人教版数学八年级上册几何总复习总结
- 格式:doc
- 大小:303.50 KB
- 文档页数:6
八年级数学上册几何知识点总结1.三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2.三角形三边的关系(重点)(1)三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b3三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD 叫做△ABC的边BC上的高。
4三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。
三角形三条中线的交于一点,这一点叫做“三角形的重心”。
三角形的中线可以将三角形分为面积相等的两个小三角形。
5三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。
6.三角形具有稳定性7.三角形的内角和定理三角形的内角和为180°8.直角三角形两个锐角的关系直角三角形的两个锐角互余(相加为90°)。
有两个角互余的三角形是直角三角形。
9三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角10.三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于与它不相邻的任何一个内角。
11.一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(−nn12.n边形的内角和定理n边形的内角和为(n−2)∙180°13.n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。
14.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;15.全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(SSS)(2)两角和它们的夹边对应相等的两个三角形全等。
人教版八年级上册数学期中复习知识点总结一、数与式1. 有理数- 概念:有理数是可以表示为两个整数比值的数,包括整数、分数、小数。
- 分类:正有理数、负有理数、零。
- 运算:加法、减法、乘法、除法。
2. 实数- 概念:实数包括有理数和无理数。
- 分类:正实数、负有实数、零。
- 运算:同有理数。
3. 代数式- 概念:代数式是由数字、字母和运算符组成的式子。
- 分类:单项式、多项式。
- 运算:加法、减法、乘法、除法。
二、方程与不等式1. 一元一次方程- 概念:未知数的最高次数为1的方程。
- 解法:移项、合并同类项、化简。
2. 不等式- 概念:表示两个数大小关系的式子。
- 解法:同方程,但需要考虑符号。
3. 二元一次方程组- 概念:含有两个未知数的一次方程组。
- 解法:代入法、消元法。
三、图形与几何1. 平面几何- 点、线、面的基本概念。
- 直线、射线、线段的性质。
- 平行线、垂线的性质。
- 三角形、四边形、圆的性质。
2. 立体几何- 平面、直线、点在立体几何中的扩展。
- 三视图。
- 柱体、锥体、球体的性质。
四、统计与概率1. 统计- 数据收集、整理、描述。
- 平均数、中位数、众数、方差。
2. 概率- 随机事件、必然事件、不可能事件。
- 概率的计算。
以上为八年级上册数学期中复习的知识点总结,希望能帮助同学们更好地复习和掌握数学知识。
人教版 八年级数学 上册几何知识考点汇集1. 三角形三边关系:两边之差 < 第三边 < 两边之和2. 三角形的三条高:钝角三角形三条高交于三角形外,直角三角形三条高交于三角形的直角顶点上,锐角三角形三条高交于三角形内。
3. 三角形的三条中:三角形三条中线交于三角形内,交点成为重心,中线平分三角形的面积。
4.三角形具有稳定性5. n 边形对角线计算公式:2)3(-n n 6. 多边形内角和公式:on 180)2(⨯-7. 点(x , y )关于x 轴对称的点的坐标为(x , -y ) 点(x , y )关于x 轴对称的点的坐标为(-x , y )8. 定理、判定 性质 知识点及几何语言汇总知识原理条件结论图形 几何语言 三角形内角和等于180° 如果一个图形是三角形那么这个图形内角和是180°∵在△ABC 中∴∠A+∠B+∠C=180°ABC有两个角互余的三角形是直角三角一个三角形中,如果有两个角互余那么这个三角形是直角三角形在△ABC 中,∵∠A +∠B =90°,∴△ABC 是直角三角形.直角三角形的两个锐角互余如果一个三角形是直角三角形那么这个三角形的两个锐角互余在Rt△ABC 中,∵∠C =90°,∴∠A +∠B =90°三角形的外角等于与之不相邻的两个内角和如果一个角是三角形的外角那么它等于与它不相邻的两个内角和∵∠ACD是△ABC的一个外角∴∠ACD= ∠A+ ∠B.