七年级数学培优专题21 从不同的方向看
- 格式:doc
- 大小:305.50 KB
- 文档页数:11
《从不同方向看立体图形和立体图形的展开图》教案教学目标课题 6.1.1 第2课时从不同方向看立体图形和立体图形的展开图授课人素养目标1.初步体会从不同方向观察同一物体可能看到不同的结果.2.能从一组图形中辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看简单立体图形以及它们的简单组合体得到的平面图形,在立体图形与平面图形相互转换的过程中,初步建立空间观念,发展几何直观.3.了解展开图,能根据展开图想象和制作模型,并通过实例,了解展开图在现实生活中的应用.教学重点识别从不同方向看简单立体图形得到的平面图形.教学难点识别从不同方向看两个简单立体图形的组合体和多个小正方体组合体得到的平面图形.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境引入】题西林壁苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.1.从诗中可以看出作者从不同角度对庐山进行了仔细观察,那他都从哪些角度对庐山进行了观察呢?2.诗中隐含着什么道理?对我们有什么启发?从不同方向看山可看到“岭”,看到“峰”,那么从不同方向看立体图形又能看到什么呢?你想知道吗?那就让我们一起来学习今天这节课.【教学建议】课件展示《题西林壁》,为了更好地调动学生的情绪,教师可以给出前两句,让学生接另外两句.设计意图以一首诗把学生带入一个如诗如画的境地,再从诗歌中提炼出隐含的数学知识,让学生感受数学中的美.活动二:探究操作,获取新知探究点1 从不同方向看立体图形问题1苏轼的诗句给我们提供了一个看物体的视角,我们再来看一个例子:下面五幅图片是从不同方向看一个茶壶得到的图形,请指出每个图形对应的观察方向,这说明什么?这五幅图分别是从前面、右面、左面、后面、上面看得到的,它说明从不同方向看立体图形,往往会得到不同形状的平面图形.问题 2 在建筑、工程等设计中,也常常用从不同方向看到的平面图形来表示立体图形.下图是某个工件的立体图.从前面、左面、上面观察得到的平面图形是什么样的?【教学建议】教学时,教师可引导学生理解:(1)从不同方向看同一物体,所看到的平面图形可能不同,也可能相同.如图中茶壶从不同方向看得到的图形是不同的,而球,从前面、左面和上面看得到的平面图形是相同的.(2)物体摆放的方式不同,从同一方向看,得到的设计意图在认识了常见的立体图形和平面图形后,安排从不同方向看立体图形的内容,目的是让学生在这样的活动中,体验立体图形与平面图形之间的相互转化,从而初步建立空间观念,培养空间想象能力.归纳:对于一些立体图形的问题,常把它们转化为...平面图形....来研究和处理,通常画出从前面、左面、上面看到的平面图形来表示相应的立体图形.例(教材P153例1)如图是一个由9个大小相同的正方体组成的立体图形,分别从前面、左面、上面观察这个图形,各能得到什么平面图形?解:分别从前面、左面、上面观察这个立体图形,得到的平面图形如图所示.【对应训练】1.教材P154练习第1题.2.如图是一个由7个大小相同的正方体组成的立体图形,请在方格纸中用实线画出从前面、左面、上面观察这个立体图形得到的平面图形.解:如图所示. 平面图形可能有所不同.(3)很多立体图形的问题最终都需要转化为平面图形问题来解决,从三个方向看立体图形得到的平面图形是解决这类问题的手段之一.【教学建议】(1)教学中需注意只是画示意图,不要求严格的几何画法,尺寸不作严格要求,形状正确,大小大致相当即可.(2)教材没有给出三视图的概念,教师教学时暂时不必提及,从不同方向看立体图形更能贴近学生实际.设计意图探究点2 立体图形的展开图概念引入:有些立体图形是由一些平面图形围成的,将它们的表面适当展开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图.问题1如图,要设计、制作一个长方体形状的粉笔盒,除了美术设计以外,还需要知道些什么?自己动手试试.还需要了解它展开后的形状,根据它的展开图来裁剪纸张. 【教学建议】(1)此处教学时教师可在课前准备一个粉笔盒的展开图,在课堂上展示,同时也鼓励学生剪纸试一试,要充分感知学习展开图的必要性.(2)教师提醒学生不是所有的立体图形都可以展开,如球就不能展开.让学生在动手操作的同时能够体会由立体图形转化为平面图形,由平面图形又还原成立体图形的过程,激发学生探究的兴趣,发展学生的空间观念.问题2(教材P154探究)你还记得长方体和圆柱的展开图吗?下面是一些立体图形的展开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看得到的图形和你想象的是否相同.第一个图形能围成正方体;第二个图形能围成圆柱(含上、下底面);第三个图形能围成三棱柱(含上、下底面);第四个图形能围成圆锥(含底面);第五个图形能围成四棱柱(或长方体).设计意图探究点3正方体的展开图问题1将一个正方体的表面沿某些棱剪开,能展开成哪些平面图形?请同学们试着剪一剪,画出示意图.有如下11种展开图:问题2观察上面每种正方体展开图中正方形的行数和每一行正方形的个数,这些展开图中正方形的分布有没有什么规律?哪几个展开图可以分为一类?【教学建议】对于问题1,教学时可以让学生以小组为单位,探究正方体有多少种不同的展开图.动手剪开正方体,并展平,得到展开图后,小组成员交流,看是否有重复的.然后请各个小组成员将正方体的展开图贴在黑板上,将重复的展开图撕掉,补充不同的展开图.【教学建议】问题2中,教师可引导学生观察哪些有三行,哪些有两行,先把两行的分在一起,把三行的分在一起.再在三行的里面找规律:第二行4个的分在一起,第二行3个的分在一起,第二行2个的分在一起……这样由学生自行发现规律,体验探究的乐趣.让学生在动手操作的基础上动脑思考,仔细观察正方体的11种展开图的特点,能够快速记忆正方体的展开图,并在实施教学的过程中培养学生的合作交流意识和分类找规律的能力.问题3结合上面的问题,想一想正方体相对两个面在其展开图中的位置有什么特点?相对面不相连,上下隔一行或左右隔一列.问题4完成教材P155练习T3,说一说什么样的图形不能作为正方体的展开图?下面这些图形不能作为正方体的展开图(下面是几种常见的情况):【对应训练】下列是正方体的展开图的是( A )【教学建议】对于问题3,也可跟学生介绍相关下面图示进行简记.