绥化市2020年中考数学押题卷及答案
- 格式:doc
- 大小:348.17 KB
- 文档页数:10
黑龙江省绥化市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,ABC ∆为等边三角形,要在ABC ∆外部取一点D ,使得ABC ∆和DBC ∆全等,下面是两名同学做法:( )甲:①作A ∠的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求; 乙:①过点B 作平行于AC 的直线l ;②过点C 作平行于AB 的直线m ,交l 于点D ,点D 即为所求.A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确2.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( ) A .y =﹣2(x+1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x+1)2﹣13.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为»AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .454.如图是几何体的三视图,该几何体是( )A .圆锥B .圆柱C .三棱柱D .三棱锥5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果: 居民(户)1 2 3 4 月用电量(度/户) 30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是50B .众数是51C .方差是42D .极差是216.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .25πcmB .210πcmC .215πcmD .220πcm7.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 8.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-49.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为40km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A .甲的速度是10km/hB .乙的速度是20km/hC .乙出发13h 后与甲相遇D .甲比乙晚到B 地2h 10.式子2x 1x 1+-有意义的x 的取值范围是( ) A .1x 2≥-且x≠1 B .x≠1 C .1x 2≥- D .1x>2-且x≠1 11.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( )A .﹣1B .±2C .2D .﹣212.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤o o )近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18oB .36oC .41oD .58o二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,O e 的半径为1cm ,正六边形ABCDEF 内接于O e ,则图中阴影部分图形的面积和为________2cm (结果保留π).14.16的算术平方根是 .15.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______.16.如图,在△ABC 中,∠BAC=50°,AC=2,AB=3,将△ABC 绕点A 逆时针旋转50°,得到△AB 1C 1,则阴影部分的面积为_______.17.如图,已知点A 是反比例函数2y x=-的图象上的一个动点,连接OA ,若将线段O A 绕点O 顺时针旋转90°得到线段OB ,则点B 所在图象的函数表达式为______.18.分解因式:21a -=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,E ,F 是▱ABCD 的对角线AC 上的两点,BE ∥DF.求证:AF =CE .20.(6分)如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.21.(6分)如图,已知点A (﹣2,0),B (4,0),C (0,3),以D 为顶点的抛物线y=ax 2+bx+c 过A ,B ,C 三点.(1)求抛物线的解析式及顶点D 的坐标;(2)设抛物线的对称轴DE 交线段BC 于点E ,P 为第一象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F ,若四边形DEFP 为平行四边形,求点P 的坐标.22.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)23.(8分)有一个n 位自然数...abcd gh 能被x 0整除,依次轮换个位数字得到的新数bcd...gha 能被x 0+1整除,再依次轮换个位数字得到的新数cd...ghab 能被x 0+2整除,按此规律轮换后,d...ghabc 能被x 0+3整除,…,...habc g 能被x 0+n ﹣1整除,则称这个n 位数a ...bcd gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”. (2)若三位自然数abc 是3的一个“轮换数”,其中a=2,求这个三位自然数abc .24.(10分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?25.(10分)如图,O e 是ABC V 的外接圆,AC 是O e 的直径,过圆心O 的直线PF AB ⊥于D ,交O e 于,E F ,PB 是O e 的切线,B 为切点,连接AP ,AF .(1)求证:直线PA 为O e 的切线;(2)求证:24EF OD OP =⋅;(3)若6BC =,1tan 2F ∠=,求AC 的长. 26.(12分)解方程:2(x-3)=3x(x-3).27.(12分) 某品牌牛奶供应商提供A ,B ,C ,D 四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C 对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A ,B 口味的牛奶共约多少盒?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据题意先画出相应的图形,然后进行推理论证即可得出结论.【详解】甲的作法如图一:∵ABC V 为等边三角形,AD 是BAC ∠的角平分线∴90BEA ∠=︒180BEA BED ∠+∠=︒Q90BED ∴∠=︒90BEA BED ∴∠=∠=︒由甲的作法可知,AB BD =ABC DBC ∴∠=∠在ABC V 和DCB V 中,AB BD ABC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩()ABC DCB SAS ∴≅V V故甲的作法正确;乙的作法如图二://,//BD AC CD AB Q,ACB CBD ABC BCD ∴∠=∠∠=∠在ABC V 和DCB V 中,ABC BCD BC BCACB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DCB ASA ∴≅V V故乙的作法正确;故选:A .【点睛】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.2.B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1, 故选B .【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.D【解析】【详解】如图,连接AB ,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .4.C【解析】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.详解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选C.点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.5.C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为110(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为110[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故选C.考点:1.方差;2.中位数;3.众数;4.极差.6.B【解析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=27252360π⨯⨯=10π .故选B.7.B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.8.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.9.B【解析】由图可知,甲用4小时走完全程40km ,可得速度为10km/h ;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h .。
2020年中考全真模拟试卷(绥化考卷)(三)答案及评分标准题号答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)1.C 2.A 3.A 4.C 5.C6.C7.C8.A9.A 10.D每小题3分二、填空题(本大题共11个小题,每小题3分,共33分)11. 3ab(a+2b)。
12. 15013. .14. y=2x﹣4.15. a≠﹣1.16. 12π.17. 418. 3π﹣.19.-38420.5121. ②③.每空3分三、解答题(共8小题,满分57分)22. 首先利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.原式=4×+1﹣2+2=2﹣2+3=3.5分23. (1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:40÷40%=100(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100﹣40﹣20﹣10=30,1分2分补全条形统计图,如图所示,(3)爱好运动所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600(4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为1分2分24. (1)如图△A1B1C1即为所求.(2)由题意P(2,),∴OP==,∴点P经过的路径长==.(3)观察图象,满足条件的点D的坐标为(6,4)或(2,﹣4)或(﹣6,2).2分2分2分25.(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,3分3分∴BG=GM=.26. (1)快车的速度为:180÷2=90千米/小时,慢车的速度为:180÷3=60千米/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时;(2)由题意可得,点E的横坐标为:2+1.5=3.5,则点E的坐标为(3.5,180),快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),则点C的坐标为(5.5,360),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,,得,即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135;(3)设点F的横坐标为a,则60a=90a﹣135,解得,a=4.5,则60a=270,即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.1分3分2分27. (1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,4分解得x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.4分28. (1)抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,点B(3,1);(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,5分5分∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==;29.(1)①∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°∵四边形ABCD是菱形,∴∠BAD=∠BCD,AD=AC,∴△AED≌△CFD(AAS);②∵四边形ABCD是菱形,∴AB∥DC,∴∠ADC+∠BAD=180°,∵∠BAD=60°,∴∠ADC=120°,∵∠MDN=60°,∴∠ADE+∠CDF=60°,由①知,△AED≌△CFD,∴∠ADE=∠CDF,∴∠ADE=∠CDF=30°,∵AC是菱形ABCD的对角线,∴∠DAC=∠ACD=30°,∴∠DGH=∠DHG=60°=∠HDG,∴DG=GH=CH=AC=2;(2)如图,将△CDH绕点D顺时针旋转120°得到△ADC',∴∠DAC'=∠DCH=30°,C'D=DH,AC'=CH=n,∠ADC'=∠CDH,∴∠GDC'=∠ADC'+∠ADG=120°﹣∠MDN=60°=∠MDN,连接C'G,∴△C'DG≌△HDG(ASA),∴C'G=GH=p,过点G作GP⊥AC'于P,在Rt△APG中,∠P AG=∠C'AD+∠CAD=60°,2分2分6分∴AP=AG=m,PG=m,在Rt△PC'G中,PC'=AC'﹣AP=CH﹣AP=n﹣m,根据勾股定理得,C'G2=PC'2+PG2,∴p2=(n﹣m)2+(m)2①,∵AC=6,∴m+n+p=6②,联立①②整理得,mn=12﹣4p.。
