新人教版2018年七年级数学下册期末试题(含答案)
- 格式:doc
- 大小:464.00 KB
- 文档页数:17
章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。
2017-2018学年下学期期末考试七年级数学试卷一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,.每个小题3分,共30分)1.下列运算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a5D.(a3)2=a5【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则计算,判断即可.【解答】解:a3和a2不是同类项,不能合并,A错误;a3和a2不是同类项,不能合并,B错误;a3•a2=a5,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方,掌握相关的运算法则是解题的关键.2.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°【分析】等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.3.如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短B.垂线段最短C.过一点只能作一条直线D.平面内,过一点有且只有一条直线与已知直线垂直【专题】线段、角、相交线与平行线.【分析】根据垂线段最短,可得答案.【解答】解:计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故选:B.【点评】本题考查了垂线段的性质,利用了垂线段的性质.4.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.【解答】解:∵(x-2)(x+3)=x2+x-6=x2+px+q,∴p=1,q=-6,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.【分析】根据平行线的性质以及对顶角相等的性质进行判断.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.6.下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x) C.(+y)(y﹣)D.(x﹣2)(x+1)【专题】常规题型.【分析】根据平方差公式即可求出答案.【解答】解:(A)原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2-x+1,故D不能用平方差公式;故选:C.【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.7.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选:B.【点评】本题考查了函数图象,根据距离的变化描述函数是解题关键.8.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.B C=AD D.A C=BD【专题】几何图形.【分析】已有条件∠ABC=∠BAD再有公共边AB=AB,然后结合所给选项分别进行分析即可.【解答】解:A、添加∠C=∠D时,可利用AAS判定△ABC≌△BAD,故此选项不符合题意;B、添加∠BAC=∠ABD,根据ASA判定△ABC≌△BAD,故此选项不符合题意;C、添加AB=DC,根据SAS能判定△ABC≌△BAD,故此选项不符合题意;D、添加AC=DB,不能判定△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.计算(x﹣2)x=1,则x的值是()A.3 B.1 C.0 D.3或0【专题】常规题型.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则化简得出答案.【解答】解:∵(x-2)x=1,当x-2=1时,得x=3,原式可以化简为:13=1,当次数x=0时,原式可化简为(-2)0=1,当底数为-1时,次数为1,得幂为-1,故舍去.故选:D.【点评】此题主要考查了零指数幂的性质和有理数的乘方运算,正确掌握运算法则是解题关键.10.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.二、填空题(每题3分,共15分)11.如图,要使AD∥BF,则需要添加的条件是(写一个即可)【专题】线段、角、相交线与平行线.【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【解答】解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.【专题】函数及其图象.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.2米的速度匀速上升列出关系式.13.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.【专题】三角形.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,∴AC⊥DB,故②③正确.故答案是:3.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.14.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为.【分析】根据白球个数除以小球总数进而得出得到白球的概率,进而得出答案.【解答】解:∵在一个不透明的盒子中装有8个白球,设黄球有x个,根据题意得出:解得:x=4.故答案为:4.【点评】此题主要考查了概率公式的应用,熟练利用概率公式是解题关键.15.如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若∠DAE=28°,则∠BAC=°.【专题】三角形.【分析】想办法求出∠B+∠C的度数即可解决问题;【解答】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EACM∵∠B+∠C+∠BAC=180°,∠DAE=28°,∴2∠B+2∠C+∠DAE=180°,∴∠B+∠C=76°,∴∠BAC=180°-76°=104°.故答案为104.【点评】本题考查线段的垂直平分线的性质、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共75分)16.(16分)(1)计算:﹣20+4﹣1×()﹣2(2)2016×2018﹣20172(3)(a+3)(a﹣1)﹣a(a﹣2)(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b【专题】常规题型.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用平方差公式计算得出答案;(3)直接利用多项式乘以多项式运算法则计算得出答案;(4)直接利用乘法公式计算,再利用整式的除法运算法则计算得出答案.16.解:(1)﹣20+4﹣1×()﹣2=﹣1+×4=﹣1+1=0;(2)2016×2018﹣20172=(2017﹣1)×(2017+1)﹣20172=20172﹣1﹣20172=﹣1;(3)(a+3)(a﹣1)﹣a(a﹣2)=a2+2a﹣3﹣a2+2a=4a﹣3;(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b=(a2+4ab+4b2﹣a2+4b2)÷4b=(4ab+8b2)÷4b=a+2b.【点评】此题主要考查了实数运算以及整式的混合运算,正确应用乘法公式是解题关键.17.(7分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣【专题】计算题;整式.【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣时,原式=12+(﹣)2=1+=.【点评】此题考查了整式的混合运算-化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)如图,已知E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.【专题】线段、角、相交线与平行线.【分析】由AD∥BC,可得∠EAD=∠B,∠DAC=∠C,根据角平分线的定义,证得∠EAD=∠DAC,等量代换可得∠B与∠C的大小关系.【解答】解:∠B=∠C.理由如下:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(6分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?【分析】(1)找到红色、黄色或绿色区域的份数之和占总份数的多少即为获得购物券的概率.(2)应计算出转转盘所获得的购物券与直接获得10元的购物券相比较便可解答.【解答】解:(1)整个圆周被分成了20份,转动一次转盘获得购物券的有9种情况,所以转动一次转盘获得购物券的概率=;(2)根据题意得:转转盘所获得的购物券为:50×+30×+20×=12(元),∵12元>10元,∴选择转盘对顾客更合算.【点评】本题考查了概率公式的运用,易错点在于准确无误的找到红色、黄色或绿色区域的份数之和,关键是理解获胜的概率即为可能获胜的份数之和与总份数的比.21.(11分)小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校.我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了千米时,自行车“爆胎”修车用了分钟.(2)修车后小明骑车的速度为每小时千米.(3)小明离家分钟距家6千米.(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?【专题】函数及其图象.【分析】(1)通过图象上的点的坐标和与x轴之间的关系可知他在图中停留了5分钟;(2)利用图象得出速度即可;(3)实质是求当s=6时,t=24;解:(1)小明骑车行驶了3千米时,自行车“爆胎”修车用了5分钟.故答案为:3;5;(2)修车后小明骑车的速度为每小时千米.故答案为:20;(3)当s=6时,t=24,所以小明离家后24分钟距家6千米.故答案为:24;(4)当s=8时,先前速度需要分钟,30﹣=,即早到分钟;【点评】主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.22.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,(1)求证:△AEC≌△CDB;(2)求DE的长.【分析】(1)利用等腰直角三角形的性质和已知条件易证△AEC≌△CDB;(2)根据全等三角形的性质可得AE=CD,CE=BD,所以DE可求出.