相间、“Z”端是对面A和B为相对的两个面活动三:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.如何从不同的方向看立体图形?2.从不同方向看立体图形得到的平面图形是一样的吗?3.什么是展开图?4.你会画哪些立体图形的展开图?【知识结构】【作业布置】1.教材P158习题6.1第2,4,6,7,8,9题.2.《创优作业》主体本部分相应课时训练.教学步骤师生活动板书设计教学反思本节课以跨学科内容引入,激发学生的学习兴趣,调动学生的积极性,以熟知的茶壶入手研究从不同方向看物体,并让学生参与展开和折叠等操作活动,体现了教学活动过程中学生的主体作用,增强了学生动手操作的能力,使学生感受到数学来源于生活,数学应用于生活,并懂得实践是检验真理的标准.通过简单立体图形的展开和折叠,学生认识到平面图形是立体图形形成的基础.解题大招一从不同方向看立体图形1.分别从前面、左面和上面看几种常见立体图形得到的平面图形.2.对于组合图形,可以拆分成几个立体图形,先画出各立体图形对应的平面图形,再组合各平面图形,得出结论.例1(1)下列立体图形中,从前面看能得到正方形的是(A)(2)如图所示的组合体,从左面看,得到的平面图形是(D)解题大招二正方体相对面的确定找“相对面”的办法:先找同层隔一面,再找异层隔两面,剩下两面必相对.例2如图是一个正方体的展开图,原正方体与“扬”字一面相对面上的汉字是( C )A.传B.统C.文D.化解析:如图所示的正方体的展开图中,同一行相对的面一定相隔一个小正方形,由图形可知,与“弘”字相对的字是“传”,与“统”字相对的字是“化”,与“扬”字相对的字是“文”.故选C.培优点识别表面带有图案的正方体的展开图例如图,正方体三个侧面分别画有不同的图案,它的展开图可以是( C )解析:选项A中,“+” “○” “□”在“Z”字形上,且“+”与“□”位于“Z”字形的两端点处,则“+”与“□”是相对面,而已知正方体中是“+”与“□”相邻,故A项不正确.选项B中,“+” “○” “□”在同一行上,则“+”与“□”是相对面,而已知正方体中是“+”与“□”相邻,故B项不正确.选项D中,画“○”的面应在画“□”的面的下方,故D项不正确.课后·知能演练一、基础巩固1.下图是一个无盖正方体盒子,盒底标有一个字母m,现沿箭头所指方向将盒子剪开,则展开后的图形是()2.下图是大家熟悉的骰子,每个骰子相对两面的点数之和均为7.若其中一个骰子的展开图如图所示,则其中一面上代表的点数是6的是________(填“A”“B”或“C”).3.请你在图中的拼接图形上再接一个正方形,使新拼接成的图形能构成正方体的表面展开图.(注:①添加的正方形用阴影表示;②要求用3种不同的方法)二、能力提升4.(1)观察下面立体图形,画出从前面、左面、上面看到的平面图形;(2)若再添加n个大小相同的正方体,使新得到的立体图形从前面和左面看到的平面图形不变,则n的最大值为________.三、思维拓展5.在数学综合实践活动课上,小明将一个无盖鞋盒拆开并展开,如图,若展开后的长与宽分别记为a cm,b cm,在纸盒四个角上的空白处均为边长为x cm的正方形.(1)用a,b,x表示无盖鞋盒的体积.(表示成长×宽×高即可,不用展开)(2)当a=10,b=8,x=2时,求该无盖鞋盒的体积.【课后·知能演练】1.A2.A3.解:答案不唯一.4.(1)解:(2)6解析:如图,在最下面一层,最后面一行的前面加上6块,得到的立体图形从前面和左面看到的平面图形不变.从上面看5.解:(1)由题图可知,无盖鞋盒的长为(a-2x)cm,无盖鞋盒的宽为(b-2x)cm,无盖鞋盒的高为x cm,鞋盒的体积为x(a-2x)(b-2x)cm3.(2)当a=10,b=8,x=2时,无盖鞋盒的体积为2×(10-2×2)×(8-2×2)=48(cm3).答:该无盖鞋盒的体积为48 cm3.。
七年级数学专题训练21从不同的方向看阅读与思考20世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到目前为止,我们从没有生活在这样的几何时期,周围的一切都是几何学.”生活中蕴含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇特的建筑,不断移动、反转、放大缩小的电视画面……图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从以下方面得以体现:1.立体图形的展开与折叠;2.从各个角度观察立体图形;3.用平面去截立体图形.观察归纳、操作实验、展开想象、推理论证是探索图形世界的基本方法.例题与求解【例1】如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么x y=____.(四川省中考试题)解题思路:展开与折叠是两个步骤相反的过程,从折叠还原成正方体入手.【例2】如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个(四川省成都中考试题)解题思路:根据三视图和几何体的关系,分别确定该几何体的列数和每一列的层数.主视图左视图俯视图888102x y【例3】由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图. (1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,求n 的值.(贵州省贵阳市课改实验区中考试题)解题思路:本例可以在“脑子”中想象完成,也可以用实物摆一摆.从操作实验入手,从俯视图可推断左视图只能有两列,由主视图分析出俯视图每一列小正方形的块数情况是解本例的关键,而有序思考、分类讨论,则可避免重复与遗漏.【例4】如图是由若干个正方体形状木块堆成的,平放于桌面上.其中,上面正方体的下底面四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少?(江苏省常州市中考试题)解题思路:所有正方体侧面面积和再加上所有正方体上面露出的面积和,就是所求的面积.从简单入手,归纳规律.【例5】把一个正方体分割成49个小正方体(小正方体大小可以不等),请画图表示.(江城国际数学竞赛试题)解题思路:本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需要把图形性质与计算恰当结合.