全等三角形的对应边相等,全等三角形的对应角相等如果两个三角形全等那么这两个三角形的对应边相等,对应角相等如图:∵△ABC≌△DEF,∴AB=DE,BC=EF,AC=DF(全等三角形的对应边相等),∴∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等).AB CAB CAB C DAB C EDF三边分别相等的两个三角形全等在两个三角形中,如果有三组对应边分别相等那么这两个三角形全等在△ABC和△DEF中,AB=DE,BC=EF,CA=FD,∴△ABC ≌△DEF(SSS)两边和它们的夹角分别相等的两个三角形全等在两个三角形中,如果有两组对应边及它们的夹角也相等那么这两个三角形全等在△ABC 和△A′B′C′中,∴△ABC ≌△A′B′C′(SAS).两角和它们的夹边分别相等的两个三角形全等在两个三角形中,如果有两组对应角及它们的夹边也相等那么这两个三角形全等在△ABC和△A′B′C′中,∠A=∠A′AB=A′B′∠B=∠B′∴△ABC≌△A′B′C′(ASA).AB CDE FC ′ABCA ′B ′AB = A′B′,∠A =∠A′,A C =A′C′,AB CA ′B ′C ′两角分别相等且其中一组等角的对边相等的两个三角形全等在两个三角形中,如果有两组对应角及其中一组等角的对边相等那么这两个三角形全等在△ABC 和△A′B′C′中,∠A=∠A′AB=A′B′∠C=∠C′∴△ABC≌△A′B′C′(AAS).斜边和一条直角边对应相等的两个直角三角形全等在两个直角三角中,如果有斜边和一条直角边对应相等那么这两个三角形全等在Rt△ABC和Rt△A′B′C′中,Rt△ABC ≌Rt△A′B′C′(HL).一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.已知一个角的角平分线那么分得的两个小角相等∵OC平分∠AOB∴∠1=∠2AB CA ′B ′C ′ABCA ′B′CAB=A′B′,BC=B′C′,O BCA12角的平分线上的点到角两边的距离相等(1)角的平分线;(2)点在该平分线上;(3)垂直距离.垂线段相等(点到线的距离)∵OP 是∠AOB的平分线,且PD⊥OA,PE⊥OB,∴PD = PE角的内部到角的两边的距离相等的点在角的平分线上(1)位置关系:点在角的内部;(2)(2)数量关系:该点到角两边的距离相等点在角平分线上∵PD⊥OA,PE⊥OB,PD=PE.∴点P 在∠AOB的平分线上线段垂直平分线上的点到线段两个端点的距离相等.已知线段的垂直平分线有垂直平分线上一点垂直平分线上一点到线段两端的距离相等(点到点的距离)∵AP是BC的垂直平分线∴AB=AC与一条线段两个端点距离相等的点,在这条线段的垂直平分线上已知线段外一点到线段两端的距离相等那么判定这个点在线段的垂直平分线上∵PA =PB,∴点P 在AB 的垂直平分线上.BADO PECBADO PECPA BlCPA B等腰三角形的两个底角相等(等边对等角)在一个三角形中,如果有两条边相等,那么这两条边所对的角相等∵AB=AC(已知)∴∠B=∠C(等边对等角)等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(通常说成等腰三角形的“三线合一”)已知等腰三角形及底边上一线那么这条线是三个身份合一例如,∵∠1=∠2∴AD是∠BAC的角平分线∴AD⊥BC∴AD 是中线,即D是BC的中点如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简写成“等角对等边”).一个三角形中,如果有两个角相等那么这两个角所对的边也相等,即这个三角形式等腰三角形在△ABC中,∵∠B=∠C,∴AC=AB.即△ABC为等腰三角形.AB CAB CD12B CA等边三角形的三条边相等,三个角相等,并且每个角都等于60°。
数学八年级上册知识点总结数学八年级上册知识点总结(篇1)知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的.两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
二、知识概念:1、基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
一、选择题 :1、.以下图形是轴对称图形的有〔〕A:1个B:2个C:3个D:4个2、等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为〔〕A4cm 10cmB. 7cm,7cmC4cm10cm 或 7cm,7cmD.无法确定3、等腰三角形的一个内角是50。