【解答】解:(1)∵∠ACB=90°,∴∠ACE+∠DCB=90°,∵AE⊥CD于E,∴∠ACE+∠CAE=90°,∴∠CAE=∠DCB,∵BD⊥CD于D,∴∠D=90°,在△AEC和△CDB中,,∴△AEC≌△CDB(AAS);(2)∵∴△AEC≌△CDB,∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=3cm.【点评】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,解答本题的关键是根据已知条件判定三角形的全等.23.(11分)探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于.(2)请用两种不同的方法求图b中阴影部分的面积.方法1:;方法2:(3)观察图b,请你写出下列三个代数式之间的等量关系.代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若2a+2b=14,ab=5,则(a﹣b)2=.分析】(1)根据线段的和差定义即可解决问题;(2)①直接根据正方形的面积等于边长的平方计算;②利用分割法计算即可解决问题;(3)利用(2)中结论即可解决问题;(4)利用(3)中公式计算即可;【解答】解:(1)图b中的影部分的正方形的边长等于m-n.(2)方法1:(m-n)2;方法2:(m+n)2-4mn,(3)观察图b,(m+n)2,(m-n)2=(m-n)2+4mn,(4)∵2a+2b=14,ab=5,∴a+b=7,∴(a-b)2=(a+b)2-4ab=49-20=29.故答案为:m-n,(m-n)2,(m+n)2-4mn,29.【点评】本题考查完全平方公式的几何背景、正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
2017—2018学年度(下)学期期末教学质量检测七年级数学试卷考试时间:90分钟试卷满分:100分※注意事项:考生答题时,必须将答案写在答题卡上,答案写在试卷上无效。
一、选择题(每小题2分,共20分)1.D2.C3.B4.D5.B6.D7.C8.B9.B 10.A二、填空题(每小题2分,共16分)11.<3 12.3 13.80% 14.9 15.40° 16.108° 17.90 18.(-1,-1)三、解答题(每题8分,共16分)19.(1)解:原式=4+3-(-1)---------------------------------------------3=8------------------------------------------------------4(2)解:原式=-3-0-++=------------------------------------420.解:②-①得:5y=5,----------------------------------------------------1 解得y=1③-------------------------------------------------------------2 把③代入①得:x=4------------------------------------------------------3 ∴方程组的解为---------------------------------------------------4解:②×6得:③----------------------------------------------1③-①得:3y=3,解得:y=1④--------------------------------------------------------------2 把④代入①得:x=------------------------------------------------------3 ∴方程组的解为---------------------------------------------------4四、解答题(每题8分,共16分)21.解:依题意得:325x->213x+-1-----------------------------------------2去分母得:9x-6>10x+5-15-----------------------------------------------3移项得:9x-10x>5-15+6-------------------------------------------------4合并同类项得:-x>-4---------------------------------------------------5系数化为1得:x<4-----------------------------------------------------6非负整数解为0,1,2,3---------------------------------------------------822.解:(1)200人----------------------------------------------------------2 (2)40,60;--------------------------------------------------------4 (3)72;------------------------------------------------------------5(4)由题意,得(册).-------------------------------7 答:学校购买其他类读物900册比较合理.---------------------------8五、解答题(8分)23.∠3,两直线平行,同位角相等-----------------------------------------2 等量代换-----------------------------------------------------------3DG,内错角相等,两直线平行-------------------------------------------5 ∠AGD,两直线平行,同旁内角互补---------------------------------------7105°-----------------------------------------------------------------8六、解答题(8分)24.解:(1)设甲种商品的销售单价x 元,乙种商品的销售单价y 元,----------1依题意有23321500x y x y =⎧⎨-=⎩-------------------------------------------------2 解得:-------------------------------------------------------------3 答:甲种商品的销售单价900元,乙种商品的销售单价600元;--------------------4(2)设销售甲种商品万件,-------------------------------------------------5 依题意有900+600(8-)≥5400,------------------------------------------6 解得≥2.----------------------------------------------------------------7答:至少销售甲种商品2万件.------------------------------------------------8七、解答题(8分)25.(1)如图所示.----------------------------------------------------------------------------------------------------2(2)点A (0,4),B (1,0),C (3,0)在坐标轴上,在y 轴上点的横坐标为0,在x 轴上点的纵坐标为0;----------------------------------------------------------------------------------------4(3)线段AE ,DE ,AD 与x 轴平行;------------------------------------------------------------6(4)此图形的面积=12×(2+4)×4=12.-------------------------------------------------------8 八、解答题(8分)26.解:(1)设笔记本的单价为m 元/本,钢笔的单价为n 元/支,--------------------1根据题意得:,------------------------------------------------2解得:.------------------------------------------------------------3答:笔记本的单价为16元/本,钢笔的单价为18元/个.------------------------4(2)①当0<x≤10时,y1=18x;--------------------------------------------5当x>10时,y1=18×10+18×(x﹣10)=13.5x+45.------------------------6综上所述:y1=.②设获奖的学生有a个,购买奖品的总价为w,根据题意得:w钢笔=13.5a+45,w笔记本=16a.当w钢笔>w笔记本时,有13.5a+45>16a,解得:x<18;当w钢笔=w笔记本时,有13.5a+45=16a,解得:x=18;当w钢笔>w笔记本时,有13.5a+45<16a,解得:x>18.答:当获奖的学生多于10个少于18个时,购买笔记本省钱;当获奖的学生等于10个时,购买笔记本和购买钢笔所花钱数一样多;当获奖学生多于18个时,购买钢笔省钱.------------------------------------------------------------------------8。
七年级数学下册二元一次方程组知识清单+经典例题+专题复习试卷1.二元一次方程的定义:含有未知数,并且未知数的项的次数都是,像这样的方程叫做二元一次方程。
2.二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组,方程组中含有未知数,含有每个未知数的都是,并且一共有方程。
3.二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有个解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解。
5.代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:①,从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式。
②,将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,解出这个一元一次方程,求出x的值。
