改性塑料简介
- 格式:docx
- 大小:35.05 KB
- 文档页数:14
塑料改性的目的、手段及方法第一章概论塑料改性:是在把现有树脂加工成塑料制品的过程中,利用化学的或物理的方法改变塑料制品的一些性能,以达到预期目的。
塑料改性分类:物理改性和化学改性物理改性:填充改性、增强改性和共混改性化学改性:接枝共聚改性、嵌段共聚改性、辐射交联改性等填充改性:是指在塑料成型加工过程中加入无机或有机填料,以满足一定的要求。
填充改性能显著改善塑料的机械性能、耐摩檫性能、热学性能、耐老化性能等,例如能克服塑料的低强度、不耐高温、低刚硬性、易膨胀性、易蠕变等缺点。
所以选用合适的填料既可以有增量作用,又有改性效果。
但并非所有填料都能起这种作用:有些填料具有活性,起补强作用,可显著提高塑料强度,如木粉添加到酚醛树脂中,在相当大的范围内起补强作用;而有些填料添加后起到稀释作用,降低了机械强度,如普通轻质碳酸钙添加到聚氯乙烯中,这种填料称为惰性填料。
增强改性:某些填料,如玻璃纤维,填充时对塑料的机械强度影响很大,如玻璃纤维填充聚酯,弯曲弹性模量可由原来的2764兆帕提高到9800兆帕,提高近350%,增强效果极为明显,于是把这种填料改性的塑料称为增强塑料,这种方式称为增强改性。
除玻璃纤维外,碳纤维、硼纤维、云母等填料都可明显提高塑料的机械强度。
共混改性:是指在原来塑料基体中,再通过各种混合方法(如开放式炼塑机、挤出机等)混进另外一种或几种塑料或弹性体,以此改变塑料的性能。
例如ABS(丙烯氰-丁二烯-苯乙烯共聚物),就综合了丙烯氰(A)、丁二烯(B)、苯乙烯(S)三者的特性,其微观形态结构类似于合金。
接枝共聚改性:是先将母体树脂溶解在所要接枝的塑料单体中,然后使要接枝的单体聚合,这时形成的树脂便接枝到母体树脂中去。
嵌段共聚改性:指每一种单体单元以一定长度的顺序,在其末端相互联结,形成一种新的线性分子。
根据单体单元的种类,可分为二嵌段、三嵌段、多嵌段共聚物。
辐射交联改性:*常用的塑料改性大多采用物理改性技术,即高分子共混:ABC 技术;是利用容积参数相近和反应共混的原理在双螺杆(或单螺杆、炼塑机)中将两种或两种以上聚合物及其助剂通过机械掺混形成一种宏观上均相、微观上分相的新材料。
改性塑料改性塑料,是指在通用塑料和工程塑料的基础上,经过填充、共混、增强等方法加工改性,提高了阻燃性、强度、抗冲击性、韧性等方面的性能的塑料制品;中文名改性塑料加工方法填充、共混、增强基础通用塑料和工程塑料作用提高了阻燃性、强度、抗冲击性1、简要通过改性的塑料部件不仅能够达到一些钢材的强度性能,还具有质轻、色彩丰富、易成型等一系列优点,因此“以塑代钢”的趋势在很多行业都显现出来,而现阶段要找出一种大规模替代塑料制品的材料几乎是不可能的;2、发展改性塑料属于石油化工产业链中的中间产品,主要由五大通用塑料和五大工程塑料为塑料基质加工而成,具有阻燃、抗冲、高韧性、易加工性等特点;我国改性塑料行业发展迅猛,产量、表观消费量年均增长分别达到20%、15%;国内改性塑料年总需求在500万吨左右,约占全部塑料消费量的10%左右,但仍远低于世界平均水平20%;此外,我国人均塑料消费量与世界发达国家相比还有很大的差距;作为衡量一个国家塑料工业发展水平的指标——塑钢比,我国仅为30:70,不及世界平均的50:50,更远不及发达国家如美国的70:30和德国的63:37;塑料在汽车工业中的应用始于20世纪50年代,已经有50多年的历史;随着汽车向轻量化发展、节能方向发展,对材料提出了更高的要求;由于1kg塑料可以替代2-3kg钢等更重的材料,而汽车自重每下降10%,油耗可以降低6%-8%;所以增加改性塑料在汽车中的用量可以降低整车成本、重量,并达到节能效果;改性塑料是涉及面广、科技含量高、能创造巨大经济效益的一个塑料产业领域;而改性技术—填充、共混和增强改性更是深入几乎所有的塑料制品的原材料与成型加工过程;普通的塑料往往会有它自身的特性和缺陷,改性塑料就是给塑料改变一下性质,基本的技术包括:1、增强:将玻璃纤维等与塑料共混以增加塑料的机械强度;2、填充:将矿物等填充物与塑料共混,使塑料的收缩率、硬度、强度等性质得到改变;3、增韧:通过给普通塑料加入增韧剂共混以提高塑料的韧性,增韧改性后的产品:铁轨垫片;4、阻燃:给普通塑料树脂里面添加阻燃剂,即可使塑料具有阻燃特性,阻燃剂可以是一种或者是几种阻燃剂的复合体系,如溴+锑系,磷系,氮系,硅系,以及其他无机阻燃体系;5、耐寒:增加塑料在低温下的强度和韧性,一般塑料在低