,那么另外两个角的度数分别是()〔A 〕65°,65°.〔B〕 50°,80°〔C〕 65°,65°或50°,80°. 〔D〕50°,50°.4、如图,MB ND,MBANDC ,以下条件中不能判定△ ABM ≌△ CDN的是〔〕〔A〕MN 〔B〕 AB CD 〔C〕 AM CN 〔D〕 AM ∥ CN M NAC B D5、如图 , 在三角形 ABC中, ∠ C=90,AC=4cm,AB=7cm,AD平分∠ BAC交 BC于点 D,DE⊥AB于点 E,那么 EB的长是〔〕A. 3cm, B.4cm C.5cm D. 不能确定6、如图,一块三角形的玻璃打碎成了三块,某同学要到玻璃店配一块与此玻璃一样形状、大小完全一样的玻璃,最省事的方法是带哪一块去( )A. ①B.②C. ③D. 不能确定7、以下说法错误的选项是( )A. 关于某直线对称的两个图形一定能够重合 ;B. 两个全等的三角形一定关于某直线对称;C.轴对称图形的对称轴至少有一条 ;D. 长方形是轴对称图形8、以下两点是关于 x 轴对称的点是 ( )A(-1,3) 和 (1,-3)B. (3,-5) 和 (-3,-5)C(-2,4)和(2,-4)D.(5,-3) 和 (5,3 )9、等腰三角形的一边长 7cm,另一边长 5cm,那么这个三角形的周长是〔〕A.12cm;B.17cm;C.19 cm;D.17cm 或 19cm10、假设∠ AOP=∠ BOP=15°,PC∥OA,PD⊥OA,PC=4,那么 PD=〔〕A 4B 3C 2D 111、如图,⊿ ABC中边 AB的垂直平分线分别交BC、AB于点 D、E,AE=3, ⊿ ADC1 / 6的周长为 9 ㎝,那么⊿ ABC 的周长〔〕 A10㎝B12㎝C15㎝D17㎝ 12、如图:数轴上表示1,2的对应点分别为A,B ,点B 关于点A 的对称点为 C ,那么点 C 表示的数是〔 〕A 2-1 B 1-2C2-2D 2-2BCC PDO A0 C A B B AD E13、等腰三角形的一边长为 4cm ,另一边为 8cm ,那么它的周长是〔 〕A16㎝ B20㎝C12 ㎝ D 16㎝或 20㎝ 14、以下说法:①一条直角边和斜边上的高对应相等的两个直角三角形全等②有两条边相等的两个直角三角形全等③假设两个直角三角形面积相等,那么它们全等④两边和其中一边的对角对应相等的两个三角形全等。
初二数学上册知识点人教版初二数学上册知识点人教版1三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的'内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
初二数学上册知识点人教版21全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11推论1等腰三角形顶角的平分线平分底边并且垂直于底边12等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13推论3等边三角形的各角都相等,并且每一个角都等于60°14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15推论1三个角都相等的三角形是等边三角形16推论2有一个角等于60°的等腰三角形是等边三角形17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18直角三角形斜边上的中线等于斜边上的一半19定理线段垂直平分线上的`点和这条线段两个端点的距离相等20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 21线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22定理1关于某条直线对称的两个图形是全等形23定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28定理四边形的内角和等于360°29四边形的外角和等于360°30多边形内角和定理n边形的内角的和等于(n-2)某180°31推论任意多边的外角和等于360°32平行四边形性质定理1平行四边形的对角相等33平行四边形性质定理2平行四边形的对边相等34推论夹在两条平行线间的平行线段相等35平行四边形性质定理3平行四边形的对角线互相平分36平行四边形判定定理1两组对角分别相等的四边形是平行四边形37平行四边形判定定理2两组对边分别相等的四边形是平行四边形38平行四边形判定定理3对角线互相平分的四边形是平行四边形39平行四边形判定定理4一组对边平行相等的四边形是平行四边形40矩形性质定理1矩形的四个角都是直角41矩形性质定理2矩形的对角线相等42矩形判定定理1有三个角是直角的四边形是矩形43矩形判定定理2对角线相等的平行四边形是矩形44菱形性质定理1菱形的四条边都相等45菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角46菱形面积=对角线乘积的一半,即S=(a某b)÷247菱形判定定理1四边都相等的四边形是菱形48菱形判定定理2对角线互相垂直的平行四边形是菱形49正方形性质定理1正方形的四个角都是直角,四条边都相等50正