③,把求得的x值代入y=ax+b中求出y的值。
④,把x、y的值用“{”联立起来。
6.加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解①方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等。
②把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程。
③解这个一元一次方程,求得一个未煮熟的值。
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
七年数学期末复翅亠、单项选扌题(每小题 2分,共12分) 1. 在数2 , n, 38 , 0.3333 ,中,其中无理数有(一)(A) 1 个(B) 2 个 (C) 3 个(D) 4 个2. 已知:点P ( x ,y )且xy=O ,则点P 的位置在( )(A)原点 (B) x 轴上(C) y 轴上(D) x 轴上或轴上*2x ~1 ”1,3. 不等式组的解集在数轴上表示为()的.是( )(A)图形的平移是指把图形沿水平方向移动4. 下列说法中,正•确(B)相等的角是对顶”是一个真命题4 2x < 00 1 2 0 1 2 0 1 2 0 1 A B CD(C)平移前后图形的形状和大小都没有发生改变 (D) 直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比 为 2:3:5,若已 知中学生被抽到的人数为50人,则应抽取的样本容量等于( )(A)1500(B)1000(C)150(D)500 6.如图,点E 在AC 的延长线上,下列条件能判断AB //CD 的是()③/A=Z DCE(A)①③④(C)①②④ (B)①②③ (D)②③④ 7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 8. - 364的绝对1等9.不等式组 10.如图,a // b , Z 仁55 ° Z 2=40 ° (第 1012. 数学活动中,张明和王丽向老师说明他们的位置(单位:m)'k'k'k张明:我这里的坐标是(-200, 300);王丽:我这里的坐标是(300, 300)1安陆朝阳教育则老师知道张明与王丽之间的距离是m.13. 比较大小:5 1 1 (填“V”或“〉”或2 ------------- ).14. 在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其它10个小长方形高之和的1 ,且样本容量是60,则中间一组的频数4是---------三、解答题(每小题5分,共20分)15. 计算:、3 -v 9 + < 3- 2 .七年级数学试题第2页(共6页)16. 解方程组二广8②1 x 1,并把它的解集表示在数轴17. 解不等式2x3 718.已知:如图, AB // CD,EF 交AB 于G,交CD 于F,FH 平分Z EFD,交AB 于H ,Z AGE=50求/ BHF的度数.四、解答题(每小题 7分,共28 分) 19.如图,已知 Z 1= Z 2,Z3= Z 4,------- 七年级数学试题证明:因为Z 仁Z 2 (已知), 所以AC //(所以Z = Z 5 (又因为Z 3= Z 4 (已知), 所以Z 5= Z (等量代换),所以 BC // EF ()七年级数学试 卷七年级数学试题G20.对于x, y定义一种新运算“$” , x $ y =ax+by ,其中a, b是常数,等式右边是通常的加法和乘法运算.已知3 $ 5=15, 4 $ 7=28,求1 $ 1的值.21. 已知一个正•数•的平方根是m+3和2m-15 .J~~~22. ( 1)求这个正数是多少?(2) m 5的平方根又是多少?23. 水果店以每千克,销售中估计有10 %的香蕉正常损耗.水果店老板把售4.5元进了一批香蕉价至少定为多少,才能避免亏本?(1) _________________________________________________ 样本中最喜欢 A 项目的人数所占的百分比为 _____________________________________________________ ,其所在扇形统计图中对应的圆心角度数是 _______ 度;(2) 请把条形统计图补充完整;(3) 若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?25.在平面直角坐标系中, O 为坐标原点, A(-2 , 3), B ( 2, 2)(1) 画出三角形 OAB ;(2) 求三角形 OAB 的面积; (3)若三角形 OAB 中任意一点 P (x o , y o )经平移后对应点为P i (x o +4, y o -3),请画出三角五、解答题(每小题 8分,共16分) A :篮球、B :乒乓球、C :踢毽子、D :24.育人中学开展课外体育活动,决定开设活动项目•为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查/并将调查结果绘成如甲、 跑步四种15 乙所示的统计图,请你结合图中信息解答下列问题.1010D 项目甲D 20%B 30?3安陆朝阳教育形OAB平移后得到的三角形O i A i B!,并写出点O i、A i、B i的坐标.專y六、解答题(每小题10分,共20分)26. 为了抓住集安国际枫叶旅游节的商机,某商店决定购进A、B两种旅游纪念品•若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元•(1)求购进A、B两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?27. 如图,已知直线11 // 12,直线13和直线|1、|2交于C、D两点,点P在直线CD上.(1 )试写出图1中/APB、/ PAC、/ PBD之间的关系,并说明理由;(2)如果P点在C、D之间运动时,/ APB,/ PAC,/ PBD之间的关系会发生变化吗? 答:•(填发生或不发生);(3)若点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2、图3),试分别写出/ APB,Z PAC,Z PBD之间的关系,并说明理由•\Pp n(图1)2)3)二单择侮小题3分,共24分):.填空题侮小题3分,共24分)17.解:原式 42518. 解:由①,得 x=y+3.③,,,,,,把③代入②,得 3(y+3)-8y=14,解得 y= — 1.,, 把y= — 1代人③,得x=2.? ? 5分,所以这个方程组的解是四.解答题(每小题7分,共28分)(3)图①(或频数分布直方图)能更好地说明学生成绩施< x V 80的国家多于成绩在0< x V 60的国家.28. C 2. B3. D4. C5. D6. C7. D8. C9.答案不唯一,如(1,2)10. 811. ± 1012.同位角相等,两直线平行 13.四14・ 7 ,.解答题(每小题6分,共24分)15. 116. 7 x+4 10- x171— 5 M M M5分21.解:(1)建立直角坐标系略2分)(2)市场(4, 3),超市 (2, -3) (2分) (3)图瞻分)D : 40 w x V 50 C : 50 w xV 60 B : 60 w xV 70 A : 70 w x V80(2)(或扇形统计图)能更好地说明一半以上国家的学 生成绩在 < x V 70之间2.1CC成绩/分 4050 607080答:七年(1 )班、七年(2 )班分别有5人、55人参加光盘行动? ? ? ? ? 7分24. 评分标准:每个横线1分,满分7分.(1) ZBFD,两直线平行,内错角相等,ZBFD, 两直线平行,同位角相等 . (2)对顶角相等, ZD , 内错角相等,两直线平行 五•解答题侮小题10分,共20分)(+ = 「=25.解:(1)设小李生产 1件A 产品需要min,生产1件B 产品需要Ein. 依题意得得-? ?解X . y 35------- 3x 2 y 85 ••小李生产1件A 产品需要5min ,生产1件B 产品需要0mi n. ?????????4分(2) 1556 元.??????????? 6 分 23.解:设七年(1)班和七年(2)班分别有人、根据题意,得 y 8 128y 10解得 y 人参加光盘行动 x 65? ?' ・ ・ ・y 55 ? 6 分15 20。
2018-2019学年内蒙古呼伦贝尔市满洲里市七年级(下)期末数学试卷一、选择题(每题3分,共36分,请将正确答案选出并将其字母填入表格中)1.(3分)平方根和立方根都是本身的数是()A.0B.1C.±1D.0和±12.(3分)下列式子中,正确的是()A.B.C.D.3.(3分)平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等4.(3分)在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)5.(3分)方程x+y=5的自然数解有()个.A.4B.5C.6D.76.(3分)已知a<b,下列变形正确的是()A.a﹣3>b﹣3B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+17.(3分)如图:直线AB,CF相交于点O,∠EOB=∠DOF=90°,则图中与∠DOE互余的角有()A.1个B.2个C.3个D.4个8.(3分)为了了解某市去年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.样本是500B.被抽取的500名考生的中考数学成绩是样本容量C.被抽取的500名考生是个体D.全市去年中考数学成绩是总体9.(3分)有40个数据,其中最大值为100,最小值为55,对这组数据进行等距分组,若组距为5,则这组数据应该分成的组数为()A.8B.9C.10D.1110.(3分)在平面直角坐标系中,点P(m﹣2,m+1)一定不在第()象限.A.四B.三C.二D.一11.(3分)已知关于x的不等式4x﹣a≤0的非负整数解是0,1,2,则a的取值范围是()A.3≤a<4B.3≤a≤4C.8≤a<12D.8≤a≤12 12.(3分)在迎宾晚宴上,若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐.设有嘉宾x名,共准备了y张桌子.根据题意,下列方程组正确的是()A.B.C.D.二、填空题(每题3分,共15分)13.(3分)P(m﹣1,2﹣m)在y轴上,则m=.14.(3分)若=2.938,=6.329,则=.15.(3分)在平面直角坐标系中,点(2,3)到x轴的距离是.16.(3分)如图,三角形ABC的周长为22cm,现将三角形ABC沿AB方向平移2cm至三角形A′B′C′的位置,连接CC′,则四边形AB′C′C的周长是.17.(3分)将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有人.三、计算题(每小题6分,共24分)18.(6分)计算+19.(6分)解方程:3(x﹣2)2=27.20.(6分)解方程组21.