俯视图主视图【例6】建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.(1)根据上面的多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是____.(2)—个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是___.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x y的值.解题思路:对于(1),通过观察、归纳发现V,F,E之间的关系,并迁移应用于解决(2),(3).模型应用如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.(浙江省宁波市中考试题改编)能力训练A级1.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是___.(山东省菏泽市中考试题)第3题图2.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是____.(湖北省武汉市中考试题)3.—个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为____.(山东省烟台市中考试题)4.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有__(山东省青岛市中考试题)5.一个画家有14个边长为1m 的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂颜色的总面积为( )A .19m 2B .41m 2C .33m 2D .34m 2(山东省烟台市中考试题)6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为( )A.3B .4C .5D .6654321第1题主视图 左视图 俯视图第2题图① 图② 图③主视图俯视图 左视图左视图(河北省中考试题)7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( )A .20B .22C .24D .26(河北省中考试题)8.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )(2012年温州市中考试题)9.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是____(立方单位),表面积是____(平方单位); (2)画出该几何体的主视图和左视图.(广州市中考试题)10.用同样大小的正方体木块搭建的几何体,从正面看到的平面图形如图①所示,从上面看到的平面图形如图②所示.(1)如果搭建的几何体由9个小正方体木块构成,试画出从左面看这个几何体所得到的所有可能的A B CD甲主视方向 乙正面平面图形.(2)这样的几何体最多可由几块小正方体构成?并在所用木块最多的情况下,画出从左面看到的所有可能的平面图形.(“创新杯”邀请赛试题)B 级1.如图,是一个正方体表面展开图,请在图中空格内填上适当的数,使这个正方体相对两个面上标注的数值相等.(《时代学习报》数学文化节试题)2.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的取值之和为____.(江苏省江阴市中考试题)3.如图是一个立方体的主视图、左视图和俯视图,图中单位为厘米,则立体图形的体积为____立方厘米.(“华罗庚金杯赛”试题)4.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是图①图②aa -2-1a-主视图 俯视图主视图左视图左视图下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A .2B .3C .4D .5(江苏省常州市中考试题)5.由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆,那么大立方体被涂过油漆的面数是( )A .1B .2C .3D .4(“创新杯”邀请赛试题)6.小明把棱长为4的正方体分割成了29个棱长为整数的小正方体,则其中棱长为1的小正方体的个数是( )A .22B .23C .24D .25(浙江省竞赛试题)7.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?(江苏省竞赛试题)8.一个长方体纸盒的长、宽、高分别是a ,b ,c (a >b >c)厘米.如图,将它展开成平面图,右面 (水平线)正面那么这个平面图的周长最小是多少厘米?最大是多少厘米?(江苏省竞赛试题)9.王老师将底面半径为20厘米、高为35厘米的圆柱形容器中的果汁全部倒入如图所示的杯子中,若杯口直径为20厘米,杯底直径为10厘米,杯高为12厘米,杯身长13厘米,问果汁可以倒满多少杯?(世界数学团体锦标赛试题)10.一个边长为5厘米的正方体,它是由125个边长为1厘米的小正方体组成的..P 为上底面ABCD 的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是1厘米的小正方体?(深圳市“启智杯”数学思维能力竞赛试题)专题21 从不同的方向看例1 14 提示:2x =8,y =10,x +y =14. 例2 D例3 (1)左视图有以下5种情形:(2)n =8,9,10,11.例4正方体个数至少为4个.正方体露在外面的面积和的最大值为9. 提示:最下面正方体1个面的面积是1,侧面露出的面积和是4,每相邻两个正方体中上面的1个正方体每个面的面积都正好是其下10121320① ② ⑦ ⑥ ④⑤ ③ abc面正方体1个面面积的12,所有正方体侧面面积之和加上所有正方体的上面露出的面积和(正好是最下面正方体上底面的面积1)即是这些正方体露在外面的面积和.如:2个正方体露出的面积和是4+42+1=7,3个正方体露出的面积和是4+42+44+1=8,4个正方体露出的面积和是4+42+44+48+1=812,5个正方体露出的面积和是4+42+44+48+416+1=834,6个正方体露出的面积和是4+42+44+48+416+432+1=878,…… 故随着小正方体木块的增加,其外露的面积之和都不会超过9.