温下固有的低温脆性,使得在低温环境中应用受限,需要添加一些耐低温增韧剂改变塑料在低温下的脆性,例如汽车保险杠等塑件,一般要求耐寒;3、特点改性塑料凭借优越的性价比在越来越多的下游领域得到应用,可以说改性塑料已经成为一种消费趋势,而这种趋势背后隐含了如下五种因素:高性能:改性塑料不仅具备传统塑料的优势,如密度小、耐腐蚀等,同时物理、机械性能得到很好的改善,如高强度、高韧度、高抗冲性、耐磨抗震,此外塑料综合性能的提高为其下游领域的广泛应用提供了基础;低成本:与其他材料相比,塑料得益于生产效率高、密度低等优势,具有更低的成本,单位体积塑料的成本仅为金属的十分之一左右;政府政策:中国推行的“3C”强制认证制度,对目录内产品的安全性能进行了严格的规定,从而推动了阻燃塑料在家用电器、IT、通讯等领域的广泛应用;消费升级:随着生活水平的提高,人们开始追求更加卓越的产品性能,要求家电等产品更加美观、安全、耐用,从而对上游的塑料行业提出更高的要求,要求其具有更好的加工性能、力学性能、耐用性和安全性;技术因素:世界上已经发现1000多种聚合物,但真正有应用价值的只有几十种,开发新的聚合物不仅投资巨大,而且应用前景不明朗;相反,改性技术不仅可以提高现有聚合物的性能以适应产业的需求,同时可以降低一些高价工程塑料的成本,成为发展塑料工业的有效途径;4、硬度硬度是指材料抵抗其它较硬物体压入其表面的能力;硬度值的大小是表征材料软硬程度的有条件的定量反映,它不是一个单纯而确定的物理量;硬度值的大小不仅取决于材料的本身,而且取决于测试条件和测定方法,即不同的硬度测量方法,对同一种材料测定的硬度值不尽相同;因此,要比较材料之间的硬度大小,必须用同一种测量方法测量的硬度值,才有可比性;常用于表示硬度的方法有如下几种:a、邵氏硬度b、洛氏硬度c、莫氏硬度添加改性塑料的硬度添加改性塑料的硬度是指在塑料中加入硬质添加剂的一种改性方法;常用的硬度填加剂为刚性无机填料及纤维;1添加刚性无机填料表面处理改进塑料的硬度塑料的表面硬度改进方法是指只改善塑料制品外表的硬度,而制品内部的硬度不变;这是一种低成本的硬度改进方法;这种改性方法主要用于壳体、装饰材料、光学材料及日用品等;这种改性方法主要包括涂层、镀层及表面处理三种方法;共混与复合改进塑料的硬度1共混改进塑料的硬度塑料共混改进方法即在低硬度树脂※※混高硬度树脂,以提高其整体硬度;常见的共混树脂有:PS、PMMA、ABS及MF等,需要改性的树脂主要为PE类、PA、PTFE及PP等;2复合改进塑料的硬度塑料复合改进硬度的方法即在低硬度塑料制品表面上复合一层高硬度树脂;此方法主要适合于挤出制品,如板、片、膜及管材等;常用的复合树脂为PS、PMMA、ABS及MF等;5、改性知识简介一、塑料的添加剂二、改性塑料中填充材料的分散状态及其形成填充改性塑料的性能除了与主要组分基体树脂的性质以及填充材料的性质、形态、尺寸、浓度密切相关外,填充材料的分散状态:基体树脂的高分子聚集态结构、织态结构:填充材料与树脂界面结构也有很大的影响;下面主要讨论填充材料的分散状态;分散状态1. 无机粒子添加到聚合物熔体中经过螺杆或其他机械剪切作用,可能形成三种无机粒子分散的微观结构状态;1无机粒子在聚合物中形成第二聚集态结构;在这种情况下,如果无机粒子的粒径足够小粒子间界面结合良好,无机粒子如同刚性链条一样对聚合物起着增强作用,这种分散状态具有很好的增强效果;如胶体二氧化硅和炭黑之所以对橡胶有增强作用,其中一个重要作用是他们在橡胶中形成了这种第二聚集态结构;2无机粒子以无规的分散状态存在,有的聚集成团,有的以个别分散形式存在;这种分散状态既不能增强也不能增韧;由于粉团中粒子间的相互作用很弱,将成为填充材料中最为薄弱的环节;3无机粒子均匀而个别地分散在基体树脂中;在这种情况下,无论粒子与基体树脂间有无良好的界面结合,都会产生一定的增强增韧效果;为了获得增强增韧的填充改性塑料,希望是第三种分散状态;2. 