八年级数学寒假复习(一次函数的应用)
- 格式:doc
- 大小:200.50 KB
- 文档页数:7
..复习一次函数专题【根底知识回忆】一、 一次函数的定义:一般的:如果y= 〔 〕即y 叫x 的一次函数特别的:当b= 时,一次函数就变为y-kx(k ≠0),这时y 叫x 的 ____二、一次函数的图象及性质1、一次函数y=kx+b 的图象是经过点〔0,b 〕〔-b k,0〕的一条 正比例函数y= kx 的图象是经过点 的一条直线2、正比例函数y= kx(k ≠0)当k>0时,其图象过 、 象限,时y 随x 的增大而)当k<0时,其图象过 、 象限,时y 随x 的增大而3、一次函数y= kx+b ,图象及函数性质①、k>0 b>0过 象限 k>0 b<0过 象限k<0 b>0过 象限 k<0 b>0过 象限4、假设直线L 1y= k 1x+ b 1与L 2y= k 2x+ b 2平行,那么k 1 k 2;三、用系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值步骤: 1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x=0 或y=0解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解得问题五、一次函数的应用一般步骤:1、设定问题中的变量 2、建立一次函数关系式3、确定取值范围4、利用函数性质解决问题5、作答一次函数的应用多与二元一次方程组或一元一次不等式〔组〕相联系,经常涉及交点问题,方案涉及问题等【重点考点例析】Y 随x 的增大而 Y 随x 的增大而考点一:一次函数的图象和性质1、 〔2021•上海〕正比例函数y=kx 〔k ≠0〕,点〔2,-3〕在函数上,那么y 随x 的增大而〔增大或减小〕.对应训练2、〔2021•沈阳〕一次函数y=-x+2图象经过〔 〕A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限3、〔2021•贵阳〕在正比例函数y=-3mx 中,函数y 的值随x 值的增大而增大,那么P 〔m ,5〕在第 象限.考点二:一次函数解析式确实定4、 〔2021•聊城〕如图,直线AB 与x 轴交于点A 〔1,0〕,与y 轴交于点B 〔0,-2〕.〔1〕求直线AB 的解析式;〔2〕假设直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.5、〔2021•湘潭〕一次函数y=kx+b 〔k ≠0〕图象过点〔0,2〕,且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.6、 〔2021•贵阳〕如图,一次函数y=k 1x+b 1的图象1l 与y=k 2x+b 2的图象2l 相交于点P ,那么方程组 1122y k x b y k x b =+⎧⎨=+⎩的解是〔 〕 A .23x y =-⎧⎨=⎩ B .32x y =⎧⎨=-⎩ C .23x y =⎧⎨=⎩ D .23x y =-⎧⎨=-⎩..考点四:一次函数的应用7、〔2021•遵义〕为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y〔元〕与用电量x〔度〕间的函数关系式.〔1〕根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x〔度〕0<x≤140〔2〕小明家某月用电120度,需交电费元;〔3〕求第二档每月电费y〔元〕与用电量x〔度〕之间的函数关系式;〔4〕在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.此题主要考察了一次函数的应用以及待定系数法求一次函数解析式,利用图象获取正确信息是解题关键.【聚焦中考】1.〔2021•济南〕一次函数y=kx+b的图象如下列图,那么方程kx+b=0的解为〔〕A.x=2 B.y=2 C.x=-1 D.y=-12.〔2021•威海〕如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组___________的解.3.〔2021•烟台〕某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过局部按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元.〔1〕分别求出0≤x ≤200和x >200时,y 与x 的函数表达式;〔2〕小明家5月份交纳电费117元,小明家这个月用电多少度?4.〔2021•临沂〕小明家今年种植的“红灯〞樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进展跟踪记录,并将记录情况绘成图象,日销售量y 〔单位:千克〕与上市时间x 〔单位:天〕的函数关系如图1所示,樱桃价格z 〔单位:元/千克〕与上市时间x 〔单位:天〕的函数关系式如图2所示. 〔1〕观察图象,直接写出日销售量的最大值;〔2〕求小明家樱桃的日销售量y 与上市时间x 的函数解析式;〔3〕试比较第10天与第12天的销售金额哪天多?一、选择题1.〔2021•南充〕以下函数中,是正比例函数的是〔 〕A .y=-8xB .8y x-= C .y=5x 2+6 D .y=-0.5x-1 2.〔2021•温州〕一次函数y=-2x+4的图象与y 轴的交点坐标是〔 〕A .〔0,4〕B .〔4,0〕C .〔2,0〕D .〔0,2〕3.〔2021•陕西〕在以下四组点中,可以在图一个正比例函数图象上的一组点是〔 〕A .