2020年中考数学全真模拟试卷(绥化专用)(一)一、选择题(本大题共10个小题,每小题3分,共30分。
下列各小题均有四个答案,其中只有一个是正确的)1.新型冠状病毒的体重和其他冠状病毒差不多,平均体重是1微克。
也就是说,100万个新型冠状病毒才1克。
则1克与1微克的关系,用科学记数法表示正确的是()A. 1克=106微克B. 1克=1×106微克C. 1克=10-6微克D. 1克=1×10-6微克2.下列图形中,既是轴对称图形又是中心对称图形的有()A.1 B.2 C.3 D.43.下列计算正确的是()A.9=±3 B.(﹣1)0=0 C.2+3=5D.38=24.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的左视图是()A B C D5.多项式2x2﹣8y2分解因式正确的是()A. 2(x+2y)(x﹣2y).B. 2(x-2y)(x﹣2y).C. 2(x+2y)(x+2y).D. 2(x-2y)(x+2y).6.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.13B.14C.15D.167.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3D.k≤4且k≠39.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm10.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.12.计算:(﹣m3)2÷m4=.13.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.14.已知一组数据1,3,5,7,9,则这组数据的方差是 . 15.定义:a *b =,则方程2*(x +3)=1*(2x )的解为 .16.若分式34x -有意义,则x 的取值范围是 . 17.不等式组:.得解集是__________。
2020年中考数学全真模拟试卷(绥化考卷)(一)答案及评分标准题号答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)1.B 2.B 3.D 4.C 5.A6.A7.C8.B9.D 10.B每小题3分二、填空题(本大题共11个小题,每小题3分,共33分)11. 312. m213. 3614. 815. x=1.16. x≠417. 2<x≤5.18.202019. 6π.20. 2<x<421. AC平分OB每空3分三、解答题(共8小题,满分57分)22. 原式=4+2﹣2×+=65分23. (1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示(略);(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人1分2分2分1分24. (1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);2分(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××20=10平方单位.故答案为:10.2分2分25.(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;3分3分(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=AB•PC=26. (1)A、C两村间的距离120km,a=120÷[(120﹣90)÷0.5]=2;(2)设y1=k1x+120,代入(2,0)解得y1=﹣60x+120,y2=k2x+90,代入(3,0)解得y1=﹣30x+90,由﹣60x+120=﹣30x+90解得x=1,则y1=y2=60,所以P(1,60)表示经过1小时甲与乙相遇且距C村60km.(3)当y1﹣y2=10,即﹣60x+120﹣(﹣30x+90)=10解得x=,当y2﹣y1=10,即﹣30x+90﹣(﹣60x+120)=10解得x=,当甲走到C地,而乙距离C地10km时,﹣30x+90=10解得x=;综上所知当x=h,或x=h,或x=h,乙距甲10km.2分2分2分27. (1)设甲、乙两人的速度分别为am/min,bm/min,则:4分y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.4分28. (1)由题意可得,,解得,a=1,b=﹣5,c=5;∴二次函数的解析式为:y=x2﹣5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,则,∵MQ=,∴NQ=2,B(,);4分2分∴,解得,,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2﹣5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,﹣1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2﹣5x+5,解得,,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,﹣1),G(,).2分2分29. 【解析】【问题探究】(1)①∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE3分∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1 ∴AF==3∴AD=AF+DF=4 故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°3分2分∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1 ∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=22分。
2020年中考数学全真模拟试卷(绥化考卷)(二)答案及评分标准题号答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)1.B 2.D 3.B 4.A 5.C6.D7.C8.B9.C 10.B每小题3分二、填空题(本大题共11个小题,每小题3分,共33分)11. -712.13. 中位数和众数.14. 80°15. x>7.16. 2π17. 621018.19.420. ②.21. ①④每空3分三、解答题(共8小题,满分57分)22. 原式=3﹣4×+2+1=3﹣2+2+1=4.5分23. (1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该班25名1分2分2分之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).1分24. (1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(﹣2,﹣1).(2)如图所示,△A2B2C1即为所求.4分2分25.证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.3分3分26. (1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,2分4分∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.27. (1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,2分1分1分4分28. (1)在中,令y=0,得x=4,令x=0,得y=2 ∴A(4,0),B(0,2)把A(4,0),B(0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE∴∠DBE=∠BAC设D点的坐标为(x,),则BF=x,DF=4分6分∵tan∠DBE=,tan∠BAC=∴=,即解得x1=0(舍去),x2=2当x=2时,=3∴点D的坐标为(2,3)29.(1)提示:如图1:延长GP交DC于点E,利用△PED≌△PGF,得出PE=PG,DE=FG,∴CE=CG,∴CP是EG的中垂线,在Rt△CPG中,∠PCG=60°,∴PG=PC.(2)如图2,延长GP交DA于点E,连接EC,GC,∵∠ABC=60°,△BGF正三角形∴GF∥BC∥AD,∴∠EDP=∠GFP,在△DPE和△FPG中∴△DPE≌△FPG(ASA)∴PE=PG,DE=FG=BG,3分4分∵∠CDE=CBG=60°,CD=CB,在△CDE和△CBG中,∴△CDE≌△CBG(SAS)∴CE=CG,∠DCE=∠BCG,∴∠ECG=∠DCB=120°,∵PE=PG,∴CP⊥PG,∠PCG=∠ECG=60°∴PG=PC.(3)猜想:PG=PC.证明:如图3,延长GP到H,使PH=PG,连接CH,CG,DH,作ME∥DC∵P是线段DF的中点,∴FP=DP,∵∠GPF=∠HPD,∴△GFP≌△HDP,∴GF=HD,∠GFP=∠HDP,∵∠GFP+∠PFE=120°,∠PFE=∠PDC,∴∠CDH=∠HDP+∠PDC=120°,∵四边形ABCD是菱形,∴CD=CB,∠ADC=∠ABC=60°,点A、B、G又在一条直线上,∴∠GBC=120°,∵四边形BEFG是菱形,∴GF=GB,∴HD=GB,∴△HDC≌△GBC,4分∴CH=CG,∠DCH=∠BCG,∴∠DCH+∠HCB=∠BCG+∠HCB=120°,即∠HCG=120°∵CH=CG,PH=PG,∴PG⊥PC,∠GCP=∠HCP=60°,∴PG=PC.。