无机粉粒状填充材料能否个别地均匀分散于基体树脂中与多种因素有关;在加工条件固定的情况下与无机粒子的比表面积、表面自由能、表面极性树脂熔体的黏度,无机粒子与基体树脂间的相互化学作用等有关;从填充改性预期的效果来看无机粒子尺寸越小越好;但尺寸越小表面能越高,自凝聚能力越强,越难均匀分散;因表面能及高速运动碰撞摩擦下产生静电而凝聚成一个个粉团;这种凝聚体在后序的混炼加工及成型加工中靠机械剪切力是再也打不开的,就呈现上述第二种分散状态成为改性塑料中最不愿意看到的“白点”;填充物态粉粒状是属于长/径比近似为1的填充材料的分散状态,长径比较大的填充材料是指短纤维状、针状、薄片状的填充材料;这类材料分散问题,有两个层次,其一、分散的均匀性;其二、取向; 由于这类填充材料长径比明显的不对称性,其填充改性塑料成型加工制品时,物料的流动总会产生填充剂不同程度的取向分布;其取向有两种情况也伴随有两种取向状态;加压下,物料不发生大流动状态下的填充材料取向;加压下各个填料个体顺着把各个部位所受的压力差尽可能平均化的方向运动使得最大面积上接受压力导致填充材料方向与压力方向成直角的方向取向;在制品同一层上填充材料的取向是随机的基本上是属于二维取向状态;6、细分类别改性塑料产品主要种类有阻燃树脂类、增强增韧树脂类、塑料合金类、功能色母类等;图表改性塑料的主要细分类别、消费群体及市场应用情况7、改性PA玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA投放市场;PA作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、电讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业飞速发展,促进了工程塑料高性能化的进程,使其扮演着越来越重要的角色;1.高强度高刚性尼龙的市场需求越来越大,新的增强材料如无机晶须增强,碳纤维增强PA成为重要的品种,主要是用于汽车发动机部件,机械部件以及航空设备部件;2.尼龙合金化将成为改性工程塑料发展的主流;尼龙合金化是实现尼龙高性能的重要途径,也是制造尼龙专用料、提高尼龙性能的主要手段;通过掺混其他高聚物,来改善尼龙的吸水性,提供制品的尺寸稳定性,以及低温脆性、耐热性和耐磨性;从而,适用车种不同要求的用途;3.纳米尼龙的制造技术与应用得到迅速发展;纳米尼龙的优点在于其热性能,力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与背通尼龙相当;因而,具有很大的竞争力;4.用于电子、电气、电器的阻燃尼龙与日俱增,绿色化阻燃尼龙越来越受到市场的重视:5.抗静电、导电尼龙以及磁性尼龙成为电子设备、高性能化的进程;6.加工助剂的研究与应用,将推动改性尼龙的功能化、高性能化的进程;7.综合技术的应用,产品的精细化是推动其产业发展的动力;二:成型加工加工特性:l.尼龙容易受潮;在大气中,PA的平衡吸水率为%、PA66为%、PA610为%,PA1010为%,尼龙含水量对其力学性能有较大的影响;在熔融状态下,水分的存在,会引起尼龙的水解而导致分子量下降,使制品机械性能下降,还会在成型中使制品表面出现气泡、银丝和斑纹等缺陷;所以成型前必须充分干燥;2.尼龙熔体粘度低、流动性大,喷嘴会产生“流延”现象;浪费原料,污染喷嘴;,如果用螺杆式注射机成型,注射时,熔体会在螺杆和料筒壁之间出现逆流,使注料不准,所以,尼龙在螺杆式注射机成型时,在螺杆端部必须安装止逆环;3.尼龙是结晶性高聚物;熔点明显,而且较高,所以,尼龙需要在较高温度下成型,.熔融状太的尼龙热稳定性较差,易分解;因此必须严格控制工艺条件;4尼龙的成型收缩率大,对于制造高精密度的制品,模具设计应在试验的基础上确定其尺寸,成型工艺应严格控制;8、改进技术一、增强技术纤维增强是塑料改性的重要方法这一,镁盐晶须和玻璃纤维均能有效地提高聚丙烯的综合性能;以玻璃纤维增强的聚丙烯具有较低的密度,低廉的价格以及可以循环使用等优点,正逐步取代工程塑料与金属在汽车仪表板,汽车车身和底盘零件中的应用:与玻璃纤维相比,镁盐晶须的模塑制品具有更高的精度,尺寸稳定性和表面光洁度,适用于制备各种形状复杂的部件,轻质高强度阻燃部件和电子电器部件;作为一种改性剂,镁盐晶须能大幅度提高聚丙烯的强度,刚度,抗冲击和阻燃性能;因此,镁盐晶须和玻璃纤维在聚丙烯改性中的应用越来越受到重视;1二、增韧技术矿物质增强增韧是最为普遍的改性途径之一;向聚丙烯原料中添加的矿物质通常是碳酸钙,滑石粉,硅灰石,玻璃微珠,云母粉等;这些矿物质不仅可以在一定程度上改善聚丙烯材料的机械性能和冲击韧性,降低聚丙烯材料的成型收缩率以加强其尺寸稳定性,并且由于矿物质与聚丙烯基体在成本上的巨大差别,可以大幅度降低聚丙烯材料的成本;矿物质增强增韧聚丙烯是所有改性聚丙烯材料在家用电器中应用最广泛的一种;波轮洗衣机和滚筒洗衣机的内筒一般使用的都是矿物质增强增韧聚丙烯材料,以代替早期的不锈钢内筒;聚丙烯材料经矿物质增强增韧后,可克服其原有的强度不足,光泽度不好,收缩太大等问题;这种改性聚丙烯