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角51定理1关于中心对称的两个图形是全等的52定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分53逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称54等腰梯形性质定理等腰梯形在同一底上的两个角相等55等腰梯形的两条对角线相等56等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形57对角线相等的梯形是等腰梯形58平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等59推论1经过梯形一腰的中点与底平行的直线,必平分另一腰60推论2经过三角形一边的中点与另一边平行的直线,必平分第三边61三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 62梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h初二数学上册知识点人教版31.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
人教版八年级全册数学知识点总结归纳
以下是人教版八年级全册数学知识点的总结归纳:
1. 有理数:包括正数、负数、零和分数。
学生需要掌握有理数的加减乘除运算、比较大小以及在数轴上的表示和位置。
2. 代数式与等式:学生学习如何读写代数式,理解变量和常数的概念。
他们需要解一元一次方程和应用代数式和方程解决实际问题。
3. 几何基础知识:包括线段、射线、直线、角及其度量、三角形、四边形等几何概念。
学生需要掌握几何图形的命名、性质、分类以及几何变换等内容。
4. 相似与全等:学生学习相似和全等的概念,并能判断和构造相似图形和全等图形。
5. 数列与函数:学生了解数列的概念,学习数列的通项公式和求和公式。
他们还学习函数的概念、函数的表示和图像,并能进行函数的变换和运算。
6. 概率与统计:学生学习统计图表的制作和解读,掌握统计调查的基本方法和思想。
他们还需要了解概率的概念和计算方法,并应用概率解决问题。
7. 三角函数:学生学习正弦、余弦和正切的定义和性质,掌握三角函数的计算和应用,以及解三角形问题。
8. 平面向量:学生了解向量的概念和性质,学习向量的表示、运算和平移,并能利用向量解决几何问题。
9. 二次根式与函数:学生学习二次根式的概念、性质和计算,以及二次函数的概念、图像和性质。
他们需要了解二次函数的最值、零点、图像变换和应用。
以上是人教版八年级全册数学知识点的简要总结。
具体内容可能根据不同教材的编排有所变化。
建议学生根据教材的章节和知识点进行有针对性的学习和复习。
八年级数学上册知识点总结第1篇第十一章三角形一、知识框架:知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的.外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
第十二章全等三角形一、知识框架:二、知识概念:1、基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
【备考期末】初中数学八年级上册知识点及公式总结大全(人教版)人教版八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章整式的乘除与分解因式一、知识框架:第十五章分式一、知识框架:初中物理、英语、数学网课特惠报名立即报名☟☟☟老生都知道的良心网校↓↓↓阅读原文。
几何部分一. 全等三角形1、能完全重合的图像叫做全等图形。
两个图形全等, 它们的形状和大小都相同。
2、两个能重合的三角形叫全等三角形。
3、全等三角形的对应边相等, 对应角相等。
4、三角形全等的判定:1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。
2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4)有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5)三条中线(或高、角平分线)分别对应相等的两个三角形全等。
5、直角三角形全等的判定:1)斜边和一条直角边对应相等的两个直角三角形全等(简称HL或“斜边直角边”)。
2)以上判定方法对于直角三角形全部适用。
二. 轴对称图形(一)轴对称与轴对称图形1.轴对称: 如果把一个图形沿着某一条直线折叠后, 能够与另一个图形重合, 那么这两个图形关于这条直线成轴对称, 这条直线叫做对称轴, 两个图形中的对应点叫做对称点。
2.轴对称图形:如果把一个图形沿着一条直线折叠, 直线两旁的部分能够互相重合, 那么这个图形叫做轴对称图形, 这条直线叫做对称轴。