黑龙江省绥化市名校2020届数学中考模拟试卷一、选择题1.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x-+=的图象上.若点A 的坐标为(﹣4,﹣4),则k 的值为( )A .16B .﹣3C .5D .5或﹣32.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆半径、BC 为高的圆锥的侧面积为S 1,以BC 为底面圆半径、AC 为高的圆锥的侧面积为S 2,则( )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .S 1、S 2的大小关系不确定3.小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S (米)与时间t (分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分其中正确的有( )A.①④B.②③C.②③④D.②④ 4.12019的倒数是( ) A.12019 B.﹣12019 C.2019 D.﹣20195.如图,AB ∥DC,ED ∥BC,AE ∥BD,那么图中与△ABD 面积相等的三角形有( )A.1个B.2个C.3个D.4个 6.下列运算中正确的是( ) A .235()a a =B .()()2212121x x x +-=-C .824a a a =D .22(3)69a a a -=-+7.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD ,则矩形ABCD 的最大面积是( )平方米.A .16B .18C .20D .248.点(-2,1)y ,(1,0),(3,2)y 在函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( )A .102<y <yB .120y y <<C .120y y <<D .102y <<y 9.分式方程1232x x =-的解为( ) A .25x =- B .1x =- C .1x = D .25x = 10.下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 611.如图,A 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 点出发,在⊙O 上以每秒一个的速度匀速单位运动:回A 点运动结束.设运动时间为x ,弦BP 长为y ,那么图象中可能表示数关y 与x 的函数关系的是( )A .①B .②C .①或④D .③或④ 12.下列计算正确的是( ) A .b 5∙ b 5=2 b 5B .(a- b)5 ·(b - a)4=( a - b)9C .a +2 a 2=3 a 3D .(a n-1)3 = a 3n-1二、填空题 13.空气中有一种有害粉尘颗粒,其直径大约为0.000 000 017m ,该直径可用科学记数法表示为______________.14.计算:a 2•a 4= .15.如图,在平面直角坐标系中,过点A(4,5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B 、C 两点.若函数 (0 )k y x x=>的图象与△ABC 的边有公共点,则k 的取值范围是_______.16.若代数式11x x -+的值为0,则实数x 的值为__________. 17.某校901班共有50名同学,如图是该次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数),则测试成绩的中位数所在的组别是____.18.《九章算术》是我国古代数学成就的杰出代表作,书中记载:“今有圆材埋壁中,不知大小.以锯锯之,深1寸,锯道长1尺,问经几何?“其意思为:“如图,今有一圆形木材埋在墙壁中,不知其大小用锯子去锯这个木材,锯口深1寸(即DE =1寸),锯道长1尺(即弦AB =1尺),问这块圆形木材的直径是多少?”该问题的答案是_____(注:1尺=10寸)三、解答题19.如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点F 为AC 的中点,连接FD 并延长到点E ,使FD =DE ,连接BF ,CE 和BE .(1)求证:BE =FC ;(2)判断并证明四边形BECF 的形状;(3)为△ABC 添加一个条件,则四边形BECF 是矩形(填空即可,不必说明理由)20.为了丰富同学们的课余生活,某学校计划举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学“A,B ,C ,D“四个景点中选择一个,根据调查结果,绘制了如下两幅不完整的统计图请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为______.(2)在扇形统计图中,景点B 部分所占圆心角的度数为______.(3)若该校共有2000名学生,请估算该校最想去景点C的学生人数.21.已知关于x的不等式组1m-2x x-1,25x23(x-1).⎧<⎪⎨⎪+<⎩(1)当m=-11时,求不等式组的解集;(2)当m取何值时,该不等式组无解?22.某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图(如图):(1)本次共调查了多少名学生?(2)跳绳B对应扇形的圆心角为多少度?(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.23.计算:214)0452-︒⎛⎫⎪⎝⎭.24.某高速铁路位于某省南部,是国家“八纵八横”高速铁路网的重要连接通道,也是某省“三横五纵”高速铁路网的重要组成部分.东起日照,向西贯穿临沂、曲阜、济宁、菏泽,与郑徐客运专线兰考南站接轨.工程有一段在一条河边,且刚好为东西走向.B处是一个高铁维护站,如图①,现在想过B 处在河上修一座桥,需要知道河宽,一测量员在河对岸的A处测得B在它的东北方向,测量员从A点开始沿岸边向正东方向前进300米到达点C处,测得B在C的北偏西30度方向上.(1)求所测之处河的宽度;(结果保留的十分位)(2)除(1)的测量方案外,请你再设计一种测量河宽的方案,并在图②中画出图形.25.如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD=60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.【参考答案】***一、选择题13.7×10-814.15.5≤k≤2016.=1x17.第4组18.26寸三、解答题19.(1)详见解析;(2)四边形BECF是矩形,理由详见解析.【解析】【分析】(1)根据等腰三角形的性质得到BD=CD,根据启动建设性的性质即可得到结论;(2)根据平行四边形的判定定理即可得到结论;(3)根据等边三角形的性质得到11BD CD BC,DF DE AC22====,于是得到结论.【详解】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵FD=DE,∠BDE=∠CDF,∴△BDE≌△CDF(SAS),∴BE=CF;(2)解:四边形BECF是平行四边形,理由:∵BD=CD,ED=FD,∴四边形BECF是平行四边形;(3)当AB=BC时,四边形BECF是矩形,∵AB=BC=AC,∴BD =CD =12BC ,DF =DE =12AC , ∴BC =EF ,∴四边形BECF 是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的判定和性质,正确的识别图形是解题的关键.20.(1)120,(2) 198°,(3)500.【解析】【分析】(1)根据统计图中的数据可以求得本次调查的学生总数;(2)根据扇形统计图中的数据可以求得“B”部分所占圆心角的度数;(3)根据统计图中的数据可以计算出该校最想去C 景点的学生人数.【详解】解:(1)本次调查的学生人数为66÷55%=120(人),故答案为:120;(2)在扇形统计图中,“B”部分所占圆心角是:360°×55%=198°,故答案为:198°;(3)2000×25%=500(人),即该校最想去C 景点的学生有500人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(1)-4<x<-52;(2)m≥-294,不等式组无解. 【解析】【分析】(1)把m=-11代入不等式组,求出解集即可;(2)把m 当作已知数,分别求出两个不等式的解集,根据不等式组无解即可得到关于m 的不等式,从而求得m 的范围.【详解】解:(1)当m=-11时, 1-11-2-1,2523(-1),x x x x ⎧<⎪⎨⎪+<⎩①② 解不等式①得x>-4,解不等式②得x<-52, ∴不等式组的解集为-4<x<-52. (2)1-2-1,2523(-1),m x x x x ⎧<⎪⎨⎪+<⎩①② 解不等式①得,x>()215m +,解不等式②得x<-52,∵不等式组无解,∴()215m+≥-52,∴m≥-294.【点睛】本题考查的是解一元一次不等式组,分别求出每个不等式的解集,再结合数轴来判断两个解集的公共部分.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1) 本次共调查了300名学生;(2) 36︒;(3)1 6【解析】【分析】(1)用A类学生数除以它所占的百分比即可得到总人数(2)先算出B类的总数,再利用B的总数除以总的调查人数在乘以360°即可得到答案(3)利用画树状图可知一共有十二种结果,而做操”和“跳绳”的结果数为2,即可得到答案【详解】(1)120÷40%=300(人),所以本次共调查了300名学生;(2)喜欢B类的人数为300﹣120﹣60﹣90=30(人),所以跳绳B对应扇形的圆心角=360°×30300=36°;(3)画树状图为:共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率=21 126=.【点睛】此题综合考查了扇形统计图,条形统计图,画树状图等,解题关键在于对图形性质的理解23.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+12=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.24.(1)所测之处江的宽度为190.5m;(2)见解析.【解析】【分析】解:(1)过点B作BF⊥AC于F,根据题意得到∠EAB=45°,∠GCB=30°,AC=300m,求得∠FBA=45°,∠CBF =30°,得到BF =AF ,解直角三角形即可得到结论;(2)构造相似三角形,根据相似三角形的性质得到方程即可得到结论..【详解】(1)过点B 作BF ⊥AC 于F ,由题意得:∠EAB =45°,∠GCB =30°,AC =300m ,∴∠FBA =45°,∠CBF =30°,∴BF =AF ,∴FC =300﹣AF =300﹣BF (m ),在Rt △BFC 中,tan ∠CBF =FC FB , ∴tan30°=300BF BF -,300BF BF-=,解得:BF ﹣150(3m ),答:所测之处江的宽度为190.5m ;(2)①在河岸取点A ,使B 垂直于河岸,延长BA 至C ,测得AC 做记录,②从C 沿平行于河岸的方向走到D ,测得CD ,做记录,③B0与河岸交于E ,测AE ,做记录.根据△BAE ~△BCD ,得到比例线段,从而求出河宽AB .【点睛】此题考查了方向角问题.此题难度适中,注意能构造直角三角形,并能借助于解直角三角形的知识求解是关键,注意数形结合思想与方程思想的应用.25.(1)BC =2)详见解析【解析】【分析】(1)延长AH 、BC 相交于点M ,可证明△MCH ∽△MBA ,得出MH=AH ,BM=2BC ;由∠DOH=∠AOB=60°,∠ODH=∠OBA=60°,∠OHD=∠OAB=60°,可得△DOH 是等边三角形,AE=OA-OE=OA-OD=2,得点E 是OA 的中点,根据“三线合一”可得BE 的长度、BE ⊥OA ,根据勾股定理求出BM 的长,而BC=12BM ; (2)AB=OB ,由(1)知,AE=OE=OD ,可证BD=OB+OD=AB+AE .【详解】解:延长AH 、BC 相交于点M ,∵▱ABCD∴CD=AB=4,CD∥AB∴∠MHC=∠MAB,∠MCH=∠MBA∴△MCH∽△MBAMH MC CH∴==MA MB AB∵CH=2MH MC21∴===MA MB42∴MH=AH,BM=2BC∵△ABO为等边三角形∴∠AOB=∠OAB=∠OBA=60°,OA=AB=4∴∠DOH=∠AOB=60°∴∠ODH=∠OBA=60°,∠OHD=∠OAB=60°∴∠DOH=∠ODH=∠OHD∴△DOH是等边三角形∴OH=OD=DH=2∴MH=AH=OA+OH=4+2=6,EM=OE+OH+MH=10 ∵OD=OE=2∴AE=OA﹣OE=4﹣2=2∴点E是OA的中点∵△ABO为等边三角形∴BE⊥OA,∠ABE=30°BE∴==在Rt△BEM中,∠BEM=90°∴BE2+EM2=BM2222∴+=10BM∴=BM∴=BC(2)∵△ABO为等边三角形∴AB=OB由(1)知,AE=OE=OD∵BD=OB+OD∴BD=AB+AE【点睛】本题考查了等边三角形的判定和性质、勾股定理、相似三角形的判定和性质.这道题的关键是证明点E 是OA的中点、BM=2BC.。
2020年中考数学全真模拟试卷(绥化专用)(三)一、选择题(本大题共10个小题,每小题3分,共30分。