例5为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49个小正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,如果能切出1个棱长为4的正方体,则有⎩⎨⎧a +8b +64=216a +b =49-1,解之得b =1467.不合题意,所以切不出棱长为4的正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,棱长为3的正方体有c 个,则⎩⎨⎧a +8b +27c =216a +b +c =49,解得a =36,b =9,c =4, 故可分割棱长分别为1,2,3的正方体各有36个,9个,4个,分法如图所示.例6(1)6 6 V +F -E =2 (2)20 (3)这个多面体的面数为x +y ,棱数为24×32=36条.根据V+F -E =2,可得24+(x +y )-36=2,∴x +y =24. 模型应用设足球表面的正五边形有x 个,正六边形有y 个,总面数F 为x +y 个.因为一条棱连着两个面,所以球表面的棱数E 为12(5x +6y ),又因为一个顶点上有三条棱,一条棱上有两个顶点,所以顶点数V =12(5x +6y )·23=13(5x +6y ). 由欧拉公式V +F -E =2得(x +y )+13(5x +6y )-12×(5x +6y )=2,解得x =12.所以正五边形只要12个.又根据每个正五边形周围连着5个正六边形,每个正六边形又连着3个正五边形,所以六边形个数5x3=20,即需20个正六边形.A 级1.6 2.5 3.8 4.4(2n -1) 5.C 6.B 7.C 8.B 9(1)5 22 (2)略 10.(1)(2)11块.B 级1.上空格填12,下空格填2 2.38 3.2π 4.B5.D 提示:设大立方体的棱长为n ,n >3,若n =6,即使6个面都油漆过,未油漆的单位立方体也有43=64个>45,故n =4或5.除掉已漆的单位立方体后,剩下未漆的构成一个长方体,设其长、宽、高分别为a ,b ,c ,abc =45,只能是3×3×5=45,故n =5.6.C 提示:若分割出棱长为3的正方体,则棱长为3的正方体只能有1个,余下的均是棱长为1的正方体,共37个不满足要求.设棱长为2的正方体有x 个,棱长为1的正方体有y 个,则⎩⎨⎧x +y =298x +y =64,得⎩⎨⎧x =5y =24. 7.有不同的搬法.为保证“影子不变”,可依如下原则操作:在每一行和每一列中,除保留一摞最高的不动以外,该行(列)的其余各摞都搬成只剩最下面的一个小正方体.如图所示,20个方格中的数字,表示5行6列共20摞中在搬完以后最终留下的正方体个数.照这样,各行可搬个数累计为27,即最多可搬走27个小正方体.8.要使平面展开图的周长最小,剪开的七条棱长就要尽量小,因此要先剪开四条髙(因为c 最小),再剪开一条长a 厘米的棱(否则,不能展开成平面图),最后再剪开两条宽b 厘米的棱(如图中所表示的①〜⑦这七条棱).由此可得图甲,这时最小周长是c ×8+b ×4+a ×2=2a +4b +8c 厘米.图甲 图乙要使平面展开图的周长最大,剪开的七条棱长就要尽量大,因此要先剪开四条最长的棱(长a ),再剪开两条次长的棱(宽b ),最后剪开一条最短的棱(高c ),即得图乙,这时最大周长是a ×8+b ×4+c ×2=8a +4b +2c 厘米.9.如图,由题意知AB =12,CD =13,AC =12,BD =13,过点D 作DE 垂直于AB 于点E ,则DE =12,于是Rt △BDE 中BE =5.延长AC ,BD 交于F ,则由CD :AB =5:10=1:2知CF =12,AF =24 于是一个杯子的容积等于两个圆锥的体积之差,即22311102451270033V cm 而大容器内果汁的体积是23512700cm 所以果汁可以倒满1400070020杯。
第四讲从不同方向看【学习目标】1. 学会从不同的方向观察实物。
通过活动,发展空间观念;并学会交流、表达。
2. 体会从不同方向(正面、侧面、上面)观察同一个物体可能看到不同的形状。
3. 能识别简单物体的三视图,会画立方体等简单几何体的三视图。
【基础知识】1、三视图包括:主视图、俯视图和左视图。
三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象2、视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
【考点剖析】考点一:组合体的三视图例1.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(注意:三视图画好后请打上阴影)【答案】(1)11;(2)见解析【详解】(1)根据如图所示即可数出有11块小正方体;故答案为:11;(2)如图所示:.考点二:由三视图研究几何体例2.如图,是从上面看到的由几个小正方体达成的几何体图形,小正方形上的数字表示在该位置上的小正方体的个数.回答下列的问题:(1)从正面、左面观察该几何体,分别画出你所看到的图形;(2)该几何体的表面积是______.【答案】(1)见解析;(2)48【详解】解:(1)如图所示:(2)(9×2+10×2+5×2)×1=48.故该几何体的表面积是48.考点三:由几何体的三视图进行计算例3.如图,是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称; (2)画出它的一种表面展开图;(3)若从正面看长方形的高为3cm ,从上面看三角形的边长为2cm ,求这个几何体的侧面积. 【答案】(1)正三棱柱;(2)图见解析;(3)218cm . 【详解】解:(1)这个几何体的名称是正三棱柱;(2)表面展开图为:(答案不唯一,画出其中正确的一种即可)(3)33218⨯⨯=(2cm ), ∴这个几何体的侧面积为218cm .【真题演练】1.春节燃放爆竹是中华民族辞旧迎新的习俗,然而因春节期间全国各地雾霾天气频现,各地纷纷出台禁止燃放烟花爆竹的通知,如图所示的是一种爆竹的示意图,则爆竹的俯视图是( )A.B.C.D.【答案】B【详解】解:从上面看到的图形,是一个有圆心的圆,故选:B.2.