除了用于制作洗衣机的内筒以外,还被用于制作波轮和取衣口等部件,仅海尔集团对其每年的用量就在1700吨左右每个洗衣机内筒约重2kg;这种材料的矿物质添加量高达40%,其拉伸强度达33Mpa,断裂伸长率可达90%以上,缺口冲击强度约为10KJ/m2;微波炉的很多部件也采用矿物质增强增韧聚丙烯材料制造;由于矿物质的加入,可以在聚丙烯材料本身较高的耐热温度的基础上,使其耐热温度进一步得到提高,以适应微波炉对高温的要求;例如,微波炉门体的密封条,微波炉扬声器喇叭口,喇叭支架等都采用了这种改性的聚丙烯材料;冰箱上的搁物架也基本采用了矿物质增强增韧聚丙烯材料,由于与玻璃面板可进行整体注塑,从而很好地解决了原来ABS材料的面板沁水问题;三、填充改性新型高填充玻纤改性塑料,它可克服常规玻璃纤维增强热塑性塑料的缺陷;这种材料的基体是高温热塑性塑料如液晶聚合物,聚醚砜,聚醚酰亚胺和聚苯硫醚;在玻纤填充量在80%时,改性材料但仍能操持良好的可加工性;用新材料生产的部件具有耐磨损和耐温变的良好特性;这种新材料可与塑料和金属粘合,适用于表面摸塑设备加工,潜在的应用包括汽车和燃料系统部件,轴承,电子零部件,抗刮伤外壳等,这种玻璃增强物的辅加效益是阻燃性好,能回收利用,高度耐热和尺寸稳定等;四、共混与塑料合金技术塑料共混改性指在一种树脂中掺入一种或多种其他树脂包括塑料和橡胶,从而达到改变原有树脂性能的一种改性方法;氟塑料合金是采用国内现有的超高分子量聚全氟乙丙烯FER为主要原料,与四氟乙烯加填料直接共混,用物理方法制造的,此材料性能超过了世界公认的“塑料王”聚四氟乙烯;五、阻燃技术高聚物的阻燃技术,当前主要以添加型溴系阻燃剂为主,常用的有十溴二苯醚、八溴醚、四溴双酚A、六溴环十二烷等,其中尤以十溴二苯使用量为最大,溴化环氧树脂由于具有优良的熔流速率,较高的阻燃效率,优异的热稳定性和光稳定性,又能使被阻燃材料具有良好的物理机械性能,不起霜,从而被广泛地应用于PBT、PET、ABS、尼龙66等工程塑料,热塑性塑料以PC/ABS塑料合金的阻燃处理中;阻燃剂家族中的其他品种有磷系、三嗪系、硅系、膨胀型、无机型等,这些阻燃剂在各种不同使用领域发挥着各自独特的阻燃效果;在磷系阻燃剂中,有机磷系的品种大都是油液状,在高聚物加工过程中不易添加,一般在聚氨酯泡沫、变压器油、纤维素树脂、天然和合成橡胶中使用;而无机磷系中的红磷,是纯阻燃元素,阻燃效果好,但它色泽鲜艳,因而应用受部分限制;红磷的应用要注意微粒化和表面包覆,这样使它在高聚物中有较好的分散性,与高聚物的相容高性好,不易迁移,能长久保持高聚物难燃性能;六、热塑性弹性体技术热塑性弹性体简称TPE/TPR,以SEBS、SBS为基材,是一类具有通用塑料加工性能,但产品有着类似文联橡胶性能的高分子合金材料;在多材料模塑中,热塑性弹性体有4个基本的类型,即苯乙烯嵌段共聚物SBC、热塑性硫化胶TPV、热塑性聚氨酯TPU和共聚多酯COPE;热塑性聚氨酯弹性体是第一个能够运用热塑性工艺加工的弹性体;有聚酯和聚醚两种类型,聚酯型具有较高的机械性能,聚醚型比聚酯型具有较好的水解稳定性和低温韧性;聚氨酯橡胶具有良好的耐磨性、添加剂可以提高耐候性,尺寸稳定性和耐热性,减少摩擦或增加阻燃性,它们在各硬度等级产品中具有很广泛的应用,涉及汽车密封件和垫圈,稳定杆套,医用导管、起博器和人造心脏装置、手机天线齿轮、滑轮、链轮、滑槽衬里、纺织机械部件、脚轮、垫圈、隔膜、联轴器和减振部件;共聚多酯弹性体具有良好的动态性能、高模数、高伸长和撕裂强度,还有在高温和低温条件下具有良好的抗挠屈疲劳性;通过组合紫外线稳定剂或炭黑可以提高耐候性,耐无氧化酸性、一些脂族烃、芳烃燃料、碱性溶液、液压流体的性能表现为良好甚至优异;然而,无极性材料,如强无机酸和碱、氯化溶剂、苯酚类和甲酚会使聚酯降解,共聚多酯在一般情况下比热塑性弹性体昂贵,应用于弹性联轴器、隔、齿轮、波纹管垫环、保护套、密封件、运动鞋鞋底、电气接头、扣件、旋钮和衬套中;2007年世界热塑性弹性体TPE消费超过230万吨,总产值超过110亿美元,2001-2007年间世界消费保持年均%的增长率;其中,北美消费平均增幅为%,欧洲为%,拉丁美洲则以两位数速率快速增长,亚太地区年均增幅大于8%;高速的增长将带动各行各业对TP巨的使用,汽车和日用品消费是拉动热塑性弹性体消费增长的主要因素,不同品种的热塑性弹性体增长率不相同;热塑性聚氨酯应用以年均%的速率增长,主要应用于汽车业预计未来热塑性聚氨酯在日用品和体育用品上应用会有所突破;七、反应接枝改性在由一种或几