下列各小题均有四个答案,其2020年河南省中考数学仿真试卷01及其答案与解析中只有一个是正确的)1.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107 B.0.361×109 C.3.61×108 D.3.61×107【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.361 000 000用科学记数法表示为3.61×1082.(2018河南)如图所示的正六棱柱的主视图是()A.B.C.D.【答案】A.【解析】根据主视图是从正面看到的图象判定则可.从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.3.下列图形中,是轴对称图形但不是中心对称图形的是()A B C D【答案】A.【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.A.是轴对称图形但不是中心对称图形,故本选项正确;B.是轴对称图形,也是中心对称图形,故本选项错误;C.不是轴对称图形,是中心对称图形,故本选项错误;D.是轴对称图形,也是中心对称图形,故本选项错误.4.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)【答案】C.【解析】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.根据关于原点对称的点的坐标特点解答.点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5)5.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【答案】C.【解析】根据加权平均数的定义列式计算可得.这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元)6.关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【答案】C.【解析】x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3。
黑龙江省绥化市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是()A.①②④B.①③C.①②③D.①③④3.计算2311xx x-+++的结果为()A.2 B.1 C.0 D.﹣14.下列计算,正确的是()A.222()-=-B.(2)(2)2-⨯-=C.3223-=D.8210+=5.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.7.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表: 得分(分) 60 70 80 90 100 人数(人)7121083则得分的众数和中位数分别为( ) A .70分,70分B .80分,80分C .70分,80分D .80分,70分8.如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为直线x =12,且经过点(2,0),下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2.其中说法正确的有( )A .②③④B .①②③C .①④D .①②④9.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,则有( ) A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<010.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A 29B .34C .2D 4111.在Rt △ABC 中,∠C=90°,AC=1,BC=3,则∠A 的正切值为( ) A .3B .13C 10D 31012.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则∠C 与∠D 的大小关系为( )A .∠C >∠DB .∠C <∠D C .∠C=∠D D .无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人. 14.ABC ∆内接于圆O ,设A x ∠=o ,圆O 的半径为r ,则OBC ∠所对的劣弧长为_____(用含x r ,的代数式表示).15.如图,矩形ABCD 中,AB =1,BC =2,点P 从点B 出发,沿B -C -D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是( )A .B .C .D .16.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知DE ⊥EA ,斜坡CD 的长度为30m ,DE 的长为15m ,则树AB 的高度是_____m .17.如图,直线y =kx 与双曲线y =2x(x >0)交于点A(1,a),则k =_____.18.若一次函数y=-2x+b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是_________.(写出一个即可)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.20.(6分)先化简,再求值:2231422a a aa a a-÷--+-,其中a与2,3构成ABC∆的三边,且a为整数.21.(6分)如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.22.(8分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.23.(8分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由. 24.(10分)某通讯公司推出了A ,B 两种上宽带网的收费方式(详情见下表)设月上网时间为x h (x 为非负整数),请根据表中提供的信息回答下列问题(1)设方案A 的收费金额为y 1元,方案B 的收费金额为y 2元,分别写出y 1,y 2关于x 的函数关系式; (2)当35<x <50时,选取哪种方式能节省上网费,请说明理由25.(10分)如图,在平面直角坐标系中,抛物线y=-x 2+bx+c 与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,线段BC 与抛物线的对称轴交于点E 、P 为线段BC 上的一点(不与点B 、C 重合),过点P 作PF ∥y 轴交抛物线于点F ,连结DF .设点P 的横坐标为m . (1)求此抛物线所对应的函数表达式. (2)求PF 的长度,用含m 的代数式表示. (3)当四边形PEDF 为平行四边形时,求m 的值.26.(12分)综合与实践:概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n ],''AB C S ∆:ABC S ∆= .问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n ]得到△AB′C′,使点 B ,C ,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC 作变换 得到△AB′C′,则四边形 ABB′C′为正方形27.(12分)如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE =CD .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离; 图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A . 2.B 【解析】∵函数图象的对称轴为:x=-2b a =132-+=1,∴b=﹣2a ,即2a+b=0,①正确; 由图象可知,当﹣1<x <3时,y <0,②错误; 由图象可知,当x=1时,y=0,∴a ﹣b+c=0, ∵b=﹣2a ,∴3a+c=0,③正确;∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故④错误;故选B.点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.3.B【解析】【分析】按照分式运算规则运算即可,注意结果的化简.【详解】解:原式=231111x xx x-++==++,故选择B.【点睛】本题考查了分式的运算规则.4.B【解析】【分析】根据二次根式的加减法则,以及二次根式的性质逐项判断即可.【详解】=2,∴选项A不正确;,∴选项B正确;∵,∴选项C不正确;,∴选项D不正确.故选B.【点睛】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.5.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.B【解析】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.7.C【解析】【分析】【详解】解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.故选C.【点睛】本题考查数据分析.8.D【解析】【分析】根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y 1),(52,y 2)到对称轴的距离即可判断④. 【详解】∵二次函数的图象的开口向下, ∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=12, ∴a=-b, ∴b>0,∴abc<0,故①正确; ∵a=-b, ∴a+b=0,故②正确; 把x=2代入抛物线的解析式得, 4a+2b+c=0,故③错误; ∵()151-2222->- , 12,y y <∴故④正确; 故选D.. 【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力. 9.D 【解析】当k 1,k 2同号时,正比例函数y =k 1x 与反比例函数y =2k x的图象有交点;当k 1,k 2异号时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,即可得当k 1k 2<0时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,故选D. 10.D 【解析】解:设△ABP 中AB 边上的高是h .∵S △PAB =13S 矩形ABCD ,∴12 AB•h=13AB•AD ,∴h=23AD=2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.在Rt △ABE 中,∵AB=5,AE=2+2=4,∴BE=22AB AE + =2254+=41,即PA+PB 的最小值为41.故选D .11.A 【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt △ABC 中,∠C=90°,AC=1,BC=3,∴∠A 的正切值为31BC AC ==3, 故选A .【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键. 12.A 【解析】 【分析】直接利用圆周角定理结合三角形的外角的性质即可得. 【详解】连接BE ,如图所示:∵∠ACB=∠AEB , ∠AEB >∠D , ∴∠C >∠D . 故选:A . 【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.3.53×104 【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,35300=3.53×104,故答案为:3.53×104.14.9090xrπ-o oo或9090xrπ-o oo【解析】【分析】分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.【详解】解:当0°<x°≤90°时,如图所示:连接OC,由圆周角定理得,∠BOC=2∠A=2x°,∴∠DOC=180°-2x°,∴∠OBC所对的劣弧长=(1802)(90)18090x r xππ--=,当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长=(2180)(90)18090x xππ--=.故答案为:9090xro ooπ-或9090xrπ-o oo.【点睛】本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.15.C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态16.1【解析】【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【详解】解:作DF⊥AB于F,交BC于G.