在本学期第一章的数学学习中,我们曾经辨认过从正面、左面、上面三个不同的方向观察同一物体时看到的形状图.如图是马老师带领的数学兴趣小组同学搭建的一个几何体,这个几何体由6个大小相同的正方体组成,你认为从左面看到的几何体的形状应该为()A.B.C.D.【答案】B【详解】解:从左面看该组合体,可以看到两列,左起第一列可以看到两个正方形,第二列看到一个正方形,所以该组合体的左视图是:故选:.B3.如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【答案】A【详解】解:从几何体的左边看有两层,底层两个正方形,上层左边一个正方形.故选:A.4.如图,下列图形从正面看是三角形的是()A.B.C.D.【答案】C【详解】A、从正面看是有一条公共边并排的两个长方形,故不符合题意;B、从正面看是梯形,故不符合题意;C、从正面看是三角形,故符合题意;D、从正面看是长方形,故不符合题意,故选C.5.如图是由几个相同的小正方体堆砌成的几何体,从上面..看到该几何体的形状图是()A.B.C.D.【答案】D【详解】解:从上面看第一层三个小正方形,第一层两个小正方形,故D正确;故选:D.6.如图,从左面看三棱柱得到的图形是()A.B.C.D.【答案】B【详解】解:从左边看是一个矩形.故选:B.7.分别从正面、上面、左面观察下列物体,得到的平面图形完全相同的是()A.①B.②C.③D.④【答案】A【详解】解:图①、图②、图③、图④可以近似的看作正方体,圆锥体,长方体、圆柱体,正方体的三视图都是正方形的,圆锥体的主视图、左视图是三角形的,而俯视图是圆形的,长方体的三视图虽然都是长方形的,但它们的大小不相同,圆柱的主视图、主视图是长方形的,但俯视图是圆形的,因此从正面、上面、左面看所得到的平面图形完全相同的是正方体,故选:A.8.如图是由几个相同的小正方体堆砌成的几何体,其左视图是()A.B.C.D.【答案】A【详解】解:从左面看到该几何体的形状图是,故选:A.9.如图是某几何体从不同方向看到的图形.若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π)为_____.【答案】40πcm2【详解】解:观察三视图可得这个几何体是圆柱;∵从正面看的高为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).故这个几何体的侧面积(结果保留π)为40πcm2.故答案为:40πcm2.10.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)【答案】见解析.【详解】解:如图所示:11.如图,是由若干个完全相同的小正方体组成的一个几何体.请画出这个几何体的三视图;【答案】见解析【详解】解:由题可知:主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为2,1,1;∴所画图如下:.12.如图所示的几何体是由三个大小完全相同的小正方体组成. (1)在指定区域内画出从不同的方向看这个几何体得到的平面图形; (2)已知小正方体的棱长是a ,求这个几何体的体积和表面积.【答案】(1)见解析;(2)体积是33a ,表面积是214a 【详解】解:(1)如图所示:(2)这个几何体的体积是:333a a a a ⨯⨯⨯=, 表面积是:14a a ⨯⨯=214a .【过关检测】1.如图所示的几何体是由五个小正方体搭建而成的,则左视图是( )A.B.C.D.【答案】D【详解】依题可得:该左视图第一列有1个小正方形,第二列有2个小正方形.故选:D.2.下列几何体中,从左面看到的图形是三角形的是()A.B.C.D.【答案】A【详解】解:选项A中,几何体从左面看到的图形为三角形,故符合题意;选项B中,几何体从左面看到的图形为是圆,故不符合题意;选项C中,几何体从左面看到的图形为长方形,故不符合题意;选项D中,几何体从左面看到的图形为圆,故不符合题意.故选:A.3.由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A.B.C.D.【答案】D 【详解】解:从左边看第一层两个小正方形,第二层右边一个小正方形, 故选:D .4.如图所示是由七个相同的小正方体堆成的物体,从正面看这个物体的平面图是( )A .B .C .D .【答案】A 【详解】从正面看这个物体,共有三行,从上到下依次小正方形的个数依次为1,2,3, 故选:A .5.如图2是图1中长方体的三视图,若用S 表示面积,5S x =主,4S x =左,则S =俯( ).A .20xB .20C .9xD .9【答案】B 【详解】解:∵S 主=5x ,S 左=4x ,且主视图和左视图的宽为x , ∴俯视图的长为5,宽为4, 则俯视图的面积S 俯=5×4=20, 故选:B .6.十个棱长为a 的正方体摆放成如图的形状,这个图形的表面积是( )A.236a B.36a C.26a D.230a【答案】A【详解】解:由题意可得该图形的表面积为各个面的小正方形的面积之和,∴该几何体前后左右上下各都有6个小正方形,共36个小正方形,∵小正方形的棱长为a,36a;∴该图形的表面积为2故选A.7.下列几何体中,从上面看得到的平面图形是三角形的是()A.B.C.D.【答案】B【详解】解:A、圆柱从上面看得到的平面图形是圆,故此选项不符合题意;B、三棱锥从上面看得到的平面图形是三角形,故此选项合题意;C、长方体从上面看得到的平面图形是矩形,故此选项不合题意;D、六棱柱从上面看得到的平面图形是六边形,故此选项不合题意;故选:B.8.如图所示的几何体是由五个小正方体搭建而成的,则从左面看得到的平面图形是()A.B.C.D.【答案】D【详解】解:从这个组合体的左面看到的是两列,其中第一列为1个,而第二列为2个,因此选项D的图形符合题意,故选:D.9.某运动会颁奖台如图所示,如果从正面的方向去观察它,得到的平面图形是()A.B.C.D.【答案】C【详解】A选项是从上面观察得到的结果,故不符合题意;C选项是从正面观察到的结果,故符合题意;B选项与D选项均不正确,故选:C.10.下面左边是用八块完全相同的小正方体搭成的几何体,从正面看该几何体得到的图是()A.B.C.D.【答案】B【详解】从正面看左数第一列是2个小正方形,第二列是2个小正方形,第三列是2个正方形,故选择:B.11.如图是3级台阶的示意图,则从正面看到的平面图形是()A.B.C.D.【答案】C【详解】从正面看,得到的图形是:故答案为:C12.