种单体组成的聚合物的主链上,通过一定的途径接上由另一种单体或几种单体组成的支链的共聚反应;是高聚物改性技术中最易实现的一种化学方法;马来酸酐接枝改性聚合物一般采用双螺杆挤出机熔融接枝法制备,其系类品种包括聚乙烯PE-g-MAH、聚丙烯PP-g-MAH、ABSABS-g-MAH、POEPOE-g-MAH、EPDMEPDM-g-MAH等,其操作工艺简单、生产成本低、产品质量稳定等特点;其中产品MAH接枝率在~%范围内可调,其他力学性能指标优良;可广泛用作各类非极性聚合物如PE、PP等与极性聚合物如PC、PET、PA等其混改性时的相容剂等;纳米碳酸钙是一种十分重要的无机增韧增强功能性填料,被广泛地应用在塑料、橡胶、涂料和造纸等工业领域,为降低纳米碳酸钙表面高势能、调节疏水性、提高与基料之间的润湿性和结合力、改善材料性能,须对纳米碳酸钙进行表面改性为了提高无机填料与有机基体之间的相容性,用高分子有机物对无机填料进行表面接枝改性是一种常用方法;Takao Nakatsuka 以磷酸盐改性超细CaC03表面,然后与聚异丁烯酸接枝,采用羧酸吸附和聚丁基丙烯酸接枝对CaC03表面改性,与丙稀单体混合后通过聚合制备了性能较好的PP/CaC03复合材料;9、表征材料力学性能的基本定义冲击强度衡量材料韧性的一种指标,通常定义为试样在冲击载荷的作用下折断或折裂时,单位截面积所吸收的能量;基本概述1 冲击强度用于评价材料的抗冲击能力或判断材料的脆性和韧性程度,因此冲击强度也称冲击韧性;2 冲击强度是试样在冲击破坏过程中所吸收的能量与原始横截面积之比;3冲击强度的测量标准主要有ISO国际标准GB参照ISO及美国材料ASTM标准;根据试验设备不同可分为简支梁冲击强度、悬臂梁冲击强度测试公式:GB: a=W / hd 单位KJ/m2 ATSM: a= W /d 单位:J/ma:冲击强度 W :冲击损失能量 h:缺口剩余宽度 d:样条厚度因此,GB与ASTM之间不可以等同测量,但从测量公式可总结经验公式:GB数值或8错误样条=ASTM数值,也可以由实际测量来总结比值拉伸强度抗拉强度定义:拉伸强度即表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有或很小均匀塑性变形的脆性材料,它反映了材料的断裂抗力;符号为RmGB/T 228-1987旧国标规定抗拉强度符号为σb,单位为MPa;1试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力Fb,除以试样原横截面积So所得的应力σ,称为抗拉强度或者强度极限σb,单位为N/mm2MPa;它表示金属材料在拉力作用下抵抗破坏的最大能力;计算公式为:σ=Fb/So式中:Fb--试样拉断时所承受的最大力,N牛顿; So--试样原始横截面积,mm2;抗拉强度Rm指材料在拉断前承受最大应力值;当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值;此后,材料抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏;材料受拉断裂前的最大应力值称为强度极限或拉伸抗拉强度;弯曲强度定义:弯曲强度是指材料在弯曲负荷作用下破裂或达到规定弯矩时能承受的最大应力,此应力为弯曲时的最大正应力,以MPa兆帕为单位;它反映了材料抗弯曲的能力,用来衡量材料的弯曲性能;发生于弯矩最大的横力弯曲时,弯矩M随截面位置变化,一般情况下,最大正应力σmax截面上,且离中性轴最远处;因此,最大正应力不仅与弯矩M有关,还与截面形状和尺寸有关;为最大弯矩,W为抗弯截面系数;最大正应力计算公式为:其中Mmax。
什么是改性塑料改性塑料的应用已经渗透到我们工作、生活中接触到的各行各业,家电、汽车、建筑、办公设备、机械等……现在人们的生活当中都离不开改性塑料的使用,已经成为人们生活当中的一部分今天我们就一起来详细了解一下什么是改性塑料。
什么是改性塑料改性塑料,是指在通用塑料和工程塑料的基础上,经过填充、共混、增强等方法加工改性,提高了阻燃性、强度、抗冲击性、韧性等某一方面或某几方面的性能的塑料颗粒。
改性塑料改的是什么?改性塑料改的是塑料的外观、透明性、密度、精度、加工性、机械性能、化学性能、电磁性能、耐腐蚀性能、耐老化性、耐磨性、硬度、热性能、阻燃性、阻隔性等方面的性能。
塑料改性的应用范围很广泛,几乎所有塑料的性能都可通过改性方法得到改善。
为了降低塑料制品的成本、改善性能、提高功能,都离不开塑料改性技术。