则四边形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案为1.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.17.1 【解析】解:∵直线y=kx与双曲线y=2x(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.18.-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b 值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<1,b<1.考点:一次函数图象与系数的关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)画图见解析;(2)画图见解析;(3)5.【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得5【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.20.1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.试题解析:原式=()()()()()()()()()2113212232323233aa a a a a a a a a a a a a a a +--⋅+=+==+--------- , ∵a 与2、3构成△ABC 的三边,∴3−2<a<3+2,即1<a<5,又∵a 为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式=14-3=1 21.(1)6y x=(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标. 详解:(1)把A 点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A (2,3).∵A 点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x; (2)在y=12x+2中,令y=0可求得:x=﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t ,0),∴CP=|t+4|,且A (2,3),∴S △ACP =12×3|t+4|.∵△ACP 的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P 点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.22.(1)笔记本单价为14元,钢笔单价为15元;(2)y 1=14×0.9x=12.6x ,y 2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解析】(1)设每个文具盒z 元,每支钢笔y 元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式是y 1=14×90%x ,即y 1=12.6x .买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y 2=15x :当买10支以上时,超出的部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10),即y 2=12x +1.(3)因为x >10,所以y 2=12x +1.当y 1<y 2,即12.6x <12x +1时,解得x <2;当y 1=y 2,即12.6x =12x +1时,解得x =2;当y 1>y 2,即12.6x >12x +1时,解得x >2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.23. (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-. (2) 278. (3)P 点的横坐标是3212+或3212-. 【解析】【分析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM 计算即可;(3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值.【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得 093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得 03{3k b b =+-=解得1{3k b ==-所以直线AB 的解析式是3y x =-.(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+V V V =19324⨯⨯=278. (3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能. ②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得1p =,2p =去),所以P点的横坐标是32. ③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得132p =(舍去),①232p =,所以P点的横坐标是32-. 所以P点的横坐标是32+或32. 24.(1)130,025345,25x y x x ⎧=⎨->⎩剟,250,0503100,50x y x x ⎧=⎨->⎩剟;(2)当35<x <1时,选择B 方式能节省上网费,见解析.【解析】【分析】(1)根据两种方式的收费标准,进行分类讨论即可求解;(2)当35<x <1时,计算出y 1-y 2的值,即可得出答案.【详解】解:(1)由题意得:130,025300.0560(25),25x y x x ⎧=⎨+⨯⨯->⎩剟; 即130,025345,25x y x x ⎧=⎨->⎩剟; 250,050500.0560(50),50x y x x ⎧=⎨+⨯⨯->⎩剟;即250,0503100,50x y x x ⎧=⎨->⎩剟; (2)选择B 方式能节省上网费当35<x <1时,有y 1=3x -45,y 2=1.:y 1-y 2=3x -45-1=3x -2.记y =3x-2因为3>4,有y 随x 的增大而增大当x =35时,y =3.所以当35<x <1时,有y >3,即y >4.所以当35<x <1时,选择B 方式能节省上网费【点睛】此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键.25.(1)y=-x 2+2x+1;(2)-m 2+1m .(1)2.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F 点坐标,根据平行于y 轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE 的长,根据平行四边形的对边相等,可得关于m 的方程,根据解方程,可得m 的值.【详解】解:(1)∵点A (-1,0),点B (1,0)在抛物线y=-x 2+bx+c 上,∴10{930b c b c -++=-++=,解得23b c =⎧⎨=⎩, 此抛物线所对应的函数表达式y=-x 2+2x+1;(2)∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴C (0,1).设BC 所在的直线的函数解析式为y=kx+b ,将B 、C 点的坐标代入函数解析式,得303k b b +=⎧⎨=⎩,解得1{3k b =-=, 即BC 的函数解析式为y=-x+1.由P 在BC 上,F 在抛物线上,得P (m ,-m+1),F (m ,-m 2+2m+1).PF=-m 2+2m+1-(-m+1)=-m 2+1m .(1)如图,∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴D (1,4).∵线段BC 与抛物线的对称轴交于点E ,当x=1时,y=-x+1=2,∴E (1,2),∴DE=4-2=2.由四边形PEDF 为平行四边形,得PF=DE ,即-m 2+1m=2,解得m 1=1,m 2=2.当m=1时,线段PF 与DE 重合,m=1(不符合题意,舍).当m=2时,四边形PEDF 为平行四边形.考点:二次函数综合题.26.(1)2n ;(2)60,2n θ=︒=;(3)452︒⎡⎣.【解析】【分析】(1)根据定义可知△ABC ∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;(2)根据四边形''ABB C 是矩形,得出90BAC '∠=︒,进而得出30AB B '∠=︒,根据30°直角三角形的性质即可得出答案;(3)根据四边形 ABB′C′为正方形,从而得出45CAC '∠=︒,再根据等腰直角三角形的性质即可得出答案.【详解】解:(1)∵△AB′C′的边长变为了△ABC 的n 倍,∴△ABC ∽△AB′C′,∴2''ABC ABCS n S ∆∆=, 故答案为:2n .(2)四边形''ABB C 是矩形,∴90BAC '∠=︒.903060CAC BAC BAC θ''∴=∠=∠-∠=︒-︒=︒.在Rt ABB 'V 中,90,60ABB BAB ''︒∠=∠=︒, 30AB B '∴∠=︒.2AB n AB'∴==. 60,2n θ∴=︒=.(3)若四边形 ABB′C′为正方形,则AB AC '=,90BAC '∠=︒,∴45CAC '∠=︒,∴45θ=︒,又∵在△ABC 中,AB=2AC ,∴2A A C C '=, ∴2n =故答案为:45,2︒⎡⎤⎣⎦.【点睛】本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n ]的意义是解题的关键.27.证明见解析.【解析】【分析】由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题. 【详解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【点睛】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.。
2019-2020学年数学中考模拟试卷一、选择题1.不等式组的解集在数轴上表示正确的是()A.B.C.D.2.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.2010xx+>⎧⎨->⎩B.2010xx+>⎧⎨-<⎩C.2010xx+<⎧⎨->⎩D.2010xx+<⎧⎨-<⎩3.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=kx(k≠0)的图象经过圆心P,则k的值是()A.54- B.53- C.52- D.﹣24.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x,那么x满足的方程为()A.10(1+x)2=42B.10+10(1+x)2=42C.10+10(1+x)+10(1+2x)=42D.10+10(1+x)+10(1+x)2=425.如图,△ABC中,AB=AC=2,BC=2,D点是△ABC所在平面上的一个动点,且∠BDC=60°,则△DBC面积的最大值是( )A.3B.3C.D.26.在正方形ABCD中,对角线AC=BD=12cm,点P为AB边上的任一点,则点P到AC,BD的距离之和为()A .6cmB .7cmC .62cmD .122cm 7.已知点(-2,1y ),(1,0),(3,2y )都在二次函数2y x bx 3=+-的图象上,则1y ,0,2y 的大小关系是( )A .120y y <<B .21y 0y <<C .12y y 0<<D .12y 0y << 8.下列函数中,自变量x 的取值范围为x >1的是( ) A .1y x =- B .11-=x y C .11-=x y D .y =(x ﹣1)09.若一个正九边形的边长为α,则这个正九边形的半径是( )A .cos 20α︒ B .sin 20α︒ C .2cos 20α︒ D .2sin 20α︒10.如图菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 顺时针方向旋转90°,则图中阴影部分的面积是( )A.23πB.233π-C.11312π-D.23π﹣1 11.已知过点(1,2)的直线y =ax+b (a≠0)不经过第四象限,设S =a+2b ,则S 的取值范围为( )A .2<S <4B .2≤S<4C .2<S≤4D .2≤S≤412.