〔2,-3〕,〔-4,6〕B .〔-2,3〕,〔4,6〕C .〔-2,-3〕,〔4,-6〕D .〔2,3〕,〔-4,6〕4.〔2021•泉州〕假设y=kx-4的函数值y 随x 的增大而增大,那么k 的值可能是以下的〔 〕A .-4B .12- C .0 D .3 5.〔2021•山西〕如图,一次函数y=〔m-1〕x-3的图象分别与x 轴、y 轴的负半轴相交于A 、B ,那么m 的取值范围是〔 〕A .m >1B .m <1C .m <0D .m >06.〔2021•娄底〕对于一次函数y=-2x+4,以下结论错误的选项是〔 〕A .函数值随自变量的增大而减小..B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是〔0,4〕7.〔2021•乐山〕假设实数a、b、c满足a+b+c=0,且a<b<c,那么函数y=ax+c 的图象可能是〔〕A.B.C.D.8.〔2021•陕西〕在图一平面直角坐标系中,假设一次函数y=-x+3与y=3x-5的图象交于点M,那么点M的坐标为〔〕A.〔-1,4〕B.〔-1,2〕C.〔2,-1〕D.〔2,1〕9.〔2021•哈尔滨〕李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如下列图的矩形ABCD,设BC的边长为x米,AB边的长为y米,那么y与x之间的函数关系式是〔〕A.y=-2x+24〔0<x<12〕B.y=-12x+12〔0<x<24〕C.y=2x-24〔0<x<12〕D.y=12x-12〔0<x<24〕10.〔2021•武汉〕甲、乙两人在直线跑道上图起点、图终点、图方向匀速跑步500米,先到终点的人原地休息.甲先出发2秒.在跑步过程中,甲、乙两人的距离y〔米〕与乙出发的时间t〔秒〕之间的关系如下列图,给出以下结论:①a=8;②b=92;③c=123.其中正确的选项是〔〕A.①②③B.仅有①②C.仅有①③D.仅有②③11.〔2021•南昌〕一次函数y=kx+b〔k≠0〕经过〔2,﹣1〕、〔﹣3,4〕两点,那么它的图象不经过〔〕A.第一象限B.第二象限C.第三象限D.第四象限二、填空题1.〔2021•怀化〕如果点P1〔3,y1〕,P2〔2,y2〕在一次函数y=2x-1的图象上,那么y1y2.〔填“>〞,“<〞或“=〞〕2.〔2021•南京〕一次函数y=kx+k-3的图象经过点〔2,3〕,那么k的值为.3.〔2021•江西〕一次函数y=kx+b〔k≠0〕经过〔2,-1〕、〔-3,4〕两点,那么它的图象不经过第象限.4.〔2021•南平〕将直线y=2x向上平移1个单位长度后得到的直线是.5.〔2021•南通〕无论a取什么实数,点P〔a﹣1,2a﹣3〕都在直线l上.Q〔m,n〕是直线l上的点,那么〔2m﹣n+3〕2的值等于.6.〔2021•绥化〕星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的假设干辆车加气.储气罐中的储气量y〔米3〕与时间x〔小时〕的函数关系如下列图.〔1〕8:00~8:30,燃气公司向储气罐注入了米3的天然气;〔2〕当x≥8.5时,求储气罐中的储气量y〔米3〕与时间x〔小时〕的函数关系式;〔3〕正在排队等候的20辆车加完气后,储气罐内还有天然气米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.考点:一次函数的应用。
一次函数的应用【知识要点】一、一次函数的图象及其性质:1.一次函数的图象不过原点和两坐标轴相交,它是一条直线; 2.一次函数图象中:(1)当0>k 时,y 随x 的增大而增大; (2)当0<k 时,y 随x 的增大而减小;3.在一次函数b kx y +=中,若0>k 时k 的值越大,函数图象与x 轴正半 轴所成的锐角越大.二、一次函数图象与两坐标轴交点的求法1.与X 轴交点的求法,让0=y ,求x 的值; 2.与y 轴交点的求法,让0=x ,求y 的值;【经典例题】例1、 如图所示,1l 表示神风摩托车厂一天的销售收入与摩托车销售量的关系;2l 表示摩托车厂一天的销售成本与销售的关系.(1)写出销售收入与销售量之间的函数关系式; (2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时销售收入等于销售成本?(4)当一天的销售超过多少辆时工厂才能获利?(利润=收入-成本)例2、蜡烛点燃掉的长度和点燃的时间成正比,一只蜡烛点6分钟,剩下烛 长12cm ,如点燃16分钟,剩烛长7cm ,假设蜡烛点燃x 分钟,剩下烛长ycm ,求出y 和x 之间的函数关系式,画出图像,这支蜡烛燃完需要多少时间?例3、 某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超 过规定,则需要购买行李票,行李票费用y (元)是行李重量x (千克)的一 次函数,其图像如图所示求:(1)Y 与x 之间的函数关系式; (2)旅客可免费携带的行李的重量.(辆)例4、《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额。
此项税款按下表累加计算:(纳税款=应纳税所得额×对应的税率)按此规定解答下列问题: (1)、设甲的月工资、薪金所得为x 元(1300<x<2800),需缴的所得税款为y 元,试写出y 与x 的函数关系式。
1、某报亭从报社买进某报纸的价格是每份0.5元,卖出的价格是每份1元,卖不掉的报纸还可以以每份0.3元的价格退回报社。
在一个月的30天里,由20天每天可以卖出300份,其余10天可卖出200份,报社规定每天买进数必须相同。