改性塑料的几种改性方法增强:将玻璃纤维、碳纤维等与塑料共混以增加塑料的机械强度。
填充:将矿物等填充物与塑料共混,使塑料的收缩率、硬度、强度等性质得到改变。
共混:共混改性是将其它塑料、橡胶或热塑性弹性体与基础塑料共混制备兼具这些聚合物性质的高分子合金。
增韧:通过给普通塑料加入增韧剂共混以提高塑料的韧性。
阻燃:给普通塑料树脂里面添加阻燃剂,即可使塑料具有阻燃特性,阻燃剂可以是一种或者是几种阻燃剂的复合体系,如溴+锑系,磷系,氮系,硅系,以及其他无机阻燃体系。
随着人们环保、安全意识的提高,无卤阻燃材料的应用将越来越普遍。
耐寒:增加塑料在低温下的强度和韧性,一般塑料在低温下固有的低温脆性,使得在低温环境中应用受限,需要添加一些耐低温增韧剂改变塑料在低温下的脆性,例如汽车保险杠等塑件,一般要求耐寒。
改性塑料的应用改性塑料下游应用领域广泛,主要应用于家电、汽车、建筑、办公设备、机械等领域,其中家电、汽车是其常见的两个应用领域。
改性塑料在家电领域的应用随着塑料改性技术的发展及人民生活水平的提高,改性塑料在家电行业的应用越来越广泛,尤其是在小家电领域,厨房用具、个人护理等产品,都用到改性塑料。
常用塑料改性及其加工工艺塑料是一种由合成树脂加工而成的可塑性材料,由于其轻质、耐腐蚀、绝缘性好等特点,在各个领域都有广泛应用。
然而,常规的塑料材料性能有限,无法满足一些特殊的需求,因此需要对其进行改性,以提高其性能。
以下是常用的塑料改性方式及其对应的加工工艺。
1.塑料增强改性塑料增强改性是通过在塑料基体中加入一些增强材料,如纤维增强剂、颗粒增强剂等,以提高塑料的机械性能。
其中,纤维增强剂有玻璃纤维、碳纤维、芳纶纤维等,颗粒增强剂有硅酸盐、铝酸盐等。
加工工艺上,可以选择注塑成型、压延成型、挤出成型等方式进行。
2.塑料填充改性塑料填充改性是通过在塑料基体中加入填充剂,如纤维、颗粒、药剂等,以改变塑料的物理性能、热性能等。
常见的填充剂有炭黑、硅酸钙、纳米材料等。
加工工艺上,可以选择挤出、压延、注塑等方式进行。
3.塑料增塑改性塑料增塑改性是通过在塑料基体中加入增塑剂,以提高塑料的柔韧性、韧性和耐寒性。
常见的增塑剂有邻苯二甲酸酯类、磷酸酯类等。
加工工艺上,可以选择挤出、注射、吹塑等方式进行。
4.塑料增硬改性塑料增硬改性是通过在塑料基体中加入硬化剂,以提高塑料的硬度和强度。
常见的硬化剂有聚苯乙烯、聚氯乙烯等。
加工工艺上,可以选择挤出、注塑、吹塑等方式进行。
5.塑料改性涂层塑料改性涂层是通过在塑料表面涂覆一层改性材料,以提高其耐磨性、耐化学性、耐高温性等。
常见的改性材料有涂料、油漆、硅胶等。
加工工艺上,可以选择喷涂、浸涂、滚涂等方式进行。
6.塑料共混改性塑料共混改性是通过将两种或多种塑料混合使用,以改变塑料的性能。
常见的共混塑料有聚丙烯/聚乙烯、聚碳酸酯/聚苯乙烯等。
加工工艺上,可以选择挤出、注射、吹塑等方式进行。
综上所述,常用的塑料改性方式有增强改性、填充改性、增塑改性、增硬改性、改性涂层和共混改性。
针对不同的塑料材料,可以选择合适的改性方式和加工工艺进行处理,以满足特定的需求和性能要求。
改性pp料是什么材料改性PP料是一种经过改性处理的聚丙烯材料,它具有优异的性能和广泛的应用领域。
改性PP料在塑料制品行业中扮演着重要的角色,下面我们来详细了解一下改性PP料是什么材料。
首先,改性PP料是指将聚丙烯树脂进行物理或化学方法的改性处理,以改善其性能和加工工艺。
改性PP料通常通过添加增强剂、填料、稳定剂、增塑剂等成分来实现改性,从而使其具有更好的力学性能、耐热性、耐候性和耐化学腐蚀性。
这些改性后的PP料不仅保持了聚丙烯的良好特性,还增加了许多新的优异性能,使其在各种领域得到广泛应用。
改性PP料具有以下几个主要特点:首先,改性PP料具有优异的力学性能。
通过添加增强剂和填料,改性PP料的抗拉强度、弯曲强度、冲击强度等得到显著提高,使其成为制作强度高、耐磨性好的塑料制品的理想选择。
其次,改性PP料具有良好的耐热性和耐候性。
在改性过程中,添加稳定剂和抗氧化剂可以有效提高PP料的耐热性和耐候性,使其能够在恶劣环境下长期稳定使用,不易老化和变质。
再次,改性PP料具有良好的耐化学腐蚀性。
通过添加抗腐剂和耐化学腐蚀剂,改性PP料能够在酸碱盐等化学介质中表现出较好的稳定性,适用于化工管道、储罐等领域。
最后,改性PP料具有良好的加工性能。
由于改性PP料的熔体流动性和热稳定性得到提高,使其在注塑、挤出、吹塑等加工工艺中表现出较好的加工性能,有利于制作各种复杂形状的塑料制品。
