3上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点;如x 4-x 2>0,且Fx 4>Fx 2,那么为求FX 的极小值,x 4点在下一次搜索区间内将作为 ; 13 C7.已知二元二次型函数FX=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是 的; A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为 ;A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列 9.多元函数FX 在点X 附近的偏导数连续,∇FX=0且HX 正定,则该点为FX 的 ;A.极小值点B.极大值点C.鞍点D.不连续点X 为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若HX 正定,则称FX 为定义在凸集D 上的 ;A.凸函数B.凹函数C.严格凸函数D.严格凹函数10C. 13A 16 D11.在单峰搜索区间x 1 x 3 x 1<x 3内,取一点x 2,用二次插值法计算得x 4在x 1 x 3内,若x 2>x 4,并且其函数值Fx 4<Fx 2,则取新区间为 ;A. x 1 x 4B. x 2 x 3C. x 1 x 2D. x 4 x 312.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为A. n 次B. 2n 次C. n+1次D. 2次 13.在下列特性中,梯度法不具有的是 ;A.二次收剑性B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向 14.外点罚函数法的罚因子为 ;A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列 15.内点惩罚函数法的特点是 ;A .能处理等式约束问题 B.初始点必须在可行域中C.初始点可以在可行域外D.后面产生的迭代点序列可以在可行域外 16.约束极值点的库恩—塔克条件为∇FX=)X (g i q1i i ∇λ-∑=,当约束条件g i X ≤0i=1,2,…,m 和λi ≥0时,则q 应为 ;A.等式约束数目;B.不等式约束数目;C.起作用的等式约束数目D.起作用的不等式约束数目17 已知函数FX=-1222121x 2x x x 2x 2+-+,判断其驻点1,1是 ;A.最小点B.极小点C.极大点D.不可确定18.对于极小化FX,而受限于约束g μX ≤0μ=1,2,…,m 的优化问题,其内点罚函数表达式为 A. ФX, r k=FX-rk11/()gX u u m=∑ B. ФX, r k =FX+rk11/()gX u u m=∑C. ФX, r k =FX-rkmax[,()]01gX u u m=∑ D. ФX, r k =FX-rkmin[,()]01gX u u m=∑19. 在无约束优化方法中,只利用目标函数值构成的搜索方法是A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 10C. 13A 16 D20. 利用法在搜索区间a,b 内确定两点a 1=,b 1=,由此可知区间a,b 的值是 A. 0, B. ,1 C. ,1 D. 0,121. 已知函数FX=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hessian 矩阵是 A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--322322. 对于求minFX 受约束于g i x ≤0i=1,2,…,m 的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为 A. ∇FX=∑=∇λm1i i i (X)g ,其中λi 为拉格朗日乘子B. -∇F X= ∑=∇λm1i i i (X)g ,其中λi 为拉格朗日乘子C. ∇FX= ∑=∇λq1i i i (X)g ,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数D. -∇FX= ∑=∇λq1i i i (X)g ,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数23. 