问应每天从报社买进多少份,才能获得最大利润?并计算报亭卖该报一个月(按30天算)最多可赚得多少元?2、某市推出计算机上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA //x轴,AC 是射线。
(1)当30≥x ,求y 与x 的函数关系;(2)若小明3月份上网20小时,他应付多少上网费用?(3)若小明4月份的上网费用为75元,则他在该月份的上网时间是多少?3、如图一次函数22+-=x y 和反比例函数)0(≠=k xky 相交于M 、N 两点, 点A (-2 ,2)点在反比例函数图像上。
(1)反比例函数的解析式 (2)求交点N 的坐标(3)是否在一次函数的图像上存在点P 使得△PAN 为等腰△,若有求出点P 的坐标,若没有请说明理由。
.4、某食品厂专门制作生日蛋糕,成本为每个30元,现有两种销售方式:第一种是在城区租房直接销售,零售价为58元,平均每月房租、水电、工资、运输等费用8600元;第二种是批发给食品店销售,批发价为48元,送货等费用平均每月支出1000元,又知之两种销售方式均需缴纳税款为销售金额的5%.(1)若该厂十月份计划销售蛋糕1200只,问选择何种销售方式才能获利较大? (2)确试分析比较两种销售方式获利情况.5, 2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)求线段EF的函数解析式;(3)求两车相遇时距出发点的路程;并求线段BD的函数解析式;(4)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?6,某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?x x≥个乒乓球,7.某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配(3),两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,已知A B每个乒乓球的标价都为1元,现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?x 时,请设计最省钱的购买方案.(2)当128.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(31)(2)A B n -,,,两点,直线AB 分别交x 轴、y 轴于D C ,两点.(1)求上述反比例函数和一次函数的解析式;(2)求ADCD的值.9、某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A 和B 共8吨,已知生产每吨A B ,产品所需的甲、乙两种原料如下表:销售A B ,两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A 产品x 吨,且销售这两种产品所获得的总利润为y 万元.(1)求y 与x 的函数关系式,并求出x 的取值范围;(2)问化工厂生产A 产品多少吨时,所获得的利润最大?最大利润是多少?10.某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配(3)x x ≥个乒乓球,(第24题),两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为已知A B20元,每个乒乓球的标价都为1元,现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?x 时,请设计最省钱的购买方案.(2)当1211、电视台在某天晚上黄金时段的3分钟内插播时长为20秒和40秒的两种广告,20秒广告每次收费6000元,40秒广告每次收费10000元,若要求每种广告播放不少于2 次,且电视台选择收益最大的播放方式,则在这一天黄金时段的3分钟内插播广告的最大收益是多少元?12、小亮妈妈下岗后开了一家糕点店.现有10.2千克面粉,10.2千克鸡蛋,计划加工一般糕点和精制糕点两种产品共50盒.已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.(1)有哪几种符合题意的加工方案?请你帮助设计出来;(2)利用函数性质解答,若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元,那么按哪一个方案加工,小亮妈妈可获得最大利润?最大利润是多少?13、甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.下图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x(分)变化的图像(全程),根据图像回答下列问题:(1)乙比甲晚多长时间到达李庄?(2)甲因事耽误了多长时间?(3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?y甲乙14、某超市优惠促销措施如下:购买商品价值200x元不优惠;购买商品价值<≥≤x元九折优惠;购买商品价值300x元八折优惠;200<300(1)写出优惠价y与商品价值x之间的函数解析式;(2)张阿姨在该超市优惠促销期间先后购买二次商品,第一次付了234元;第二次付了252元;那么商品总价值是多少元?(3)如果张阿姨把二次合为一次购买商品,那么可节省多少元?15、火车站现有甲种货物1530吨,乙种货物1150吨,安排用一列火车将这批货物运往广州,这列火车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的费用是0.5万元,用一节B型车厢的运费是0.8万元。