总的来说,改性PP料是一种性能优异、应用广泛的塑料材料,具有优异的力学性能、耐热性、耐候性和耐化学腐蚀性,同时具有良好的加工性能,适用于汽车零部件、家电外壳、工程管道、建筑材料等领域。
希望通过本文的介绍,能够让大家对改性PP料有更深入的了解,为其在各个领域的应用提供更多的可能性。
改性塑料研究报告引言改性塑料是一种在传统塑料基础上进行改性的材料,它具有更优异的性能和更广泛的应用领域。
本报告旨在介绍改性塑料的概念、分类、制备方法以及应用领域。
概念和分类改性塑料是指在塑料基质中加入一定比例的改性剂,通过改变塑料的性质、结构或其它特性,以获得所需的性能。
根据不同的改性方式和目标性能,改性塑料可以分为以下几类:1.填充改性塑料:将填充剂(如无机粉末、纤维、微球等)添加到塑料基质中,以改善塑料的机械性能、热性能和阻燃性能。
2.强化改性塑料:在塑料基质中添加增强剂,如玻璃纤维、碳纤维等,以提高塑料的强度、刚度和耐热性。
3.阻燃改性塑料:通过加入阻燃剂,提高塑料的阻燃性能。
4.抗老化改性塑料:加入抗氧剂、紫外线吸收剂等,提高塑料的耐候性和耐老化性。
5.热塑性弹性体:通过在塑料基质中悬浮或交联弹性体颗粒,使塑料具有橡胶般的弹性和延展性。
制备方法改性塑料的制备方法主要包括物理改性和化学改性两种。
1.物理改性:物理改性是指通过改变塑料的结构和形态,以改变塑料的性能。
常见的物理改性方法包括填充、增强和混合等。
填充改性采用填充剂填充塑料基质,通过填充剂的作用改变塑料的性能。
增强改性通过在塑料基质中加入纤维增强剂,提高塑料的强度和刚度。
混合改性是指将两种或多种塑料基质混合,以获得更优异的性能。
2.化学改性:化学改性是指通过化学反应改变塑料的结构和性质,以获得所需的性能。
常见的化学改性方法包括交联、共聚和后期加工等。
交联改性通过交联剂的作用,使塑料基质在加热或辐射条件下发生交联反应,以提高塑料的热稳定性和机械性能。
共聚改性是在塑料基质中加入共聚剂,使塑料的分子链发生共聚反应,以改善塑料的特性。
后期加工改性是指通过后期处理,如涂覆、喷涂等,对塑料进行改性。
应用领域改性塑料在各个领域都有广泛的应用,下面主要介绍几个常见的应用领域:1.汽车工业:改性塑料在汽车工业中被广泛应用,例如汽车内饰件、车身外壳等。
改性工程塑料原辅材料介绍改性工程塑料是一种在工程领域广泛应用的高性能塑料材料。
它通过对传统工程塑料的加工工艺和材料配方进行改良,使其具备更高的强度、耐热性、耐腐蚀性和耐磨性等特性。
改性工程塑料原辅材料包括增强剂、填充剂、润滑剂和抗氧剂等,下面将对这些原辅材料进行详细介绍。
一、增强剂增强剂是改性工程塑料中最常使用的一类原辅材料,它能够大幅提升塑料的机械性能。
常见的增强剂有玻璃纤维、碳纤维和纳米级填料等。
玻璃纤维增强剂具有较高的强度和刚度,常用于提升塑料的刚性和强度,适用于电子设备外壳、汽车部件等领域。
碳纤维增强剂具有极高的强度和轻质化特性,适用于航空航天和体育器材等领域。
纳米级填料是近年来新兴的增强剂,具有优异的性能,可提高塑料的强度、导热性和导电性等。
二、填充剂填充剂是改性工程塑料中常用的一种原辅材料,它能够提高塑料的成本效益和加工性能。
常见的填充剂有玻璃珠、硅灰石和钙铁土等。
玻璃珠填充剂可以降低塑料的热膨胀系数和收缩率,提高尺寸稳定性,适用于电子器件和光学器件等领域。
硅灰石填充剂可以提高塑料的硬度和抗冲击性,适用于电器配件和建筑材料等领域。
钙铁土填充剂可以提高塑料的阻燃性和电绝缘性,适用于电力设备和汽车零部件等领域。
三、润滑剂润滑剂是改性工程塑料中常用的一种原辅材料,它能够降低塑料的摩擦系数和磨损率,提高塑料的加工性能和表面质量。
常见的润滑剂有石蜡、聚四氟乙烯和硅油等。
石蜡润滑剂可以提高塑料的滑动性和耐磨性,适用于注塑成型和挤出成型等加工工艺。
聚四氟乙烯润滑剂具有优异的耐热性和耐化学性,适用于高温和腐蚀性环境下的塑料制品。
硅油润滑剂可以提高塑料的流动性和表面光洁度,适用于光学器件和电子配件等领域。
四、抗氧剂抗氧剂是改性工程塑料中一种重要的原辅材料,它能够延长塑料的使用寿命和稳定性。
常见的抗氧剂有酚类、苯并咪唑和硫醇类等。
酚类抗氧剂能够有效抑制塑料的氧化分解,提高塑料的稳定性和抗老化性。
苯并咪唑抗氧剂具有较高的热稳定性和光稳定性,适用于高温和阳光暴晒环境下的塑料制品。
常用塑料改性及其加工工艺
一、塑料改性简介