在共轭梯度法中,新构造的共轭方向S k+1为 A. S k+1= ∇FX k+1+βk S K ,其中βk 为共轭系数 B. S k+1=∇FX k+1-βk S K ,其中βk 为共轭系数 C. S k+1=-∇FX k+1+βk S K ,其中βk 为共轭系数 D. S k+1=-∇FX k+1-βk S K ,其中βk 为共轭系数24. 用内点罚函数法求目标函数FX=ax+b 受约束于gX=c-x ≥0的约束优化设计问题,其惩罚函数表达式为 A. ax+b-r k x -c 1,r k 为递增正数序列 B. ax+b-r kx-c 1,r k 为递减正数序列 C. ax+b+ r k x-c 1,r k 为递增正数序列D. ax+b+r kx-c 1,r k 为递减正数序列25. 已知FX=x 1x 2+2x 22+4,则FX 在点X 0=⎭⎬⎫⎩⎨⎧-11的最大变化率为 A. 10 B. 4 C. 2 D.1026.在复合形法中,若映射系数α已被减缩到小于一个预先给定的正数δ仍不能使映射点可行或优于坏点,则可用A.好点代替坏点B.次坏点代替坏点C.映射点代替坏点D.形心点代替坏点10C. 13A 16 D 27. 优化设计的维数是指A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab 软件使用中,如已知x=0:10,则x 有______个元素;A. 10B. 11C. 9D. 1229.如果目标函数的导数求解困难时,适宜选择的优化方法是 ;A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 30.在法迭代运算的过程中,迭代区间不断缩小,其区间缩小率在迭代的过程中 ; A .逐步变小 B 不变 C 逐步变大 D 不确定二 填空1.在一般的非线性规划问题中,kuhn-tucker 点虽是约束的极值点,但 是全域的最优点;2.判断是否终止迭代的准则通常有 . 和 三种形式;3.当有两个设计变量时,目标函数与设计变量关系是 中一个曲面;4.函数在不同的点的最大变化率是 ;5.函数()2212144f x x x x =+-+,在点()[]132TX = 处的梯度为 ;6.优化计算所采用的基本的迭代公式为 ; 7.多元函数Fx 在点x 处的梯度▽Fx =0是极值存在的 条件; 8.函数Fx=3x 21+x 22-2x 1x 2+2在点1,0处的梯度为 ; 9.阻尼牛顿法的构造的迭代格式为 ;10.用二次插值法缩小区间时,如果p x x <2,p f f >2,则新的区间a,b 应取作 , 用以判断是否达到计算精度的准则是 ;11.外点惩罚函数法的极小点是从可行域之 向最优点逼近,内点惩罚函数法的极小点是从可行域之 向最优点逼近;12.罚函数法中能处理等式约束和不等式约束的方法是 罚函数法; 法是以 方向作为搜索方向;14.当有n 个设计变量时,目标函数与n 个设计变量间呈 维空间超曲面关系;1.不 2;距离.目标函数改变量.梯度 3;三维空间 4;不同的 5;[]T 42 6.k k k k d x x α+=+1 7;必要条件 8;][T 26- 9;()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ,ε<-a b 11.外.内 12.;混合 13.;逐次构造共轭 14.;n+1三 问答题1. 变尺度法的基本思想是什么2. 梯度法的基本原理和特点是什么3.什么是库恩-塔克条件其几何意义是什么4. 在内点罚函数法中,初始罚因子的大小对优化计算过程有何影响5. 选择优化方法一般需要考虑哪些因素6. 满足什么条件的方向是可行方向满足什么条件的方向是下降方向作图表示;7. 简述传统的设计方法与优化设计方法的关系;8. 简述对优化设计数学模型进行尺度变换有何作用;9. 分析比较牛顿法.阻尼牛顿法和共轭梯度法的特点 10.为什么选择共轭方向作为搜索方向可以取得良好的效果11.多目标问题的解与单目标问题的解有何不同如何将多目标问题转化为单目标问题求解12.黄金分割法缩小区间时的选点原则是什么为何要这样选点四.计算题1.用外点法求解此数学模型2 将()22121212262233f x x x x x x x =+++++写成标准二次函数矩阵的形式;3 用外点法求解此数学模型 :()()()12211221min ..00f X x x s tg X x x g X x =+=-≤=-≤4 求出()221122262420f x x x x x =-+-+的极值及极值点;5 用外点法求解此数学模型 :()()()()31211221min 13..100f X x x s tg X x g X x =++=-+≤=≥6.