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习一次函数的应用(基础)【学习目标】1. 能从实际问题的图象中获取所需信息;2. 能够将实际问题转化为一次函数的问题并准确的列出一次函数的解析式;3. 能利用一次函数的图象及其性质解决简单的实际问题;4. 提高解决实际问题的能力.认识数学在现实生活中的意义,发展运用数学知识解决实际问题的能力.【要点梳理】【393616 一次函数的应用,知识要点】要点一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.要点二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.要点三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【典型例题】类型一、简单的实际问题1、(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距km.【思路点拨】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y 乙关于x 的函数解析式即可;(3)求出乙距A 地240km 时的时间,乘以甲的速度即可得到结果.【答案与解析】解:(1)根据图象得:360÷6=60km/h ;(2)当1≤x≤5时,设y 乙=kx+b ,把(1,0)与(5,360)代入得:05360k b k b +=⎧⎨+=⎩, 解得:k=90,b=﹣90,则y 乙=90x ﹣90;(3)令y 乙=240,得到x= 113, 则甲与A 地相距60×113=220km , 故答案为:(1)60;(3)220【总结升华】本题考查了识别函数图象的能力,解决问题的关键是确定函数解析式. 举一反三:【393616 一次函数的应用,例3】【变式】小刚、小强两人进行百米赛跑,小刚比小强跑得快,如果两人同时跑,小刚肯定赢,现在小刚让小强先跑若干米,图中的射线a ,b 分别表示两人跑的路程与时间的关系,根据图象判断:小刚的速度比小强的速度每秒快( )A .1米B .1.5米C .2米D .2.5米【答案】D ;提示:由图象知小刚让小强先跑20米,用8秒时间追上小强,所以每秒快2.5米.故选D .图象的交点表示的实际意义:小刚用时8秒追上小强,距离出发点64米.2、(2015•淮安)小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE表示小丽和学校之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y与x之间的函数关系式.【思路点拨】(1)根据函数图象,小丽步行5分钟所走的路程为3900﹣3650=250米,再根据路程、速度、时间的关系,即可解答;(2)利用待定系数法求函数解析式,即可解答.【答案与解析】解:(1)根据题意得:小丽步行的速度为:(3900﹣3650)÷5=50(米/分钟),学校与公交站台乙之间的距离为:(18﹣15)×50=150(米);(2)当8≤x≤15时,设y=kx+b,把C(8,3650),D(15,150)代入得:,解得:∴y=﹣500x+7650(8≤x≤15).【总结升华】本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息,利用得到系数法求函数解析式.类型二、方案选择问题3、某经营世界著名品牌的总公司,在我市有甲、乙两家分公司,这两家公司都销售香水和护肤品.总公司现香水70瓶,护肤品30瓶,分配给甲、乙两家分公司,其中40瓶给甲公司,60瓶给乙公司,且都能卖完,两公司的利润(元)如下表.(1)假设总公司分配给甲公司x瓶香水,求:甲、乙两家公司的总利润W与x之间的函数关系式;(2)在(1)的条件下,甲公司的利润会不会比乙公司的利润高?并说明理由;(3)若总公司要求总利润不低于17370元,请问有多少种不同的分配方案,并将各种方案设计出来【思路点拨】(1)设总公司分配给甲公司瓶香水,用表示出分配给甲公司的护肤品瓶数、乙公司的香水和护肤品瓶数,根据已知列出函数关系式.(2)根据(1)计算出甲、乙公司的利润进行比较说明.(3)由已知求出x 的取值范围,通过计算得出几种不同的方案.【答案与解析】解:(1)依题意,甲公司x 瓶香水,甲公司的护肤品瓶数为:40-x ,乙公司的香水和护肤品瓶数分别是:70-x ,30-(40-x )=x -10.W =180x +200(40-x )+160(70-x )+150(x -10)=-30x +17700. 故甲、乙两家公司的总利润W 与x 之间的函数关系式W =-30x +17700(2)甲公司的利润为:180x +200(40-x )=8000-20x ,乙公司的利润为:160(70-x )+150(x -10)=9700-10x ,8000-20x -(9700-10x )=-1700-10x <0,∴甲公司的利润不会比乙公司的利润高.(3)由(1)得:0400700100x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ , 解得:10≤x ≤40,再由W =-30x +17700≥17370得:x ≤11,∴10≤x ≤11,∴有两种不同的分配方案.①当x =10时,总公司分配给甲公司10瓶香水,甲公司护肤品30瓶,乙公司60瓶香水,乙公司0瓶护肤品.