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.四、画图题(6分)22.(6分)如图,在平面直角坐标系中,已知A(﹣2,2),B(2,0),C(3,3),P(a,b)是三角形ABC的边AC上的一点,把三角形ABC经过平移后得三角形DEF,点P的对应点为P′(a﹣2,b﹣4).(1)画出三角形DEF;(2)求三角形DEF的面积.五、解答题(23、24每题6分,25题7分、26、27每题10分,共39分)23.(6分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀正正正a30%良好正正正正正正30b合格正915%不合格35%合计6060100%(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=,b=;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为.24.(6分)将证明过程填写完整.如图,AD⊥BC于点D,EF⊥BC于点F,∠1=∠2.求证AB∥DG.证明:∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(),∴AD∥(),∴∠2=∠3(),又∵∠1=∠2(已知),∴∠1=∠3(),∴AB∥DG().25.(7分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣b)2018.26.(10分)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购买50根跳绳,如果A型跳绳的数量不多于B型跳绳数量的3倍,那么A型跳绳最多能买多少条?27.(10分)如图,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD与AE相交于F,∠CFE=∠AEB.(1)若∠B=86°,求∠DCG的度数;(2)AD与BC是什么位置关系?并说明理由;(3)若∠DAB=α,∠DGC=β,直接写出当α、β满足什么数量关系时,AE∥DG?2018-2019学年内蒙古呼伦贝尔市满洲里市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分,请将正确答案选出并将其字母填入表格中)1.(3分)平方根和立方根都是本身的数是()A.0B.1C.±1D.0和±1【分析】根据平方根和立方根的定义,求出平方根和立方根都是本身数是0.【解答】解:平方根是本身的数有0,立方根是本身的数有1,﹣1,0;所以平方根和立方根都是本身的数是0.故选:A.【点评】本题考查平方根和立方根的计算,关键是考虑特殊值.2.(3分)下列式子中,正确的是()A.B.C.D.【分析】根据平方根、算术平方根、立方根的定义求出每个式子的值,再进行判断即可.【解答】解:A、,故选项A错误;B、,故选项B错误;C、,故选项C错误;D、,故选项D正确.故选:D.【点评】本题主要考查立方根和算术平方根,解题的关键是掌握立方根和算术平方根的定义与性质.3.(3分)平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等【分析】根据平移的性质即可得出结论.【解答】解:平移后的图形与原来的图形的对应点连线平行或在同一条直线上且相等.故选:C.【点评】本题考查了平移的性质,牢记“连接各组对应点的线段平行且相等”是解题的关键.4.(3分)在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)【分析】由A(﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B点变化后的坐标.【解答】解:∵A(﹣2,3)平移后坐标变为(﹣3,2),∴可知点A向左平移1个单位,向下平移1个单位,∴B点坐标可变为(1,0).故选:B.【点评】本题运用了坐标的平移变化规律,由分析A点的坐标变化规律可求B点变化后坐标.5.(3分)方程x+y=5的自然数解有()个.A.4B.5C.6D.7【分析】首先用x表示y,再进一步根据x等于0、1、2、3、4、5,对应求出y的值,只要y值为自然数即可.【解答】解:∵x+y=5,∴y=5﹣x,当x=0时,y=5,当x=1时,y=4;当x=2时,y=3;当x=3时,y=2;当x=4时,y=1;当x=5时,y=0;故选:C.【点评】本题考查了二元一次方程的解,解题的关键是设x的值为定值,然后求出y的值,看y值是否为自然数即可.6.(3分)已知a<b,下列变形正确的是()A.a﹣3>b﹣3B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+1【分析】运用不等式的基本性质求解即可.【解答】解:由a<b,可得:a﹣3<b﹣3,2a<2b,﹣5a>﹣5b,﹣2a+1>﹣2b+1,故选:B.【点评】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.7.(3分)如图:直线AB,CF相交于点O,∠EOB=∠DOF=90°,则图中与∠DOE互余的角有()A.1个B.2个C.3个D.4个【分析】由于∠AOF和∠COB是对顶角,得到∠DOE=∠FOA=∠BOC,根据垂直定义和互为余角的定义即可得到结论.【解答】解:∵∠EOB=∠DOF=90°,∴图中与∠DOE互余的角有∠DOB,∠EOF,故选:B.【点评】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.8.(3分)为了了解某市去年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.样本是500B.被抽取的500名考生的中考数学成绩是样本容量C.被抽取的500名考生是个体D.全市去年中考数学成绩是总体【分析】我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.【解答】解:A.样本是抽取的500名考生的中考数学成绩,故本选项错误;B.被抽取的500名考生的中考数学成绩是样本,故本选项错误;C.被抽取的每名考生的数学成绩是个体,故本选项错误;D.全市去年中考数学成绩是总体,故本选项正确;故选:D.【点评】此题主要考查了样本的定义,正确把握定义是解题关键.9.(3分)有40个数据,其中最大值为100,最小值为55,对这组数据进行等距分组,若组距为5,则这组数据应该分成的组数为()A.8B.9C.10D.11【分析】根据频数分布直方图的组数的确定方法,用极差除以组距,然后根据组数比商的整数部分大1确定组数.【解答】解:因为极差为100﹣55=45,组距为5,所以45÷5=9,则这组数据应该分成的组数为10,故选:C.【点评】本题考查了频数分布直方图的组数的确定,需要特别注意,组数比商的整数部分大1,不能四舍五入.10.(3分)在平面直角坐标系中,点P(m﹣2,m+1)一定不在第()象限.A.四B.三C.二D.一【分析】求出点P的纵坐标大于横坐标,再根据各象限内点的坐标特征解答.【解答】解:∵(m+1)﹣(m﹣2)=m+1﹣m+2=3,∴点P的纵坐标大于横坐标,∴点P一定不在第四象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)11.(3分)已知关于x的不等式4x﹣a≤0的非负整数解是0,1,2,则a的取值范围是()A.3≤a<4B.3≤a≤4C.8≤a<12D.8≤a≤12【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式4x﹣a≤0得到:x≤,∵负整数解是0,1,2,∴2≤<3,解得8≤m<12.故选:C.【点评】本题考查了一元一次不等式的整数解,根据x的取值范围正确确定的范围是解题的关键.再解不等式时要根据不等式的基本性质.12.(3分)在迎宾晚宴上,若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐.设有嘉宾x名,共准备了y张桌子.根据题意,下列方程组正确的是()A.B.C.D.【分析】设有嘉宾x名,共准备了y张桌子.根据“若每桌坐12人,则空出3张桌子;若每桌坐10人,则还有12人不能就坐”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设有嘉宾x名,共准备了y张桌子,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(每题3分,共15分)13.(3分)P(m﹣1,2﹣m)在y轴上,则m=1.【分析】根据y轴上的点的横坐标为0列式求解即可得到m的值.【解答】解:∵点P(m﹣1,2﹣m)在y轴上,∴m﹣1=0,∴m=1.故答案为:1.【点评】本题考查了点的坐标,熟记y轴上的点的横坐标为0是解题的关键.14.(3分)若=2.938,=6.329,则=293.8.【分析】将变形为=×100,再代入计算即可求解.【解答】解:==×100=2.938×100=293.8.故答案为:293.8.【点评】考查了立方根,关键是将变形为×10015.(3分)在平面直角坐标系中,点(2,3)到x轴的距离是3.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点(2,3)到x轴的距离是3,故答案为:3.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.16.(3分)如图,三角形ABC的周长为22cm,现将三角形ABC沿AB方向平移2cm至三角形A′B′C′的位置,连接CC′,则四边形AB′C′C的周长是26cm.【分析】根据平移的性质,经过平移,对应点所连的线段相等,对应线段相等,找出对应线段和对应点所连的线段,结合四边形的周长公式求解即可.【解答】解:根据题意,得A的对应点为A′,B的对应点为B′,C的对应点为C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=22+4=26cm.故答案为:26cm.【点评】本题考查平移的性质,关键是根据经过平移,对应点所连的线段平行且相等,对应线段平行且相等解答.17.(3分)将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有60人.【分析】依据各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,可得各组人数,进而得出总人数.【解答】解:∵各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,∴各组人数分别为5人、10人、25人、15人、5人,∴总人数为:5+10+25+15+5=60(人),故答案为:60.【点评】本题主要考查了频数分布直方图,解题时注意:频数分布直方图中的小长方形高的比就是各组的频数之比.三、计算题(每小题6分,共24分)18.(6分)计算+【分析】本题涉及绝对值、二次根式化简、立方根3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣+3﹣6+3=2﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式、绝对值等考点的运算.19.