如图是某几何体从不同方向看到的图形.若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π)为_____.【答案】40πcm2【详解】解:观察三视图可得这个几何体是圆柱;∵从正面看的高为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).故这个几何体的侧面积(结果保留π)为40πcm2.故答案为:40πcm2.13.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.【答案】26【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大长方体,∴搭成的大长方体的共有4×3×3=36个小正方体,∴至少还需要36−10=26个小正方体.故答案为:26.14.在水平的桌面上,由若干个完全相同棱长为10cm的小正方体堆成一个几何体,如图所示.(1)请你在方格纸中分别画出这个几何体的主视图、左视图和俯视图;(2)若现在手头还有一些相同的小正方体,如果保持这个几何体的左视图和俯视图不变,在这个几何体上最多可以添加多少个小正方体?(3)若给该几何体露在外面的面喷上红漆(不含几何体的底面),则需要喷漆的面积是多少cm2?【答案】(1)答案见解析;(2)3个;(3)3200cm2【详解】解:(1)这个几何体的主视..图如图:..图和左视(2)保持俯视图和左视图不变,可往第二列前面的几何体上放2个小正方体,后面的几何体上放1个小正方体,故最多可再添加3个正方体,故答案为:3;(3)1010⨯⨯[(6+6)2⨯+6+2]=3200cm 2 答:需要喷漆的面积是3200cm 2.。
第一课时从不同的方向看(一)教学目标1、能识别简单物体的三视图,会画立方体及其简单组合体的三视图。
2、(1)经历从不同方向观察物体的活动过程,发展空间观念;(2)在与其他人交流的过程中,能合理清晰地表达自己的思维过程;(3)在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形。
3、(1)通过创设问题情境,让学生主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。
(2)在与他人的合作过程中,增强互相帮助、团结协作的精神。
(3)体会到在生活中我们也应从不同角度,多方面地去看待一件事物,分析一件事情。
教学重点与难点重点:会判断简单物体的三视图和会画立方体及其组合图形的三视图。
难点:学生空间观念的培养。
因此本节课应用了较多的实物模型,并精心设计了一系列数学活动来帮助学生发展空间观念。
教学过程一、新课引入1、在讲台上按课本所示摆放乒乓球、热水瓶、玻璃杯,三位学生分别站在讲台的左侧、右侧和正前方观察。
他们分别能看到什么物体?〖实物演示〗2、有一天,我站在学校门口,一辆汽车从我面前驶过,我拍摄了一组照片。
请同学们想一想,按照汽车被摄入镜头的先后顺序,这一组照片应如何排列?二、新课的进行【想一想】:我们从不同的方向观察同一物体时,可能看到不同的图形吗?请举出生活中一些从不同方向观察同一对象的实例。
你能用一句诗句来描述这种现象吗?【探究】:1、议一议:(课本第16页)〖模型演示〗2、学一学:我们从不同的方向观察同一物体时,可能看到不同的图形。
其中,把正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
3、练一练:(1)分别把六棱柱的三视图名称填在相应的横线上。
(2)把图中圆柱的三视图名称填在横线上。
(自拟)〖模型演示〗主视图是,左视图是,俯视图是。
(3)桌上放着一个圆柱和一个长方体。
(课本)〖模型演示〗请说出下面的三幅图分别是从哪个方向看到的。
(4)一个几何体的俯视图是圆,猜一猜,它可能是怎样的几何体?有没有主视图、左视图、俯视图都是圆的几何体?还有没有主视图、左视图和俯视图都相同的几何体?4、做一做:(1)画出下面几何体的主视图、左视图与俯视图。
四川省成都市蒲江县朝阳湖镇七年级数学上册1.4.2 从不同方向看教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省成都市蒲江县朝阳湖镇七年级数学上册1.4.2从不同方向看教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省成都市蒲江县朝阳湖镇七年级数学上册1.4.2 从不同方向看教案(新版)北师大版的全部内容。
1。
4。
2 从不同方向看课题1。
4.2从不同方向看教学目标1.能够熟练地画立方体及其简单组合体的三种视图。
2.会根据俯视图及其相应位置的立方体的数量,画出其主视图与左视图。
3.通过观察和动手操作,经历和体验组合体及俯视图中数字的变化导致三种视图的变化的过程,培养实验操作能力,进一步发展空间观念。
4.培养主动探索、敢于实践、勇于发现、合作交流的品质。
教材分析重点脱离模型,画出相应的视图。
难点根据俯视图及其相应位置的立方体的数量,画出主视图与左视图.教具电脑、投影仪教学过程一、课前准备每位同学课前准备边长为5cm的正方体模型4个;教师准备边长为10cm的正方体8个。
二、我搭你画活动1:拿出课前准备的小正方体,以小组为单位由一位同学搭几何体(可以变换不同的搭法)其他同学画出其三种视图.活动2:教师呈现一个搭建的模型,引导学生思考:从正面看有几列,每一列有几层?从左面看呢?从上往下看呢?三、问题探究例1:如图是由几个小立方体块所搭几何体的俯视图,小正方形中的数字表示在该位置小立块的个数,请画出这个几何体的主视图和左视图。
(1)小正方形中的数字是何含义?小正方形中的数字是表示相应的位置有几个小正方体,也就是相应位置的层数.(2)你准备怎样来解决这个问题呢?先按题目所给的条件搭出模型,再从正面、左面、上面观察,然后画出三种视图。
北师大版数学七年级上册1.4《从不同的方向看》教案一. 教材分析《从不同的方向看》是北师大版数学七年级上册第一章“我们周围的数”的第四节内容。
本节课主要让学生通过实际操作,体验从不同方向观察几何体和物体,培养学生的空间想象能力和几何直观能力。
教材通过生动的图片和实例,引导学生认识并理解从不同方向观察物体和几何体,所看到的形状可能不同,从而为学生建立空间观念奠定基础。
二. 学情分析学生在小学阶段已经接触过一些简单的几何图形,对一些基本的平面图形和立体图形有了一定的认识。