②当x =11时,总公司分配给甲公司11瓶香水,甲公司29瓶护肤品,乙公司59瓶香水,乙公司1瓶护肤品.【总结升华】此题考查的知识点是一次函数的应用,关键是先求出函数关系式,再对甲乙公司利润进行比较,通过求自变量的取值范围得出方案.举一反三:【变式】健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?【答案】解:(1)设该公司组装A 型器材x 套,则组装B 型器材(40-x )套,依题意,得73(40)24046(40)196x x x x +-≤⎧⎨+-≤⎩ 解得22≤x ≤30.由于x 为整数,∴x 取22,23,24,25,26,27,28,29,30.∴组装A 、B 两种型号的健身器材共有9种组装方案.(2)总的组装费用y =20x +18(40-x )=2x +720.∵k =2>0,∴y 随x 的增大而增大.∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元. 总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.4、2011年秋冬北方严重干旱,凤凰社区人畜饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x 吨,总运费为W 元,试写出W 关于与x 的函数关系式,怎样安排调运方案才能是每天的总运费最省?【答案与解析】解:(1)设从甲厂调运饮用水x 吨,从乙厂调运饮用水y 吨,根据题意得2012141526700,120.x y x y ⨯+⨯=⎧⎨+=⎩ 解得50,70.x y =⎧⎨=⎩∵50<80,70<90,∴符合条件.故从甲、乙两水厂各调用了50吨、70吨饮用水.(2)设从甲厂调运饮用水x 吨,则需从乙厂调运水(120-x )吨,根据题意可得80,12090.x x ⎧⎨-⎩≤≤解得3080x ≤≤. 总运费()201214151203025200W x x x =⨯+⨯-=+,(3080x ≤≤)∵W 随x 的增大而增大,故当30x =时,26100W =最小元.∴每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省.【总结升华】本题的最值问题是利用解不等式和一次函数的性质,并要注意自变量的实际取值范围.举一反三:【变式】(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【答案】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.。
一次函数的应用知识集结知识元根据函数的图象获取信息知识讲解一次函数与正比例函数是我们接触到的最简单的函数,它们的图象和性质在生活中有着广泛的应用,利用一次函数和正比例函数的图象解决实际问题是本章的一个重点,这总分内容在中考中占有非常重要的地位,常与方程组、不等式等联系在一起考查。
例题精讲根据函数的图象获取信息例1.一名考生步行前往考场,5分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了()【解析】题干解析:由题意可知步行需要30分钟,设乘出租车的路程y与时间x(分钟)的函数关系式为y=kx+b,根据“两点法”求这个函数关系式,求当y=1时,x的值,再计算提前的时间.解:依题意,步行到考场需要时间为30分钟,设乘出租车的路程y与时间x(分钟)的函数关系式为y=kx+b,则解得所以y=当y=1时,x=10,提前时间=30-10=20分钟.故选B.例2.如图,反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上.根据图中提供的信息,有下列说法:(1)食堂离小明家0.4km;(2)小明从食堂到图书馆用了3min;(3)图书馆在小明家和食堂之间;(4)小明从图书馆回家的平均速度是0.04km/min.其中正确的有()【解析】题干解析:根据观察图象,可得从家到食堂,食堂到图书馆的距离,从食堂到图书馆的时间,根据路程与时间的关系,可得答案.解:由纵坐标看出:家到食堂的距离是0.6km,故①错误;由横坐标看出:小明从食堂到图书馆用了28-25=3(min),故②正确;∵家到食堂的距离是0.6km,家到图书馆的距离是0.4km,0.6km>0.4km,∴图书馆在小明家和食堂之间,故③正确;小明从图书馆回家所用的时间为:68-58=10(min),∴小明从图书馆回家的平均速度是:0.4÷10=0.04(km/min),故④正确;正确的有3个,故选:B.例3.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()【解析】题干解析:A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.例4.小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()【解析】题干解析:解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确利润问题知识讲解一次函数的最大利润问题规律:①有函数解析式Y=kX+b,②有明确的自变量取值范围,且这个范围两个端点,m≤X≤n,③根据K的符号,当K>0时,Y随X的增大而增大,当X=n时,Y最大=Kn+b,当K<0时,Y随X的增大而减小,当X=m时,Y最大=Km+b。