(6分)解方程:3(x﹣2)2=27.【分析】方程两边都除以3,再根据平方根的定义开方,最后求出即可.【解答】解:3(x﹣2)2=27,(x﹣2)2=9,x﹣2=±3,x1=5,x2=﹣1.【点评】本题考查了平方根的定义的应用,解此题的关键是能根据平方根的定义得出关于x的一元一次方程,难度不是很大.20.(6分)解方程组【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②得:7x=14,即x=2,把x=2代入①得:y=0,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+3>5(x﹣1)得:x<4,解不等式x﹣6≥得:x≥,则不等式组的解集为≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、画图题(6分)22.(6分)如图,在平面直角坐标系中,已知A(﹣2,2),B(2,0),C(3,3),P(a,b)是三角形ABC的边AC上的一点,把三角形ABC经过平移后得三角形DEF,点P的对应点为P′(a﹣2,b﹣4).(1)画出三角形DEF;(2)求三角形DEF的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用△DEF所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△DEF即为所求;(2)S△DEF=5×3﹣×5×1﹣×4×2﹣×1×3=15﹣2.5﹣4﹣1.5=7.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.五、解答题(23、24每题6分,25题7分、26、27每题10分,共39分)23.(6分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀正正正a30%良好正正正正正正30b合格正915%不合格35%合计6060100%(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=18,b=50%;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为120.【分析】(1)根据样本容量和百分比求出频数,根据样本容量和频数求出百分比;(2)根据频数画出频数分布直方图;(3)求出八年级学生身体素质良好及以上的人数的百分比,根据总人数求出答案.【解答】解:(1)60×30%=18,30÷60×100%=50%,∴a=18,b=50%;(2)如图,(3)150×(30%+50%)=120.【点评】本题考查读频数分布表的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(6分)将证明过程填写完整.如图,AD⊥BC于点D,EF⊥BC于点F,∠1=∠2.求证AB∥DG.证明:∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(垂直的定义),∴AD∥EF(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行).【分析】根据平行线的判定得出∥EF,进而利用平行线的性质和判定解答即可.【解答】证明:∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(垂直的定义),∴AD∥EF(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行)故答案为:垂直的定义;EF;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【点评】此题考查平行线的判定和性质,关键是根据同位角相等,两直线平行得出AD∥EF解答.25.(7分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2019+(﹣b)2018.【分析】将代入方程组的第二个方程,代入方程组的第一个方程,联立求出a与b的值,代入计算即可求出所求式子的值.【解答】解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2019+(﹣b)2018=﹣1+1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.26.(10分)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购买50根跳绳,如果A型跳绳的数量不多于B型跳绳数量的3倍,那么A型跳绳最多能买多少条?【分析】(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据:“2根A 型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元”列方程组求解即可;(2)设购进A型跳绳m根,根据“A型跳绳的数量不多于B型跳绳数量的3倍”确定m 的取值范围.【解答】解:(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据题意,得:,解得:,答:一根A型跳绳售价是10元,一根B型跳绳的售价是36元;(2)设购进A型跳绳m根,依题意得:m≤3(50﹣m),解得:m≤37.5,而m为正整数,所以m最大值=37.答:A型跳绳最多能买37条.【点评】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,根据题意得出正确的等量关系是解题关键.27.(10分)如图,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD与AE相交于F,∠CFE=∠AEB.(1)若∠B=86°,求∠DCG的度数;(2)AD与BC是什么位置关系?并说明理由;(3)若∠DAB=α,∠DGC=β,直接写出当α、β满足什么数量关系时,AE∥DG?【分析】(1)根据平行线的判定定理得到AB∥CD,由平行线的性质得到∠DCG=∠B =86°;(2)由平行线的性质得到∠BAF=∠CFE,根据角平分线的定义得到∠BAF=∠F AD,等量代换得到∠DAF=∠CFE,∠DAF=∠AEB,由平行线的判定即可得到结论;(3)根据平行线的判定定理得到∠DAF=∠AEB,根据角平分线的定义得到∠DAB=2∠DAF=2∠AEB,然后根据平行线的性质即可得到结论.【解答】解:(1):∵∠BAD+∠ADC=180°,∴AB∥CD,∴∠DCG=∠B=86°;(2)AD∥BC;理由如下:∵AB∥CD,∴∠BAF=∠CFE,∵AE平分∠BAD,∴∠BAF=∠F AD,∴∠DAF=∠CFE,∵∠CFE=∠AEB,∴∠DAF=∠AEB,∴AD∥BC;(3)α=2β时,AE∥DG;理由如下:∵AD∥BC,∴∠DAF=∠AEB,∵AE平分∠BAD,∴∠DAB=2∠DAF=2∠AEB,当AE∥DG,∴∠AEB=∠G,∴α=2β.【点评】本题考查了平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键,属于中考常考题型.。
人教版数学七年级下学期期 末 测 试 卷(时间:120分钟 总分:120分) 学校________ 班级________ 姓名________ 座号________一.选择题1.下列命题不成立的是( )A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等 2.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =3的一个解,则m 的值是( ) A. ﹣1B. 1C. ﹣5D. 5 3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C. D.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=- 6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n - 7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o 9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n > 10.若3x =15,3y =5,则3x-y 等于( )A. 5B. 3C. 15D. 1011.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B. m ≥4C. m ≤4D. 无法确定 12.计算(-2)2019+(-2)2018的值是( )A -2 B. 20182 C. 2 D. -2018213. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A. 6B. 8C. 10D. 1214.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么( )A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁 15.如图,AB//EF ,C 90∠=o ,则α、β、γ的关系为( )A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5二.填空题17.(13)0=______. 18.如果a-b=3,ab=7,那么a 2b-ab 2=______.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x 的取值范围是_________.20.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.21.已知:如图,∠1=∠2,∠3=∠E ,试说明:∠A=∠EBC ,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC ,________三.解答题22.按要求解下列问题(1)计算-a3(b3)2+(2ab2)3;(2)解不等式组()2x13x1 x523⎧+≥-⎪⎨+⎪⎩<.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?26.如图,在△ABC中,AD⊥BC,AE平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE的度数.②∠DAE度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE度数吗?若能,请你写出求解过程;若不能,请说明理由.答案与解析一.选择题1.下列命题不成立的是()A. 等角的补角相等B. 两直线平行,内错角相等C. 同位角相等D. 对顶角相等【答案】C【解析】分析:对各个命题一一判断即可.详解:A. 等角的补角相等,正确.B. 两直线平行,内错角相等,正确.C.