但是,他们在空间想象力方面还相对较弱,需要通过实际操作和观察来培养。
此外,学生可能对从不同方向观察物体和几何体的方法还不够了解,因此,教师在教学过程中要注重引导学生观察、思考,激发他们的学习兴趣。
三. 教学目标1.让学生通过实际操作,体验从不同方向观察物体和几何体,培养学生的空间想象能力和几何直观能力。
2.使学生能正确、清晰、有条理地表达从不同方向观察物体和几何体的过程和结果。
3.培养学生合作学习的意识和能力,发展学生的抽象思维。
四. 教学重难点1.教学重点:让学生通过实际操作,体验从不同方向观察物体和几何体,培养学生的空间想象能力和几何直观能力。
2.教学难点:如何引导学生从不同方向观察物体和几何体,并准确地描述所看到的形状。
五. 教学方法1.采用直观教学法,让学生通过观察、操作、交流,体验从不同方向观察物体和几何体的过程。
2.采用问题驱动法,引导学生主动思考,发现从不同方向观察物体和几何体的特点。
3.采用合作学习法,让学生在小组内交流讨论,共同完成任务。
六. 教学准备1.准备一些几何体模型,如正方体、长方体、圆柱体等。
2.准备一些图片,展示从不同方向观察物体和几何体的形状。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些图片,让学生观察并描述从不同方向看到的形状。
引导学生发现从不同方向观察物体和几何体,所看到的形状可能不同。
专题21从不同的方向看阅读与思考20世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到目前为止,我们从没有生活在这样的几何时期,周围的一切都是几何学.”生活中蕴含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇特的建筑,不断移动、反转、放大缩小的电视画面……图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从以下方面得以体现:1.立体图形的展开与折叠;2.从各个角度观察立体图形;3.用平面去截立体图形.观察归纳、操作实验、展开想象、推理论证是探索图形世界的基本方法.例题与求解【例1】如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么x y=____.(四川省中考试题)解题思路:展开与折叠是两个步骤相反的过程,从折叠还原成正方体入手.【例2】如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个(四川省成都中考试题)解题思路:根据三视图和几何体的关系,分别确定该几何体的列数和每一列的层数.主视图左视图俯视图888102x y【例3】由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图. (1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,求n 的值.(贵州省贵阳市课改实验区中考试题)解题思路:本例可以在“脑子”中想象完成,也可以用实物摆一摆.从操作实验入手,从俯视图可推断左视图只能有两列,由主视图分析出俯视图每一列小正方形的块数情况是解本例的关键,而有序思考、分类讨论,则可避免重复与遗漏.【例4】如图是由若干个正方体形状木块堆成的,平放于桌面上.其中,上面正方体的下底面四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少?(江苏省常州市中考试题)解题思路:所有正方体侧面面积和再加上所有正方体上面露出的面积和,就是所求的面积.从简单入手,归纳规律.【例5】把一个正方体分割成49个小正方体(小正方体大小可以不等),请画图表示.(江城国际数学竞赛试题)解题思路:本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需要把图形性质与计算恰当结合.俯视图 主视图【例6】建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.(1)根据上面的多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是____.(2)—个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是___.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x y的值.解题思路:对于(1),通过观察、归纳发现V,F,E之间的关系,并迁移应用于解决(2),(3).模型应用如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.(浙江省宁波市中考试题改编)能力训练A级1.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是___.(山东省菏泽市中考试题)第3题图2.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是____.(湖北省武汉市中考试题)3.—个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为____.(山东省烟台市中考试题)4.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有__(山东省青岛市中考试题)5.一个画家有14个边长为1m 的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂颜色的总面积为( )A .19m 2B .41m 2C .33m 2D .34m 2(山东省烟台市中考试题)6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为( )A .3B .4C .5D .6654321第1题主视图 左视图 俯视图第2题图① 图② 图③左视图左视图(河北省中考试题)7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( )A .20B .22C .24D .26(河北省中考试题)8.