一次函数的应用1、掌握本章知识框架并熟练使用相关知识解决实际问题及几何问题2、能够从函数图象中得到需要的信息,并求出函数解析式从而解决实际问题和几何问题知识点一、用待定系数法确定函数解析式的一般步骤: (1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 知识点二、一次函数与方程、不等式(数形结合法)1. 一次函数与一元一次方程:从“数”的角度看x 为何值时函数y= ax+b 的值为0.2. 求ax +b =0(a , b 是常数,a ≠0)的解,从“形”的角度看,求直线y= ax+b 与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax +b >0(a ,b 是常数,a ≠0) .从“数”的角度看,x 为何值时函数y= ax+b 的值大于0. 4. 解不等式ax +b >0(a ,b 是常数,a ≠0) . 从“形”的角度看,求直线y= ax+b 在 x 轴上方的部分(射线)所对应的的横坐标的取值范围. 5.一次函数与二元一次方程组: 解方程组从“数”的角度看,自变量(x )为何值时两个函数值相等.并求出这个函数值解方程组 从“形”的角度看,确定两直线交点的坐标.⎪⎩⎪⎨⎧=-=+c b a c b a y x y x 222111⎪⎩⎪⎨⎧=-=+c b a c b a y x y x 222111类型一:利用函数图象解决实际问题——行程问题、工程问题例1、甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.1练习1、从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进,已知小明骑车上坡的速度比在平路上的速度每小时少5km.下坡的速度比在平路上的速度每小时多5km.设小明出发xh后,到达离甲地ykm的方,图中的折线OABCDE 表示y与x之间的函数关系,有下列说法正确的有()个①小明骑车在平路上的速度为15km/h;②小明途中休息了0.1h;③如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地5.75km.A.0 B.1 C.2 D.3练习2、甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.例2、某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是()A.甲队每天挖100米 B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务 D.当x=3时,甲、乙两队所挖管道长度相同练习1、某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.练习2、某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30 n 600乙队m n﹣14 1160(1)甲队单独完成这项工程所需天数n= 35 ,乙队每天修路的长度m= 50 (米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.类型二:利用函数图象解决实际问题——实际问题中的分段函数例1、(方案择优)某种铂金饰品在甲、乙两个商店销售.甲店标价:每克477元,按标价出售,不优惠;乙店标价:每克530元,但如果购买的铂金饰品质量超过3克,则超出的部分可打八折出售.设购买铂金饰品的质量为x克(x>3),在甲店购买铂金饰品的费用为y甲元,在乙店购买铂金饰品的费用为y乙元.(1)请分别求出y甲、y乙与x之间的函数关系式;(2)当购买铂金饰品的质量是多少克时,甲乙两店的费用相等?(3)当购买铂金饰品的质量是多少克时,在甲店购买比较合算?(4)当购买铂金饰品的质量是多少克时,在乙店购买比较合算?练习1、某旅行团计划今年暑假组织老年人团到台湾旅游,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆可供选择,其收费标准为某人每天120元,并且推出各自不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.设老年人团的人数为x(1)根据题意,用含x的式子填写下表:x≤35 35<x<45 x=45 x>45甲宾馆收费/元120x 5280乙宾馆收费/元120x 120x 5400(2)当x取何值时,旅行团在甲、乙两家宾馆的实际花费相同?练习2、为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.练习3、为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?例2、(最大利润问题)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.练习1、小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?练习2、某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 15类型三:利用一次函数解几何问题例1、如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S 的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?(第6题)练习1、如图1,在矩形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若点P,点Q同时出发,点P的速度为1cm/s,点Q的速度为2cm/s,a秒后点P改变速度,变为bcm/s,点Q速度不变.