两直线平行,同位角相等.这是平行线的性质,没有两直线平行的前提,同位角相等,错误.D.对顶角相等,正确.故选C.点睛:考查命题真假的判断.比较简单.注意平行线的性质.2.已知12xy=-⎧⎨=⎩是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A. ﹣1B. 1C. ﹣5D. 5 【答案】C【解析】分析】把x与y值代入方程计算即可求出m的值.【详解】把12xy=-⎧⎨=⎩代入方程得:﹣m﹣2=3,解得:m =﹣5,故选:C .【点睛】考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.下列各式由左边到右边的变形中,属于分解因式的是( )A. ()a x y ax ay -=-B. 22()()a b a b a b -=+-C. 243(4)3x x x x -+=-+D. 211()a a a a+=+ 【答案】B【解析】【分析】根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.【详解】A 选项,不属于分解因式,错误;B 选项,属于分解因式,正确;C 选项,不属于分解因式,错误;D 选项,不能确定a 是否为0,错误;故选:B.【点睛】此题主要考查对分解因式的理解,熟练掌握,即可解题. 4.不等式组42x x ≤⎧⎨>⎩的解集在数轴上表示正确的是( ) A.B. C.D.【答案】C【解析】【分析】写出不等式解集,然后在数轴上表示出来.【详解】不等式组的解集为24x <≤ ∴答案选D.【点睛】本题主要考查了不等式在数轴上的表示,要注意实心与空心圆点的区别.5.下列运算正确的是( )A. 236x x x ⋅=B. 2242x x x +=C. 358(3)(5)15a a a -⋅-=D. 22(2)4x x -=-【答案】C【解析】【分析】 直接利用同底数幂的乘法运算法则.积的乘方运算法则以及单项式乘以单项式运算法则,即可得出答案.【详解】解:A .x 2•x 3=x 5,故此选项错误;B .x 2+x 2=2x 2,故此选项错误;C .(-3a 3)•(-5a 5)=15a 8,故此选项正确;D .(-2x )2=4x 2,故此选项错误;故选:C .【点睛】此题考查用同底数幂的乘法运算,积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.6.下列多项式不能使用平方差公式的分解因式是( )A. 22m n --B. 2216x y -+C. 22b a -D. 22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为( )A. 2a +2bB. 2a +2b ﹣2cC. 2b ﹣2cD. 2a 【答案】D【解析】【分析】先根据三角形三条边的关系判断a+b-c 和b-a-c 的正负,然后根据绝对值的定义化简即可.【详解】解:∵a 、b 、c 为△ABC 的三条边长,∴a +b ﹣c >0,b ﹣a ﹣c <0,∴原式=a +b ﹣c ﹣(b ﹣a ﹣c )=a +b ﹣c +c +a ﹣b =2a .故选:D .【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键. 三角形任意两边之和大于第三边,任意两边之差小于第三边.8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A. 105oB. 115oC. 120oD. 135o【答案】A【解析】【分析】 利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故选A .【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.9.若m n >,下列不等式不一定成立的是( )A. 33m n ++>B. 33m n ﹣<﹣C. 33m n >D. 22m n >【答案】D【解析】【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.10.若3x=15,3y=5,则3x-y等于()A. 5B. 3C. 15D. 10【答案】B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.11.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A. m<4B. m≥4C. m≤4D. 无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,故选C.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.计算(-2)2019+(-2)2018的值是()A.-2B. 20182C. 2D. -20182【答案】D 【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】解:(-2)2019+(-2)2018=(-2)2018×(-2+1)=-22018.故选:D.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A. 6B. 8C. 10D. 12【答案】C【解析】解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.14.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A. 甲20岁,乙14岁B. 甲22岁,乙16岁C. 乙比甲大18岁D. 乙比甲大34岁【答案】A【解析】【分析】设甲现在的年龄为x岁,乙现在的年龄为y岁,根据题意列出二元一次方程组即可求解.【详解】设甲现在的年龄为x岁,乙现在的年龄为y岁.依题意得()8()26y x yx x y--=⎧⎨+-=⎩,解2014xy=⎧⎨=⎩.故选A【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.15.如图,AB//EF,C90∠=o,则α、β、γ的关系为()A. βαγ=+B. αβγ180++=oC. βγα90+-=oD. αβγ90+-=o【答案】D【解析】解:方法一:延长DC 交AB 于G ,延长CD 交EF 于H .直角BGC V 中,190α∠=︒-;EHD △中,2βγ∠=-.因为AB EF P ,所以12∠=∠,于是90αβγ︒-=-,故90αβγ+-=︒.故选D .方法二:过点C 作CM AB ∥,过点D 作DN AB ∥,则由平行线的性质可得:BCM α∠=∠,NDE γ∠=,MCD CDN ∠=∠,∴90αβγ︒-∠=∠-∠,故90αβγ∠+∠-∠=︒,故选D 项.点睛:本题考查通过构造辅助线,同时利用三角形外角的性质以及平行线的性质建立角之间的关系. 16.如图,D 是△ABC 的边BC 上任意一点,E 、F 分别是线段AD .CE 的中点,且△ABC 的面积为20cm 2,则△BEF 的面积是( )A. 10B. 9C. 6D. 5 【答案】D【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:D.【点睛】此题考查三角形的面积,解题关键在于利用三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.二.填空题17.(13)0=______.【答案】1【解析】【分析】根据零指数幂的性质计算.【详解】解:原式=1故答案为:1【点睛】此题考查零指数幂,解题关键在于掌握运算法则.18.如果a-b=3,ab=7,那么a2b-ab2=______.【答案】21【解析】【分析】直接将原式提取公因式ab,进而将已知代入数据求出答案.【详解】解:∵a-b=3,ab=7,∴a2b-ab2=ab(a-b)=3×7=21.故答案为:21.【点睛】此题考查提取公因式分解因式,正确分解因式是解题关键.19.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是_________.【答案】11 32x≤<【解析】【分析】设其他两边的边长分别为y、z,然后根据三角形三边关系和x为最长边,列出不等式可得出结论. 【详解】设其他两边的边长分别为y、z,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z>x,即1-x>x,解得12x<,又∵x为最长边,∴x≥y,x≥z,∴2x≥y+z,即2x≥1-x,解得13 x≥,综上可得11 32x≤<.【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.20.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为______.【答案】110°【解析】【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠C=125°,∠A=20°,∴∠B=180°-∠A-∠C=180°-20°-125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°-35°-35°=110°.故答案为:110°.【点睛】此题考查平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.21.已知:如图,∠1=∠2,∠3=∠E,试说明:∠A=∠EBC,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC,________【答案】 (1). DB (2). EC (3). 内错角相等,两直线平行 (4). 4 (5). 两直线平行,内错角相等 (6). 4 (7). AD (8). BE (9). 两直线平行,同位角相等【解析】【分析】根据平行线的判定得出DB ∥EC ,根据平行线的性质得出∠E=∠4,求出∠3=∠4,根据平行线的判定得出AD ∥BE 即可.【详解】证明:∵∠1=∠2(已知),∴DB ∥EC (内错角相等,两直线平行),∴∠E=∠4(两直线平行,内错角相等),又∵∠E=∠3(已知),∴∠3=∠4( 等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠A=∠EBC (两直线平行,同位角相等),故答案为:DB ,EC ,内错角相等,两直线平行,4,两直线平行,内错角相等,4,AD ,BE ,两直线平行,同位角相等.【点睛】此题考查平行线的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.三.解答题22.按要求解下列问题(1)计算-a 3(b 3)2+(2ab 2)3;(2)解不等式组()2x 13x 1x 523⎧+≥-⎪⎨+⎪⎩<. 【答案】(1)7a 3b 6;(2)x <1.【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)根据不等式组的解法即可求出答案.