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P ,Q 的“实际距离”为5,即PS+SQ =5或PT+TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为( )A .(1,﹣2)B .(2,﹣1)C .(12,﹣1)D .(3.0)二、填空题 13.如图,某飞机于空中探测某座山的高度,在点A 处飞机的飞行高度是3700AF =米,从飞机上观测山顶目标C 的俯角是45o ,飞机继续以相同的高度飞行300米到B 地,此时观察目标C 的俯角是50o ,则这座山的高度CD 是________米(参考数据:sin500.77≈o ,cos500.64≈o ,tan50 1.20≈o )14.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c=_____.15.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是_____(只需添加一个即可)16.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .17.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则¼20192018A B的长是_____.18.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F 运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为______.三、解答题19.如图,点A(﹣1,m)是双曲线y1=kx与直线y2=﹣x﹣(k+1)在第二象限的交点,另一个交点C在第四象限,AB⊥x轴于B,且cos∠AOB=10 10(1)求m 的值;(2)求△AOC 的面积;(3)直接写出使y 1>y 2成立的x 的取值范围.20.如图1,已知直线AB 、CD 分别与直线EF 相交于M 、N 两点,∠BME=50°.(1)请添加一个条件,使直线AB ∥CD ,并说明理由;(2)如图2,在(1)的条件下,作∠MND 的平分线交AB 于点G ,求∠BGN 的度数.21.如图,一次函数y =﹣12x+3的图象与反比例函数y =k x (k >0)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为2.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA+PB 的值最小,并求出其最小值和P 点坐标.22.在如图菱形ABCD 中,对角线AC 、BD 相交于O ,E 、F 分别是AB 、BC 的中点.求证:OE =OF .23.如图,已知一次函数y 1=k 1x+b 的图象与x 轴、y 轴分别交于A .B 两点,与反比例函数y 2=2k x 的图象分别交于C .D 两点,点D (2,﹣3),OA =2.(1)求一次函数y 1=k 1x+b 与反比例函数y 2=2k x 的解析式; (2)直接写出k 1x+b ﹣2k x≥0时自变量x 的取值范围.24.如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处.(1)求证:四边形AECF 是平行四边形;(2)当∠BAE 为多少度时,四边形AECF 是菱形?请说明理由.25.如图,抛物线P :21(2)3y a x =+-与抛物线Q :221()12y x t =-+在同一平面直角坐标系中(其中a ,t 均为常数,且t >0),已知点A (1,3)为抛物线P 上一点,过点A 作直线l ∥x 轴,与抛物线P 交于另一点B .(1)求a 的值及点B 的坐标;(2)当抛物线Q 经过点A 时①求抛物线Q 的解析式;②设直线l 与抛物线Q 的另一交点为C ,求AC AB的值.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D B A D A A D B D BB A13.190014.015.∠ABC=90°或AC=BD .16.517.201923π 18.52三、解答题19.(1)m =3;(2)4;(3)x <﹣1或0<x <3.【解析】【分析】(1)根据已知条件得到OB=1,由cos ∠AOB=10,得到,根据勾股定理即可得到结论; (2)先把两函数的解析式联立组成方程组,求出x 、y 的值,得出A 、C 两点的坐标,根据三角形的面积公式即可得到结论;(3)观察图象,根据一次函数与反比例函数的交点坐标即可求出一次函数的值大于反比例函数的值x 的取值范围.【详解】解:(1)∵A (﹣1,m ),AB ⊥x 轴于B ,∴OB =1,∵cos ∠AOB, ∴OA,∴AB3,∴A (﹣1,3),∴m =3;(2)∵A (﹣1,3)是双曲线1k y x =与直线y 2=﹣x ﹣(k+1)在第二象限的交点, ∴k =﹣3, ∴反比例函数的解析式为:13y x=-,一次函数的解析式为:y 2=﹣x+2, 23y x y x =-+⎧⎪⎨=⎪⎩解得13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩, ∴C (3,﹣1),∴△AOC 的面积=12×2×1+12×2×3=4; (3)由图象知,y 1>y 2成立的x 的取值范围为:x <﹣1或0<x <3.【点睛】此题考查了反比例函数比例系数k的几何意义,反比例函数的性质,求两函数的交点坐标,比较函数值的大小,三角形的面积等知识,能根据△ABO的面积求出k的值是解答此题的关键.20.(1)∠DNE=50°(2)155°【解析】【分析】(1)可以添加:∠DNE=50°.利用同位角相等两直线平行即可证明.(2)利用平行线的性质求出∠AGN即可.【详解】(1)可以添加:∠DNE=50°,理由:如图1中,∵∠BME=50°,∠DNE=50°,∴∠BME=∠DNE,∴AB∥CD;(2)∵∠DNE=50°,NG平分∠DNE,∴∠DNG=12∠DNE=25°,∵AB∥CD,∴∠BGN+∠DNG=180°,∴∠BGN=180°﹣25°=155°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)y=4x;(2)y=﹣16x+53,点P的坐标为(0,53).【解析】【分析】(1)利用反比例函数k的几何意义即可求出反比例函数的解析式;(2)先把解析式联立组成方程组求出A、B两点的坐标,再利用轴对称的性质找到符合条件的点P的位置,利用一次函数与y轴的交点求出P点坐标,再利用勾股定理求出最小距离和.【详解】(1)设A点的坐标为(a,b),则OM=a,AM=b,∵△AOM面积为2,∴12ab=2,∴ab=4,∵点A在反比例函数图象上,∴k=4,∴反比例函数的解析式为y =4x; (2)依题意可知,A 、B 两点的坐标为方程组1324y x y x⎧=+⎪⎪⎨⎪=⎪⎩的解, 解方程组得:点A 的坐标为(2,2),点B 的坐标为(4,1),点A 关于y 轴的对称点A′的坐标为(﹣2,2),连接A′B,交y 轴于点P ,点P 即为所求,此时PA+PB 最小,最小值为A′B 的长.=设直线A′B 的解析式为y =kx+b ,带入A′,B 的坐标得2214k b k b =-+⎧⎨=+⎩, 解得:1k 65b 3⎧=-⎪⎪⎨⎪=⎪⎩, ∴1563y x =-+,点P 的坐标为(0,53). 【点睛】本题考查了反比例函数与一次函数的交点问题,巧用轴对称的性质找到P 点的坐标是解题的关键.22.证明见解析【解析】【分析】根据菱形ABCD ,可得AC ⊥BD ,所以可得△AOB 、△BOC 为直角三角形,再利用直角三角形斜边的中线等于斜边的一半即可证明OE =OF .【详解】解:∵AC ⊥BD ,∴△AOB 、△BOC 为直角三角形,∵E 、F 分别是AB 、BC 的中点,∴OE =12AB ,OF =12BC , ∵AB =BC ,∴OE =OF .【点睛】本题主要考查菱形的性质,应当熟练掌握,这是重点知识.23.(1)3342y x =--;26y x =-;(2)x≤﹣4或0<x≤2. 【解析】【分析】(1)把点D 的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作DE ⊥x 轴于E ,根据题意求得A 的坐标,然后利用待定系数法求得一次函数的解析式;(2)根据图象即可求得k 1x+b ﹣2k x ≥0时, ,自变量x 的取值范围. 【详解】解:(1)∵点D (2,﹣3)在反比例函数y 2=2k x的图象上, ∴k 2=2×(﹣3)=﹣6,∴y 2=﹣6x; 如图,作DE ⊥x 轴于E∵OA =2∴A (﹣2,0),∵A (﹣2,0),D (2,﹣3)在y 1=k 1x+b 的图象上,112k b 02k b 3-+=⎧⎨+=-⎩, 解得133,42k b =-=-, 3342y x ∴=--; (2)由图可得,当k 1x+b ﹣2k x ≥0时,x≤﹣4或0<x≤2. 【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和反比例函数的解析式,方程组的解等知识,解题的关键是灵活应用所学知识解决问题.24.(1)证明见解析(2)当∠BAE=30°时,四边形AECF 是菱形【解析】【分析】(1)首先证明△ABE ≌△CDF ,则DF=BE ,然后可得到AF=EC ,依据一组对边平行且相等四边形是平行四边形可证明AECF 是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE ,得到EA=EC ,于是得到结论.【详解】(1)∵四边形ABCD 为矩形,∴AB=CD ,AD ∥BC ,∠B=∠D=90°,∠BAC=∠DCA .由翻折的性质可知:∠EAB=12∠BAC ,∠DCF=12∠DCA . ∴∠EAB=∠DCF . 在△ABE 和△CDF 中B D AB CD EAB DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴DF=BE .∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形;(2)当∠BAE=30°时,四边形AECF 是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE ,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【点睛】本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.25.(1)a=23,B(﹣5,3);(2)①y2=12(x﹣3)2+1;②23.【解析】【分析】(1)先利用待定系数法求出抛物线P的解析式,即可得出结论;(2)①利用待定系数法求出抛物线Q的解析式,即可得出结论;②先求出AC,AB,即可得出结论.【详解】(1)∵抛物线P:y1=a(x+2)2﹣3过点A(1,3),∴9a﹣3=3,∴a23=,∴抛物线P:y123=(x+2)2﹣3.∵l∥x轴,∴点B的纵坐标为3,∴323=(x+2)2﹣3,∴x=1(点A的横坐标)或x=﹣5,∴B(﹣5,3);(2)①如图,∵抛物线Q:y212=(x﹣t)2+1过点A(1,3),∴12(1﹣t)2+1=3,∴t=﹣1(舍)或t=3,∴抛物线Q:y212=(x﹣3)2+1;②∵l∥x轴,∴点C的纵坐标为3,∴312=(x﹣3)2+1,∴x=1(点A的横坐标)或x=5,∴C(5,1),∴AC=5﹣1=4.∵A(1,3),B(﹣5,3),∴AB=1﹣(﹣5)=6,∴4263 ACAB==.【点睛】本题是二次函数综合题,主要考查了待定系数法,二次函数图象上点的坐标特征,交点坐标的求法,待定系数法是解答本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,已知正方形ABCD ,E 为AB 的中点,F 是AD 边上的一个动点,连接EF 将△AEF 沿EF 折叠得△HEF ,延长FH 交BC 于M ,现在有如下5个结论:①△EFM 定是直角三角形;②△BEM ≌△HEM ;③当M 与C 重合时,有DF =3AF ;④MF 平分正方形ABCD 的面积;⑤FH•MH=214AB ,在以上5个结论中,正确的有( )A .2B .3C .4D .52.6月15日“父亲节”,小明准备送给父亲一个礼盒(如图所示),该礼盒的俯视图是( )A. B. C. D.3.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x 场,则可列方程为( )A .3x+(30﹣x )=74B .x+3 (30﹣x )=74C .3x+(26﹣x )=74D .x+3 (26﹣x )=744.