图2是点P出发x秒后△APD的面积S(cm2)与x(s)的函数关系图象,根据图象判断,下列选项正确的是()A.a=5s B.点P改变速度后4s与点Q相遇C.b=3cm/s D.c=18s练习2、如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.基础演练1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个2.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元3、某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500 D.y=60﹣0.12x,0≤x≤500二.解答题1.如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B →C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S.S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.(1)求线段BF的长及a的值;(2)写出S与t的函数关系式,并补全该函数图象;(3)当t为多少时,△PBF的面积S为4.巩固提高1、某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.2.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?1.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.3.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费:在乙商场累计购物超过50元后,超出50元的部分按95%收费.回答下列问题:(Ⅰ)①若你在甲商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;②若你在乙商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;(Ⅱ)当你在同一商场累计购物超过100元时,在哪家商场的实际花费少?一、选择题1、小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个二、解答题1、甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.2、某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?3、某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?。
有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。
复习预习1.待定系数法:先设出解析式,再根据条件列方程或方程组求出未知系数,从而写出这个解析式的方法,叫做待定系数法。
关键:确定一次函数y= kx+ b中的字母k与b的值。
步骤:1、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中2.一次函数图像的性质:k>0时,y随x的增大而增大;k<0时,y随x的增大而减少。
知识讲解考点11、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键考点2(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.例题精析【例题1】如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【例题2】如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【例题3】小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?【例题4】六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。
一次函数的应用
【知识体系】
1、考点链接:一次函数在现实生活中有着广泛的应用,在解答一次函数的应用题时,应从给定的信息中抽象出一次函数关系,理清哪个是自变量,哪个是自变量的函数,再利用一次函数的图像与性质求解,同时要注意自变量的取值范围。
2、一次函数的自变量的范围是全体实数。
图像是直线,因此没有最大值与最小值。
但由实际问题得到的一次函数解析式,自变量的取值范围一般受到限制,则图像为线段和射线,根据函数图象的性质,就存在最大值和最小值。
常见类型有:(1)求一次函数的解析式;
(2)利用一次函数的图像与性质解决某些问题,如最值等。
【题型体系】
题型一 利用一次函数解决资源收费问题
例1、某航空公司规定,旅客乘机携带行李的质量x(kg)与运费y (元)由如图所示的一次函数图像确定,那么旅客可携带的免费行李德最大质量为( )。
A 、20kg B 、25kg C 、28kg D 、30kg
例2、(2010年南平中考)我国西南五省的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段 收费标准,如图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系。
(1) 小明家五月份用水8吨,应交水费多少元?