【详解】解:(1)原式=-a 3b 6+8a 3b 6=7a 3b 6(2)()2x13x1x523⎧+≥-⎪⎨+⎪⎩①<②,由①得:x≤3,由②得:x<1,∴不等式组的解集为:x<1.【点睛】此题考查整式的加减运算,解一元一次不等式组,解题的关键是熟练运用运算法则,本题属于基础题型.23.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.【答案】(1)(x﹣y)(3a+2b)(3a﹣2b);(2)m=6,n=9,(x+3)2.【解析】【分析】(1)用提取公因式和平方差公式进行因式分解即可解答;(2)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.24.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:______;方法2:______.(2)从中你能发现什么结论?请用等式表示出来:______;(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b=ab=4,求阴影部分的面积.【答案】(1)a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab;(3)阴影部分的面积=2.【解析】【分析】(1)方法1:两个正方形面积和,方法2:大正方形面积-两个小长方形面积;(2)由题意可直接得到;(3)由阴影部分面积=正方形ABCD的面积+正方形CGFE的面积-三角形ABD的面积-三角形BGF的面积,可求阴影部分的面积.【详解】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2-2ab,故答案为:a2+b2,(a+b)2-2ab;(2)a2+b2=(a+b)2-2ab,故答案为:a2+b2=(a+b)2-2ab;(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE-S△ABD-S△BGF=a2+b2-12a2-12(a+b)b∴阴影部分的面积=12a2+12b2-12ab=12[(a+b)2-2ab]-12ab,∵a+b=ab=4,∴阴影部分的面积=12[(a+b)2-2ab]-12ab=2.【点睛】此题考查完全平方公式的几何背景,用代数式表示图形的面积是解题的关键.25.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?【答案】(1)甲120元,乙100元;(2)14件【分析】1)设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“乙商品每件进价比甲商品每件进价多20元,若购进甲商品5件和乙商品4件共需要1000元”列出方程组解答即可;(2)设购进甲种商品a 件,则乙种商品(40﹣a )件,根据“全部售出后总利润(利润=售价﹣进价)不少于870元”列出不等式解答即可.【详解】(1)设甲商品进价每件x 元,乙商品进价每件y 元,根据题意得:20541000y x x y -=⎧⎨+=⎩解得:120100x y =⎧⎨=⎩. 答:甲商品进价每件120元,乙商品进价每件100元.(2)设甲商品购进a 件,则乙商品购进(40﹣a )件(145-120)a +(120-100)(40-a )≥870∴a ≥14.∵a 为整数,∴a 至少为14.答:甲商品至少购进14件.【点睛】本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式.26.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE为角平分线,∴∠BAE=12(180°-∠B-∠C),∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C)-(90°-∠B)=12(∠B-∠C),又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键。
七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A .2 B .5 C .10 D.156.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1- C .64-的立方根为4- D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若总分 核分人3421BCAD -1 0 1 2 43 P3l 2l3∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46°D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y a x 是方程02=+y x 的一个解,则=-+236b a ;15.已知线段MN 平行于x 轴,且MN 的长度为5,若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °;BCA输入 x×2>95 +1停止是 否1DCBA17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1) 32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组:23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x各选项人数的扇形统计图各选项人数的条形统计图请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角的度数为__________;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点坐标为A(2,-1),C(6,2),点M为y轴上一点,△MAB的面积为6,且MD<MA;请解答下列问题:(1)顶点B的坐标为;(2)求点M的坐标;(3)在△MAB中任意一点P(x,y)经平移后对应点为1P(x-5,y-1),将△MAB作同样的平移得到△111BAM,则点1M的坐标为。
新人教版七年级数学下册期末测试卷及答案【精选】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.若整数x满足5+19≤x≤45+2,则x的值是()A.8 B.9 C.10 D.114.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.18.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或99.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.若()2320m n -++=,则m+2n 的值是________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求:(1)m 的值;(2)2(3m+2)-3(4m-1)的值.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.某住宅小区有一块草坪如图所示.已知AB =3米,BC =4米,CD =12米,DA =13米,且AB ⊥BC ,求这块草坪的面积.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、C5、B6、A7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、40°3、70.4、-15、AC=DF(答案不唯一)6、5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、(1)m=-5 (2)373、50°.4、36平方米5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
2017-2018学年下学期期末水平测试试卷七年级数学班级姓名考号得分一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是( )A.B.C.D.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°6.二元一次方程组的解是( )A.B.C.D.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分)13.计算|1﹣|﹣=__________.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是__________.15.已知关于x的不等式组的解集是x>4,则m的取值范围是__________.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是__________.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(__________),又∵DF∥AC,∴∠DEC=∠EDF(__________),∠C=∠FDB(__________),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=__________=180°.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2014-2015学年七年级有1200名学生,能否由此估计出该校2014-2015学年七年级学生骑自行车上学的人数,为什么?23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?参考答案一、选择题(本大题共12个小题,每小题3分,共36分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.4的算术平方根等于( )A.±2 B.2 C.﹣2 D.4考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故选B.点评:本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A.B.C.D.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=8,=4,=3,=2,无理数为.故选D.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x﹣1≥1的解集是( )A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤1考点:解一元一次不等式.分析:先移项合并同类项,然后系数化为1求解.解答:解:移项合并同类项得:﹣2x≥2,系数化为1得:x≤﹣1.故选B.点评:本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°考点:垂线;对顶角、邻补角.