塑料改性是对塑料材料进行改性的一种方法,它可以利用增加的热稳定性或者热稳定性的改善,以改变塑料材料的性能,使其能够更有效地应用于不同的应用场景。
塑料改性是特殊热塑弹性体改性的基础,其中包括加入增强颗粒、改性树脂和聚合物增强剂,或者增加塑料的硬度。
二、塑料改性加工工艺
1、复合改性:复合改性是通过与其他材料的结合来改变塑料性能的一种方法,它可以使塑料具有更好的力学性能和耐热性,并可能增强它们对化学物质的抵抗能力。
复合改性可以采用涂覆,织物,注射成型或其他改性技术。
2、质子交换改性:质子交换改性涉及在塑料表面上增加表面自由基的过程,从而改变塑料表面的电性特性,如电阻和静电性能。
质子交换改性可以改善塑料的湿润性,抗污染性能,树脂涂层粘度,以及阻止物理氧化等。
3、改性树脂技术:改性树脂技术是一种塑料改性技术,它通过改变树脂的分子结构或添加一些添加剂来改变树脂的性能。
改性树脂技术常见的方法有改性树脂填料技术、改性树脂浸渍技术、改性树脂涂覆技术以及改性树脂挤出技术等。
改性塑料改性塑料,是指在通用塑料和工程塑料的基础上,经过填充、共混、增强等方法加工改性,提高了阻燃性、强度、抗冲击性、韧性等方面的性能的塑料制品。
6、细分类别
改性塑料产品主要种类有阻燃树脂类、增强增韧树脂类、塑料合金类、功能色母类等。
图表改性塑料的主要细分类别、消费群体及市场应用情况
7、改性PA
玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自
3.纳米尼龙的制造技术与应用得到迅速发展。
纳米尼龙的优点在于其热性能,力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与背通尼龙相当。
因而,具有很大的竞争力。
4.用于电子、电气、电器的阻燃尼龙与日俱增,绿色化阻燃尼龙越来越受到市场的重视:
5.抗静电、导电尼龙以及磁性尼龙成为电子设备、高性能化的进程。
6.加工助剂的研究与应用,将推动改性尼龙的功能化、高性能化的进程。
7.综合技术的应用,产品的精细化是推动其产业发展的动力。
二:成型加工
加工特性:
1.5%,
,如
.
8、改进技术
一、增强技术
纤维增强是塑料改性的重要方法这一,镁盐晶须和玻璃纤维均能有效地提高聚丙烯的综合性能。
以玻璃纤维增强的聚丙烯具有较低的密度,低廉的价格以及可以循环使用等优点,正逐步取代工程塑料与金属在汽车仪表板,汽车车身和底盘零件中的应用:与玻璃纤维相比,镁盐晶须的模塑制品具有更高的精度,尺寸稳定性和表面光洁度,适用于制备各
9、表征材料力学性能的基本定义
冲击强度
衡量材料韧性的一种指标,通常定义为试样在冲击载荷的作用下折断或折裂时,单位截面积所吸收的能量。
(3)冲击强度的测量标准主要有ISO国际标准(GB参照ISO)及美国材料ASTM标准。
根据试验设备不同可分为简支梁冲击强度、悬臂梁冲击强度
测试公式:
GB: a=W / (h*d) 单位KJ/m2 ATSM: a= W /d 单位:J/m
a:冲击强度 W :冲击损失能量 h:缺口剩余宽度 d:样条厚度
因此,GB与ASTM之间不可以等同测量,但从测量公式可总结经验公式:GB数值*10.16或8(错误样条)=ASTM数值,也可以由实际测量来总结比值
拉伸强度(抗拉强度)
定义:拉伸强度即表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,
度或者强度极限(σb),单位为N/mm2(MPa)。
它表示金属材料在拉力作用下抵抗破坏的最大能力。
计算公式为:σ=Fb/So
式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。
抗拉强度( Rm)指材料在拉断前承受最大应力值。
当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应
力的提高而提高,直至应力达最大值。
此后,材料抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。
材料受拉断裂前的最大应力值称为强度极限或拉伸(抗拉)强度。
弯曲强度
定义:弯曲强度是指材料在弯曲负荷作用下破裂或达到规定弯矩时能承受的最大应力,此
发生于弯矩最大横力弯曲时,弯矩M随截面位置变化,一般情况下,最大正应力σ
max
的截面上,且离中性轴最远处。
因此,最大正应力不仅与弯矩M有关,还与截面形状和尺寸有关。
最大正应力计算公式为:??其中M
为最大弯矩,W为抗弯截面
max
系数。