轴对称和轴对称图形的区别和联系:区别: ①轴对称是指两个图形沿某直线对折能够完全重合, 而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
3.联系: ①两部分都完全重合, 都有对称轴, 都有对称点。
4.②如果把成轴对称的两个图形看成是一个整体, 这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形, 这两个部分图形就成轴对称。
常见的轴对称图形: 圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等, 正多边形等。
(分别指出这些图形的对称轴的条数)怎样画轴对称图形: 画轴对称图形时, 应先确定对称轴, 再找出对称点。
一、选择题:1、.下列图形是轴对称图形的有()A :1个B :2个C :3个D :4个2、等腰三角形的周长是18cm ,其中一边长为4cm ,其它两边长分别为()A4cm 10cmB .7cm ,7cmC4cm10cm 或7cm ,7cm D .无法确定3、等腰三角形的一个内角是50。
,则另外两个角的度数分别是( )(A )65°,65°.(B ) 50°,80°(C ) 65°,65°或50°,80°. (D )50°,50°.4、如图,已知ND MB =,NDC MBA ∠=∠,下列条件中不能判定△ABM ≌△CDN 的是( )(A )N M ∠=∠(B )CD AB =(C )CN AM =(D )AM ∥CNA B DC M N5、如图,在三角形ABC 中,∠C=90,AC=4cm,AB=7cm,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则EB 的长是 ( )A .3cm, B.4cm C.5cm D.不能确定6、如图,一块三角形的玻璃打碎成了三块,某同学要到玻璃店配一块与此玻璃一样形状、大小完全一样的玻璃,最省事的办法是带哪一块去 ( )A. ①B.②C. ③D.不能确定7、下列说法错误的是 ( )A.关于某直线对称的两个图形一定能够重合;B.两个全等的三角形一定关于某直线对称;C.轴对称图形的对称轴至少有一条;D.长方形是轴对称图形8、下列两点是关于x 轴对称的点是 ( )A(-1,3)和(1,-3)B. (3,-5)和(-3,-5)C(-2,4)和(2,-4)D.(5,-3)和(5,3 )9、等腰三角形的一边长7cm,另一边长5cm ,那么这个三角形的周长是( )A.12cm;B.17cm;C.19 cm;D.17cm 或19cm10、若∠AOP=∠BOP=15°,PC ∥OA,PD ⊥OA,PC=4,则PD=( )A 4B 3C 2D 111、如图,⊿ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E,AE=3, ⊿ADC的周长为9㎝,则⊿ABC 的周长( )A 10㎝B 12㎝C 15㎝D 17㎝12、如图:数轴上表示1,2的对应点分别为A,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( )A 2-1 B 1-2 C 2-2 D 2-213)A 16㎝B 20㎝C 12㎝D 16㎝或20㎝14、下列说法:①一条直角边和斜边上的高对应相等的两个直角三角形全等②有两条边相等的两个直角三角形全等③若两个直角三角形面积相等,则它们全等④两边和其中一边的对角对应相等的两个三角形全等。
其中错误的个数是( )A 4 B 3 C 2 D 115.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④有一条边上的高和中线重合的三角形.其中是等边三角形的有( ).A 、①②③④B 、②③④C 、①②③D 、①②二、填空题1、已知如图1, △ABC≌△FED,且BC=DE.则∠A=__________,AD=_______.FE=_______F EDC A 21D C A2、如图2,∠1=∠2,由AAS 判定△ABD≌△ACD,则需添加的条件是__________.3、长方形沿对角线折叠如图4,折△ABC 到△ACE 的位置,∠BAC=38度,则 ∠ECD= 度。
ED C B AE DC B AN M D B A4、如图5,在ΔABC 中,∠A=90°,BD 是∠ABC 的平分线,DE 是BC 的垂直平分线,若AD=2cm , 则ED=________cm 。
5、如图6,ΔABC 中,AB=AC=14cm ,AB 的垂直平分线MN 交AC 于D ,ΔDBC 的周长是24cm ,则BC=___________cm 。