(2) 按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问 四月份比三月份节约用水多少吨?
练习(2011•宿迁市)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租 费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示. (1)有月租费的收费方式是 ▲ (填①或②),月租费是 ▲ 元; (2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式; (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
分钟)
题型二 利用一次函数解决其它生活实际问题
例1、甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间的函数图象如图所示,根据图像所提供的信息解答问题:
(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较
快的人是 ;
(2) 求甲距终点的路程y (米)和跑步时间x (分)之间的函数关系式;
(3) 当x=15时,两人相距多少米?在15<x <20的时段内,求两人速度之差。
例2、(2011•福州市〕甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队 加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系, 那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( ). A.12天 B.14天 C.16天 D.18天
例3、(2010·台州中考)A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小 时)之间的函数图象.
(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶7了小时时,两车相遇,求乙车速度.
练习1、(2011•湖北省武汉市)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.
题型三利用一次函数解决方案选择
例1、(2010年泰安中考)某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费;乙厂提出:每份材料收2元印刷费,不收制版费。
(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数关系式;
(2)电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印刷的宣传材料能多一些?
(3)印刷数量在什么范围时,在甲厂印刷合算?
例2、(2011•宁波)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.
A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,
每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,
解答下列问题:
(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;
(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?
并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.
练习2、(2010湖北襄樊)为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A、B两种型号的收割机共30台.根据市场需求,这些
设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.
(1)试写出y与x的函数关系式;
(2)市农机公司有哪几种购进收割机的方案可供选择?
(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元?
题型四一次函数与不等式(组)的结合
例1、(2010陕西西安)某蒜薹(tái)生产基地喜获丰收,收获蒜薹200吨,经市场调查,可采用批发、零售、
1
若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.
3(1)求y与x之间的函数关系式;
(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润。
例2、(2011•黄石市)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数数 教师编制了一道应用题:
为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
(1)若某用户六月份用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份用水量为x 吨,缴纳水费为y 元,试列出y 与x 的函数式;
(3)若该用户六月份用水量为40吨,缴纳水费y 元的取值范围为7090y ≤≤,试求m 的取值范围。
练习1、〔2011•南京市〕小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已 知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平 均速度为180 m /min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函 数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x ≤80时,求y 与x 的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
练习2、(2010年恩施中考)某超市经销A, B两种商品。
A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元。
(1)该超市准备用800元去购进A, B两种商品若干件。
怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)。
(2)在“五一”期间,该商场对A, B两种商品进行如下优惠促销活动:○1不超过300元部分不优惠;○2超过300元且不超过400元部分打八折;○3超过400元部分打七折。
促销活动期间小樱去该商场购买A种商品,小华去该商场购买B种商品,分别付款210元和268.8元。
促销活动期间小明决定一次性购买小樱和小华购买的同样多的商品,他需付款多少元?
基础达标训练
1、〔2011•日照市〕某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?
2、(2010 湖北咸宁)在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的 函数关系如图所示.
(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.
3、(2010·毕节中考)某物流公司的快递车和货车每天往返于A 、B 两地,快递车比货车多往返一趟.下图表示快递车距离A 地的路程y (单位:千米)与所用时间x (单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A 地晚1小时. (1) 请在下图中画出货车距离A 地的路程y (千米)与所用时间x (时)的函数图象; (2) 求两车在途中相遇的次数(直接写出答案);
(3) 求两车最后一次相遇时,距离A 地的路程和货车从A 地出发了几 小时.。