用内点法求下列问题的最优解:提示:可构造惩罚函数 []∑=-=21)(ln )(),(u u x g r x f r x φ,然后用解析法求解;;7.设已知在二维空间中的点[]T x x x 21=,并已知该点的适时约束的梯度[]T g 11--=∇,目标函数的梯度[]T f 15.0-=∇,试用简化方法确定一个适用的可行方向;8. 用梯度法求下列无约束优化问题:Min FX=x 12+4x 22,设初始点取为X 0=2 2T ,以梯度模为终止迭代准则,其收敛精度为5;9. 对边长为3m 的正方形铁板,在四个角处剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大建立该问题的优化设计的数学模型; 10. 已知约束优化问题: 试以[][][]T T T x x x 33,14,1230201===为复合形的初始顶点,用复合形法进行一次迭代计算;机械优化设计综合复习题参考答案一.单项选择题13A 16 D 二 填空1.不 2;距离.目标函数改变量.梯度 3;三维空间 4;不同的 5;[]T 42 6.k k k k d x x α+=+1 7;必要条件 8;][T 26- 9;()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ,ε<-a b 11.外.内 12.;混合 13.;逐次构造共轭 14.;n+1 三 问答题1.变尺度法的基本思想是:通过变量的尺度变换把函数的偏心程度降低到最低限度,显着地改进极小化方法的收敛性质;2.梯度法的基本原理是搜索沿负梯度方向进行,其特点是搜索路线呈“之”字型的锯齿路线,从全局寻优过程看速度并不快;3.库恩-塔克条件是判断具有不等式约束多元函数的极值条件;库恩—塔克条件的几何意义是: 在约束极小值点*X 处,函数()x F 的负梯度一定能表示成所有起使用约束在该点梯度法向量的非负线性组合;4.初始罚因子0r ,一般来说0r 太大将增加迭代次数,0r 太小会使惩罚函数的性态变坏,甚至难以收敛到极值点;5.选择优化方法一般要考虑数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等;在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算效率; 6.可行条件应满足第二式: 7.下降条件应满足第一式:搜索方向应与起作用的约束函数在k x 点的梯度及目标函数的梯度夹角大于或等于900;8.数学模型的尺度变换是一种改善数学模型性态,使之易于求解的技巧;一般可以加速优化设计的收敛,提高计算过程的稳定性; 9.牛顿法的迭代关系式为:阻尼牛顿法的迭代关系式为: 共轭梯度法的迭代关系式为:牛顿法适合二次型问题,阻尼牛顿法有防止目标函数值上升的阻尼因子,适合非二次型问题,两者均需计算海森矩阵及其逆矩阵,计算量大;共轭梯度法用梯度构造共轭方向,仅需梯度计算且具有共轭性质,收敛速度快,不必计算海森矩阵,使用更加方便;10.根据共轭方向的性质:从任意初始点出发顺次沿n 个G 的共轭方向进行一维搜索,最多经过n 次迭代就可找到二次函数的极小点,具有二次收敛性;11.单目标问题的解一般是唯一理想解,多目标的解一般是相对理想解;多目标问题转成单目标问题的常用方法有:主要目标法.线性加权法.理想点法.平方和加权法.分目标乘除法.功率系数法和极大极小法;12.选点原则是插入点应按分割区间;因为这样选点可以保持两次迭代区间的相同比例分布,具有相同的缩短率; 四.计算题1.提示:先转化为惩罚函数形式 答案1=x 2.二次函数的矩阵标准形式为C x B Gx x T T++21 答案为121[()]()(0,1,2,)k k kk f fk +-=-∇∇=x x x x⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1222421T x x +[]32x +3 3.参考第六章复习题提示 结果为][T x 00=4. 用梯度计算极值点 答案为][T 15.15. 先构造外点罚函数 答案为][T 01-6. 先构造内点罚函数 答案为][T 317. 用图解法,先画出约束函数梯度及目标函数梯度,做两者的垂线,与两梯度夹角均大于900的任意方向均可;8. 以负梯度为搜索方向进行迭代计算 答案为[]T 009. 设剪掉的正方形边长为1x 数学模型为 Min []12)23()(x x x F -=10. 提示 先算三点的目标函数值并排序,将最差点沿其余点中心进行反射,计算反射点函数值并判断可行性; 答案为][T 5.31。