如图,正△AOB 的边长为5,点B 在x 轴正半轴上,点A 在第一象限,反比例函数y =k x(x >0)的图象分别交边AO ,AB 于点C ,D ,若OC =2BD ,则实数k 的值为( )A .3B 932C 2534D .35.某市的商品房原价为12000元/m 2,经过连续两次降价后,现价为9200元/m 2,设平均每次降价的百分率为x ,则根据题意可列方程为( )A .12000(1﹣2x )=9200B .12000(1﹣x )2=9200C .9200(1+2x )=12000D .9200(1+x )2=12000 6.有一组数据:1,2,2,5,6,8,这组数据的中位数是( )A .2B .2.5C .3.5D .5 7.学校环保小组的同学随机调查了某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,7,10,6,9,利用学过的统计知识,根据上述数据估计该小区200户家庭一周内共需要环保方便袋约( )A .200只;B .1400只;C .9800只;D .14000只.8.若关于x 的一元一次不等式组()2132x x x m ⎧-<-⎨>⎩的解集是5x >,则实数m 的取值范围是( )A .5≤mB .5m <C .5m ≥D .5m > 9.数据2060000000科学记数法表示为( ) A .206×107 B .20.6×108C .2.06×108D .2.06×109 10.已知关于x 的一元二次方程2304x x a --+= 有两个不相等的实数根,则满足条件的最小整数a 的值为( )A .-1B .0C .2D .111.如图,在△ABC 中,BC =4,BC 边上的中线AD =2,AB+AC =3+7,则S △ABC 等于( )A .15B .552C .23D .37212.如图,菱形OABC 的一条边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,若OA =2,∠C =120°,则点B′的坐标为( )A.(6,﹣6)B.(6,6)C.(3,3)D.(3,﹣3)二、填空题 13.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为__________米.14.已知一组数据2,6,5,2,4,则这组数据的中位数是_____.15.如图,在菱形ABCD 中,∠B =60°,对角线AC 平分角∠BAD ,点P 是△ABC 内一点,连接PA 、PB 、PC ,若PA =6,PB =8,PC =10,则菱形ABCD 的面积等于______.16.已知抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=2,且经过点P (3,1),则a+b+c 的值为____________.17.如图,点,,A B C 都在圆O 上,OC OB ⊥,点A 在劣弧上,且OA AB =,则ABC ∠=________度.18.(-2)xy xy +=________________.三、解答题19.如图,ABC ∆为O e 的内接三角形,AB 为O e 的直径,过A 作AB 的垂线,交BC 的延长线于点D ,O e 的切线CE 交AD 于点E .(1)求证:12CE AD =; (2)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且AD=6,AB=3,求CG 的长.20.先化简,再求值:(a+12a -)÷221a a a-+,其中a =﹣2. 21.如图,抛物线y =ax 2+32x+c (a≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知点A 的坐标为(﹣1,0),点C 的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.22.如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,求证:BE∥AC.23.如图,在7×7的方格纸中,点A,B,C都在格点上,请按要求找出D点,使得D点在格点上.(1)在图甲中画一个∠ADC,使得∠ABC=∠ADC.(2)在图乙中画一个三角形ADC,使得△ADC的面积等于△ABC面积的2倍.24.两个运输小队分别从两个仓库以相同的工作效率调运一批物资,两队同时开始工作.第二小队工作5天后,由于技术问题检修设备5天,为赶上进度,再次开工后他们将工作效率提高到原先的2倍,结果和第一小队同时完成任务.在两队调运物资的过程中,两个仓库物资的剩余量y t与第一小队工作时间x天的函数图像如图所示.(1)①求线段AC所表示的y与x之间的函数表达式;②求点F的坐标,并解释点F的实际意义.(2)如果第二小队没有检修设备,按原来的工作效率正常工作,那么他们完成任务的天数是天.25.我国古代第一部数学专著《九章算术》中有这样一道题:今有上禾7束,减去其中之实1斗,加下禾2束,则得实10斗.下禾8束,加实1斗和上禾2束,则得实10斗,问上禾、下禾1束得实多少?译文为:今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10斗,问上等禾和下等禾1捆各能结出多少斗粮食?(斗为体积单位)【参考答案】***一、选择题13.6.514.41516.117.1518.-xy三、解答题19.(1)详见解析;(2.【解析】【分析】(1)利用AB是⊙O的直径判断AD是⊙O的切线,利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(2)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【详解】(1)∵AB是⊙O直径,AB⊥AD,∴AD是⊙O的切线,∵EA,EC是⊙O的切线,∴AE=CE,∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=12 AD;(2)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD=ADAB=2,过点G作GH⊥BD于H,∴tan∠ABD=GHBH=2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG-∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC=ACBC=2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=355,∴35,∴5,∴25,在Rt△CHG中,∠BCF=45°,∴2105.【点睛】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.20.-3 2【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【详解】 解:22112a a a a a -⎛⎫+÷ ⎪-+⎝⎭ (2)1(1)2(1)(1)a a a a a a a -++=⋅-+- 22121a a a a a -+=⋅-- 2(1)21a a a a -=⋅-- (1)2a a a -=-当a =﹣2时,原式=2(21)3-222-⨯--=-- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(1)y =﹣12x 2+32x+2(2)(32,4)或(32,52)或(32,﹣52)(3)(2,1) 【解析】【分析】(1)利用待定系数法转化为解方程组即可.(2)如图1中,分两种情形讨论①当CP =CD 时,②当DP =DC 时,分别求出点P 坐标即可.(3)如图2中,作CM ⊥EF 于M ,设2113,2,2222E a a F a a a ⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭,),则2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭,(0≤a≤4),根据S 四边形CDBF =S △BCD +S △CEF +S △BEF 111,222BD OC EF CM EF BN =⋅+⋅+⋅构建二次函数,利用二次函数的性质即可解决问题. 【详解】解:(1)由题意3022,a c c ⎧-+=⎪⎨⎪=⎩ 解得122.a c ⎧=-⎪⎨⎪=⎩ ∴二次函数的解析式为213222y x x =-++. (2)存在.如图1中,∵C (0,2),3,0,2D ⎛⎫ ⎪⎝⎭ ∴CD =22352.22⎛⎫+= ⎪⎝⎭当CP =CD 时,13,42P ⎛⎫ ⎪⎝⎭, 当DP =DC 时, 233535,,,.2222P P ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭综上所述,满足条件的点P 坐标为3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫⎪⎝⎭或35,.22⎛⎫- ⎪⎝⎭ (3)如图2中,作CM ⊥EF 于M ,∵B (4,0),C (0,2),∴直线BC 的解析式为122y x =-+,设2113,2,2222E a a F a a a ⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭,), ∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭,(0≤a≤4), ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF 111,222BD OC EF CM EF BN =⋅+⋅+⋅ ()225111124222222a a a a a a ⎛⎫⎛⎫=+-++--+ ⎪ ⎪⎝⎭⎝⎭, 254,2a a =-++ ()21322a =--+,∴a=2时,四边形CDBF的面积最大,最大值为132,∴E(2,1).【点睛】本题考查二次函数综合题、一次函数的应用、待定系数法,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,属于中考压轴题.22.见解析.【解析】【分析】欲证BE∥AC,在图中发现BE、AC被直线AB所截,且已知BE平分∠ABD,∠ABE=∠C,故可按同位角相等,两直线平行进行判断.【详解】∵BE平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.23.(1)详见解析;(2)详见解析【解析】【分析】(1)利用网格即可得出符合∠ABC=∠ADC的答案;(2)利用三角形面积求法得出答案.【详解】(1)如图甲所示:∠ABC=∠ADC;(2)如图乙所示:△ADC的面积等于△ABC面积的2倍.【点睛】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.24.(1)①y=-30x+360.②点F的坐标为(8,120).点F的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120 t.(2)9.【解析】【分析】(1)①用待定系数法求解即可;②根据第一小队的工作效率求出第二小队再次开工后的工作效率,即可得到点F的纵坐标,代入①中解析式即可求出点F坐标,由题意可知点F的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120 t ;(2)根据工作效率以及点F 的纵坐标,求出不检修设备的情况下还需要多少天完成任务,相加即可.【详解】解:(1)解:①设AC 的函数表达式为y =kx +b ,将(12,0),(0,360)代入y =kx +b ,可得30360k b =-⎧⎨=⎩, 即y =-30x +360.②第一小队的工作效率为360÷12=30(t /天),第二小队再次开工后的工作效率为30×2=60(t /天),调运物资为60×2=120(t ),即点E 的坐标为(10,120),所以点F 的纵坐标为120.将y =120代入y =-30x +360,可得x =8,即点F 的坐标为(8,120).点F 的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120 t .(2)∵第二小队工作5天后,仓库剩余的物资为120 t ,∴120÷30=4(天),4+5=9(天),∴如果第二小队没有检修设备,按原来的工作效率正常工作,那么他们完成任务的天数是9天.【点睛】本题考查了函数图像的识别以及一次函数的应用,根据函数图像得到必要信息是解题关键.25.上等禾每捆能结出2536斗粮食,下等禾每捆能结出4152斗粮食. 【解析】【分析】设上等禾每捆能结出x 斗粮食,下等禾每捆能结出y 斗粮食,根据“今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10斗”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设上等禾每捆能结出x 斗粮食,下等禾每捆能结出y 斗粮食,由题意得:7121081210x y y x -+=⎧⎨++=⎩ 解得:25364152x y ⎧=⎪⎪⎨⎪=⎪⎩. 答:上等禾每捆能结出2536斗粮食,下等禾每捆能结出4152斗粮食. 【点睛】 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。