分析:首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.解答:解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.点评:本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )A.30°B.40°C.45°D.60°考点:平行线的性质.分析:首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.解答:解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.点评:此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.二元一次方程组的解是( )A.B.C.D.考点:解二元一次方程组.分析:运用加减消元法,两式相加消去y,求出x的值,把x的值代入①求出y的值,得到方程组的解.解答:解:,①+②得:3x=﹣3,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为,故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,掌握加减消元法的步骤是解题的关键.7.下列推理中,错误的是( )A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.点评:本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.若a>b,且c<0,则下列不等式中正确的是( )A.a÷c<b÷c B.a×c>b×c C.a+c<b+c D.a﹣c<b﹣c考点:不等式的性质.分析:根据不等式的性质进行判断.解答:解:A、在不等式a>b的两边除以同一个负数c,不等号方向改变,即a÷c<b÷c,故本选项正确;B、在不等式a>b的两边除乘以同一个负数c,不等号方向改变,即a×c<b×c,故本选项错误;C、在不等式a>b的两边加上同一个数c,不等式仍成立,即a+c>b+c,故本选项错误;D、在不等式a>b的两边减去同一个数c,不等式仍成立,即a﹣c>b﹣c,故本选项错误;故选:A.点评:主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.要调查下列问题,你认为哪些适合抽样调查( )①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格考点:平移的性质.专题:网格型.分析:根据图形,对比图①与图②中位置关系,对选项进行分析,排除错误答案.解答:解:观察图形可知:平移是先向下平移3格,再向右平移2格.故选:D.点评:本题是一道简单考题,考查的是图形平移的方法.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是( )A.a>b B.ab>0 C.a+b>0 D.|a|>|b|考点:实数与数轴.分析:先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.解答:解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.点评:此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x岁和y岁,则可列方程组( )A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设小亮和老师的岁数分别为x岁和y岁,根据题意可得,老师现在的年龄﹣学生现在的年龄=学生现在的年龄﹣4;老师40岁﹣老师现在的年龄=老师现在的年龄﹣学生现在的年龄,根据等量关系列出方程组.解答:解:设小亮和老师的岁数分别为x岁和y岁,.故选A.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.二、填空题(本大题共4个小题,每小题3分,共12分,把答案直接填在答题纸对应的位置上)13.计算|1﹣|﹣=﹣1.考点:实数的运算.专题:计算题.分析:原式利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=﹣1﹣=﹣1,故答案为:﹣1点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是80°.考点:平行线的判定.分析:先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.解答:解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.点评:本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3.考点:解一元一次不等式组.分析:先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.解答:解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.点评:本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.观察数表,若用有序整数对(m,n)表示第m行第n列的数,如(4,3)表示实数6,则表示的数是37.考点:规律型:数字的变化类.分析:分析表中的数可以得出,对应的第m行的第一列数为m,第二列数为m+1,第三列数为m+2,对应的第n列的数为m+(n﹣1),所以对应的数为37.解答:解:根据题意可知:当m=1时,第一列数为m,第二列数为m+1,第三列数为m+2,对应的第n列的数为m+(n﹣1),故m=20,n=18时,对应的数为37.故答案为:37.点评:此题主要考查数字的变化规律,通过分析表中数的变化总结归纳规律,关键在于求出n和m的关系式.三、解答题(本大题共8个小题,共72分,解答时应写出文字说明、证明过程或演算步骤)17.计算:().考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,然后化简后合并即可.解答:解:原式=×﹣×=﹣=﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组整理后,利用加减消元法求出解即可.解答:解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x≥﹣2,解不等式②得:x<,∴不等式组的解集为﹣2≤x<,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.推理与证明:我们在小学就已经知道三角形的内角和等于180°,你知道为什么吗?下面是一种证明方法,请你完成下面的问题.(1)作图:在三角形ABC的边BC上任取一点D,过点D作DE平行于AB,交AC于E点,过点D作DF平行于AC,交AB于F点.(2)利用(1)所作的图形填空:∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(两直线平行,同位角相等),又∵DF∥AC,∴∠DEC=∠EDF(两直线平行,内错角相等),∠C=∠FDB(两直线平行,同位角相等),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=∠BDC=180°.考点:平行线的性质;三角形内角和定理.专题:推理填空题.分析:(1)根据题意作出图形即可;(2)由DE∥AB,得到∠A=∠DEC,∠B=∠EDC,根据DF∥AC,于是得到∠DEC=∠EDF,∠C=∠FDB,等量代换即可得到结论.解答:解:(1)如图所示;(2)∵DE∥AB,∴∠A=∠DEC,∠B=∠EDC(两直线平行,同位角相等),又∵DF∥AC,∴∠DEC=∠EDF(两直线平行,内错角相等),∠C=∠FDB(两直线平行,同位角相等),∴∠A=∠EDF(等量代换),∴∠A+∠B+∠C=∠BDC=180°.故答案为:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同位角相等,∠BDC.点评:本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.21.如图,某小区有大米产品加工点3个(M1,M2,M3),大豆产品加工点4个(D1,D2,D3,D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直坐标系内,用坐标表示出大豆产品加工点的位置.考点:坐标确定位置.分析:(1)根据M1(﹣5,﹣1),M2(4,4),M3(5,﹣4)确定原点,画出坐标系即可;(2)根据坐标系得出各点坐标即可.解答:解:因为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4),可得坐标系如图:(2)由坐标系可得:D1(﹣3,3),D2(0,﹣3),D3(3,0),D4(8,1)点评:此题考查坐标与图形问题,关键是根据M1(﹣5,﹣1),M2(4,4),M3(5,﹣4)确定原点画出坐标系.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校2014-2015学年七年级有1200名学生,能否由此估计出该校2014-2015学年七年级学生骑自行车上学的人数,为什么?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.解答:解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校2014-2015学年七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是2014-2015学年七年级学生上学方式的抽样调查,收集的数据对本校2014-2015学年七年级学生的上学方式不具有代表性.点评:本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.几何证明.如图,已知AB∥CD,BC交AB于B,BC交CD于C,∠ABE=∠DCF,求证:BE∥CF.考点:平行线的判定与性质.专题:证明题.分析:根据平行线的性质得出∠ABC=∠DCB,求出∠EBC=∠FCB,根据平行线的判定推出即可.解答:证明:∵AB∥CD,∴∠ABC=∠DCB,∵∠ABE=∠DCF,∴∠ABC﹣∠ABE=∠DCB﹣∠DCF,∴∠EBC=∠FCB,∴BE∥CF.点评:本题考查了平行线的性质和判定的应用,能求出∠EBC=∠FCB是解此题的关键,注意:内错角相等,两直线平行,反之亦然.24.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.解答:解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.点评:此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.。