6.如图,P 在∠AOB 的平分线上, 若PD=PE,须添加一个条件: ,就能使△PDO ≌△PEO ;(只填写一个)7.如图,直线 L1, L2, L3 表示三条相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,刚可供选择的地址应该在三条相互交叉的公路所形成的三角形的三条 交点处;8.请思考正三角形,正方形,正五边形等正多边形的对称轴的条数,再写出正n 边形的对称轴条数是: ;9.点M (x-1,y+1)与M ′(2x-2,3y –2)关于y 轴对称,则:x= ,y= ;10.等腰三角形的顶角是120°,底边上的中线长为4cm,则它的腰长 ;11.一辆汽车的车牌号在水中的倒影是: , 那么它的实际车牌号是: ;12.三角形三个内角度数之比是1:2:3,最大边长是8,则它的最小边的长13、若一个等腰三角形的顶角是150,腰长为2cm的长度为 。
14、在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,则∠ 15、若三角形三边长满足(a-b)(a-c)=0,则△ABC 的形状是 。
16、P 为等边三角形ABC 所在平面的一点,且△PAB 、△PBC 、△PAC 都是等腰三角形,这样的点P 个。
17.等腰三角形中,有一个角是140°,则这个等腰三角形的底角的度数三、作图题:(不写作法,但必须保留作图痕迹,)如图(1),一群小孩以同样的速度同时从A 村出发到B 村,要过一条公路a,其中只有一个小孩用最快的时间到达B 村。
你知道这个聪明的小孩的行程路线吗?在图上标出示意图。
如图(2),在公路的同侧有两村庄,要在公路上建立一个站点,使到A 、B 两村的距离相等,请标出站点位置。
四、证明题:1.已知:如图,点E 、F 在线段BD 上,AB =CD ,∠B =∠D ,BF =DE .求证:(1)AE =CF (2)AF//CE2.如图,在Rt△ABC 中,∠A=90°,点D 为斜边BC 上一点,且BD=BA,过点D 作BC 的垂线交AC 于点E.求证:点E 在∠ABC 的角平分线上.4、已知:如图,AF=DC ,CB=FE ,BC ∥EF , 求证:AB ∥DE4、如图,C 在OB ∠B,AE=BC. 求证:AC=BE 5.已知:如图8,△ABC 中,AD 是∠BAC 的外角的角平分线,且AD ∥BC.求证:△ABC 是等腰三角形.6.已知:如图9,△ABC 是等边三角形,D 、E 分别是BC 、CA 上的点,且BD =CE. (1)求证:AD =BE ;(2)求∠AFE的度数.E D B A图9F E D C B A B C D E F A7、.如下图,A 、D 、E 三点在同一直线上,∠BAE=∠CAE,⑴求证:AB=AC ⑵求证:AE ⊥BC8.如图,已知△ABC 和△DEC 都是等边三角形,∠ACB=E 在同一直线上,连结BD 和AE. ⑴求证:AE=BD ⑵求∠AHB 的度数; ⑶求证: 9、点P 是△ABC 内一点,PG 是BCCP 的延长线交AC 、AB 于D 、E,求证:BE=CD10.如图,在△ABC 中,∠ACB=900 ,,DE=3cm,求BE 的长。
11.如图,CD ⊥AB,垂足为D ,∠BD=AD12.如图,已知 △ABC 为等边三角形,D 平分∠ACD , CE=BD ,求证:△ADEBC五、解答题1.在△ABC 中,∠ACB =90°,AC =BC ,直线,MN 经过点C ,且AD ⊥MN 于点D ,BE ⊥MN 于点E. (1)当直线MN 绕点C 旋转到如图10的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到如图11的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到如图12的位置时,线段DE 、AD 、BE 之间又有什 么样的数量关系?请你直接写出这个数量关系,不要证明.2、如图甲,在正方形ABCD 中,点E 、F 分别为边BC 、CD的中点,AF 、DE 相交于点G ,则可得结论:①AF=DE ,②AF ⊥DE 。
(不需要证明)(1)如图乙,若点E 、F 不是正方形ABCD 的边BC 、CD 的中点,但满足CE=DF 。
则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图丙,若点E 、F 分别在正方形ABCD 的边CB 的延长线和DC 的延长线上,且CE=DF ,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由。
3.如图1,两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O .(1)在图1中,你发现线段AC ,BD 的数量关系是(2)将图1中的OAB △绕点O 顺时针旋转90角,这时(1)中的两个结论是否成立?请做出判断并说明理由.(3)将图1中的OAB △绕点O 顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.C 图丙 G G A A A B B B CD DE EF G图乙 C D F 图12图11图10B N E DC M A N M ED C B A N ME D C B A。