2020年数学中考模拟试卷一、选择题1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°2.如图,将△ABC 绕C 顺时针旋转,使点B 落在AB 边上的点B′处,此时,点A 的对应点A′恰好落在BC 边的延长线上,则下列结论中错误的是( )A.∠BCB′=∠ACA′B.∠ACB =2∠BC.B′C 平分∠BB′A′D.∠B′CA=∠B′AC3.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =ACE 的面积为( )A .1BC .2D .4.小明沿着坡角为45°的坡面向下走了5米,那么他竖直方向下降的高度为( )A.1米B.2米C.米D.2米 5.如图,在ABCD 中,E 为边CD 上一点,将ADE 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40° 6.下列运算正确的是( )A .2a 2b ﹣ba 2=a 2bB .a 6÷a 2=a 3C .(ab 2)3=a 2b 5D .(a+2)2=a 2+4 7.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D .8.如图,正方形ABCD 中,AB=3,点E 在边CD 上,且CD=3DE,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G,连接AG 、CF ,则BG 的长为( )A.1B.2C.1.5D.2.5 9.下列运算正确的是( ) A .()336x x = B .325x x x ? C .33x x -= D .426x x x +=10.如图所示的几何体的俯视图是( )A .B .C .D .二、填空题11.如图,矩形ABCD 中,AB =6,AD =,点E 是BC 的中点,点F 在AB 上,FB =2,P 是矩形上一动点.若点P 从点F 出发,沿F→A→D→C 的路线运动,当∠FPE =30°时,FP 的长为_____.12.在菱形ABCD 中,对角线AC=2,BD=4, 则菱形ABCD 的周长是________.13.计算:①232n m ⎛⎫= ⎪⎝⎭_____;②b a a b a b -=-- _____. 14.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,如果我们规定一个新数“i”使它满足i 2=﹣1(即x 2=﹣1有一个根为i ),并且进一步规定:一切实数可以与新数“i”进行四则运算,且原有的运算律和运算法则仍然成立,于是有:i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对任意正整数n ,由于i 4n =(i 4)n =1n =1,i4n+1=i 4n•i =1•i =i ,同理可得i 4n+2=﹣1,i 4n+3=﹣i ,那么,i 9=_____;i 2019=_____.15.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x 人,依题意,可列方程为________________.16.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为________.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___.18.在一个不透明的袋子中装有红白两种颜色的球(形状大小质地完全相同)共25个,其中白球有5个。
绥化市2020年中考数学押题卷及答案注意事项:1. 本试卷共5页,满分120分,考试时间120分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答 案无效。
第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算10+(﹣24)÷8+2×(﹣6)的结果是( ) A .﹣5 B .﹣1 C .1D .52.一个正常人的心跳平均每分钟70次,一天大约跳的次数用科学记数法表示这个结果是( ) A .1.008×105 B .100.8×103 C .5.04×104 D .504×1023. 列方程中有实数解的是 A.012=+x B.11122-=-x x x C.x x -=-1 D.12=-x x4. 桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( ) A.能够事先确定抽取的扑克牌的花色 B.抽到黑桃的可能性更大 C.抽到黑桃和抽到红桃的可能性一样大 D.抽到红桃的可能性更大5.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )6.如图,点A ,B ,C 是⊙O 上的三点,已知∠AOB=100°,那么∠ACB 的度数是( )A .30°B .40°C .50°D .60°7. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同8.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨9.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是()A.2 B.3 C.4 D.510.对于二次函数y=2x2+x﹣3,下列结果中正确的是()A.抛物线有最小值是y=﹣ B.x>﹣1时y随x的增大而减小C.抛物线的对称轴是直线x=﹣ D.图象与x轴没有交点11.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB12.如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正确的有()A.1个B.2个C.3个D.4个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3、b,则a+b= .14.在平行四边形ABCD中,对角线AC、BD相交于点O.如果AB=14,BD=8,AC=x,那么x的取值范围是.15.如图,在正方形ABCD中,点E、F分别在BC、CD上,且BE=DF,若∠EAF=30°,则sin∠EDF= .16.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,点O在中线CD上,设OC=xcm,当半径为3cm的⊙O与△ABC的边相切时,x= .17.如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5),若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.18.二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为.三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.(本题10分)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.(本题10分)如图,在△ABC中,∠ACB=90°,M、N分别是AB.AC的中点,延长BC至点D,使CD=BD,连接DN、MN.若AB=6.(1)求证:MN=CD;(2)求DN的长.21.(本题10分)2019年3月30日,四川省凉山州木里县境内发生森林火灾,30名左右的扑火英雄牺牲,让人感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完整的统计图表:请根据图表提供的信息,解答下列各题:(1)补全频数分布直方图和扇形统计图;(2)分数段80≤x<90对应扇形的圆心角的度数是°,所抽取的学生竞赛成绩的中位数落在区间内;(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.22.(本题12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.23.(本题12分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.(1)求点H到桥左端点P的距离;(2)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.24.(本题12分)已知抛物线y=ax2﹣2ax﹣2(a≠0).(1)当抛物线经过点P(4,﹣6)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当﹣1≤x≤5时,抛物线的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的横坐标;(3)点A(x1,y1)、B(x2,y2)为抛物线上的两点,设t≤x1≤t+1,当x≥3时,均有y1≥y2,求t的取值范围.参考答案第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A2.A3.D4.B5.A6.C7.A8.C9.C 10.A 11.B 12.D第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13. 5 1 4. 20<x<36 15. 16. 2,3或6.17.(3,4)或(0,4) 18.4n.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.解:,(1)解不等式①,得x<﹣1,(2)解不等式②,得x≤2,(3)把不等式①和②的解集在数轴上表示出来为:(4)∴原不等式组的解集为x<﹣1,故答案为:x<﹣1,x≤2,x<﹣1.20.(1)证明:∵M、N分别是AB.AC的中点,∴MN=BC,MN∥BC,∵CD=BD,∴CD=BC,∴MN=CD;(2)解:连接CM,∵MN∥CD,MN=CD,∴四边形MCDN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB,∴DN=AB=3.21.解:(1)样本容量是:10÷5%=200,D组人数是:200﹣(10+20+30+60)=80(人),D组所占百分比是:×100%=40%,E组所占百分比是:×100%=30%.补全频数分布直方图和扇形统计图如图所示:(2)分数段80≤x<90对应扇形的圆心角的度数是:360°×0.40=144°;一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在D组,所以所抽取的学生竞赛成绩的中位数落在80≤x<90区间内.故答案为144,80≤x<90;(3)(55×10+65×20+75×30+85×80+95×60)÷200=83(分).所以估计该校参赛学生的平均成绩是83分.22.(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.23.解:(1)在Rt△AHP中,∵AH=500,由tan∠APH=tanα===2,可得PH=250米.∴点H到桥左端点P的距离为250米.(2)设BC⊥HQ于C.在Rt△BCQ中,∵BC=AH=500,∠BQC=30°,∴CQ==1500米,∵PQ=1255米,∴CP=245米,∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB为5米.24.解:(1)该二次函数图象的对称轴是x==1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,﹣1≤x≤5,∴当x=5时,y的值最大,即M(5,).把M(5,)代入y=ax2﹣2ax﹣2,解得a=,∴该二次函数的表达式为y=x2﹣2x﹣2,当x=1时,y=,∴N(1,﹣);(3)当a>0时,该函数的图象开口向上,对称轴为直线x=1,∵t≤x1≤t+1,当x2≥3时,具有y1≥y2,点A(x1,y1)B(x2,y2)在该函数图象上,∴t≥3或t+1≤1﹣(3﹣1),解得,t≥3或t≤﹣2;当a<0时,该函数的图象开口向下,对称轴为直线x=1,∵t≤x1≤t+1,当x2≥3时,具有y1≥y2,点A(x1,y1)B(x2,y2)在该函数图象上,∴,∴﹣1≤t≤2.t的取值范围﹣1≤t≤2.。