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )(2012年温州市中考试题)9.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是____(立方单位),表面积是____(平方单位); (2)画出该几何体的主视图和左视图.(广州市中考试题)主视图俯视图A B C D甲主视方向 乙正面10.用同样大小的正方体木块搭建的几何体,从正面看到的平面图形如图①所示,从上面看到的平面图形如图②所示.(1)如果搭建的几何体由9个小正方体木块构成,试画出从左面看这个几何体所得到的所有可能的平面图形.(2)这样的几何体最多可由几块小正方体构成?并在所用木块最多的情况下,画出从左面看到的所有可能的平面图形.(“创新杯”邀请赛试题)B 级1.如图,是一个正方体表面展开图,请在图中空格内填上适当的数,使这个正方体相对两个面上标注的数值相等.(《时代学习报》数学文化节试题)2.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的取值之和为____.(江苏省江阴市中考试题)3.如图是一个立方体的主视图、左视图和俯视图,图中单位为厘米,则立体图形的体积为____立方厘米.图① 图②aa -2-1a-主视图俯视图(“华罗庚金杯赛”试题)4.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A .2B .3C .4D .5(江苏省常州市中考试题)5.由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆,那么大立方体被涂过油漆的面数是( )A.1B .2C .3D .4(“创新杯”邀请赛试题)6.小明把棱长为4的正方体分割成了29个棱长为整数的小正方体,则其中棱长为1的小正方体的个数是( )A .22B .23C .24D .25(浙江省竞赛试题)7.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?主视图左视图左视图(江苏省竞赛试题)8.一个长方体纸盒的长、宽、高分别是a ,b ,c (a >b >c )厘米.如图,将它展开成平面图,那么这个平面图的周长最小是多少厘米?最大是多少厘米?(江苏省竞赛试题)9.王老师将底面半径为20厘米、高为35厘米的圆柱形容器中的果汁全部倒入如图所示的杯子中,若杯口直径为20厘米,杯底直径为10厘米,杯高为12厘米,杯身长13厘米,问果汁可以倒满多少杯?(世界数学团体锦标赛试题)10.一个边长为5厘米的正方体,它是由125个边长为1厘米的小正方体组成的..P 为上底面ABCD 的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是1厘米的小正方体?(深圳市“启智杯”数学思维能力竞赛试题)10121320① ② ⑦ ⑥ ④⑤ ③ abc 右面 (水平线)正面专题21 从不同的方向看例1 14 提示:2x =8,y =10,x +y =14. 例2 D例3 (1)左视图有以下5种情形:(2)n =8,9,10,11.例4正方体个数至少为4个.正方体露在外面的面积和的最大值为9. 提示:最下面正方体1个面的面积是1,侧面露出的面积和是4,每相邻两个正方体中上面的1个正方体每个面的面积都正好是其下面正方体1个面面积的12,所有正方体侧面面积之和加上所有正方体的上面露出的面积和(正好是最下面正方体上底面的面积1)即是这些正方体露在外面的面积和.如:2个正方体露出的面积和是4+42+1=7,3个正方体露出的面积和是4+42+44+1=8,4个正方体露出的面积和是4+42+44+48+1=812,5个正方体露出的面积和是4+42+44+48+416+1=834,6个正方体露出的面积和是4+42+44+48+416+432+1=878,…… 故随着小正方体木块的增加,其外露的面积之和都不会超过9.例5为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49个小正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,如果能切出1个棱长为4的正方体,则有⎩⎨⎧a +8b +64=216a +b =49-1,解之得b =1467.不合题意,所以切不出棱长为4的正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,棱长为3的正方体有c 个,则⎩⎨⎧a +8b +27c =216a +b +c =49,解得a =36,b =9,c =4, 故可分割棱长分别为1,2,3的正方体各有36个,9个,4个,分法如图所示.例6(1)6 6 V +F -E =2 (2)20 (3)这个多面体的面数为x +y ,棱数为24×32=36条.根据V+F -E =2,可得24+(x +y )-36=2,∴x +y =24. 模型应用设足球表面的正五边形有x 个,正六边形有y 个,总面数F 为x +y 个.因为一条棱连着两个面,所以球表面的棱数E 为12(5x +6y ),又因为一个顶点上有三条棱,一条棱上有两个顶点,所以顶点数V =12(5x +6y )·23=13(5x +6y ). 由欧拉公式V +F -E =2得(x +y )+13(5x +6y )-12×(5x +6y )=2,解得x =12.所以正五边形只要12个.又根据每个正五边形周围连着5个正六边形,每个正六边形又连着3个正五边形,所以六边形个数5x3=20,即需20个正六边形.A 级1.6 2.5 3.8 4.4(2n -1) 5.C 6.B 7.C 8.B 9(1)5 22 (2)略 10.(1)(2)11块.B 级1.上空格填12,下空格填2 2.38 3.2π 4.B5.D 提示:设大立方体的棱长为n ,n >3,若n =6,即使6个面都油漆过,未油漆的单位立方体也有43=64个>45,故n =4或5.除掉已漆的单位立方体后,剩下未漆的构成一个长方体,设其长、宽、高分别为a ,b ,c ,abc =45,只能是3×3×5=45,故n =5.6.C 提示:若分割出棱长为3的正方体,则棱长为3的正方体只能有1个,余下的均是棱长为1的正方体,共37个不满足要求.设棱长为2的正方体有x 个,棱长为1的正方体有y 个,则⎩⎨⎧x +y =298x +y =64,得⎩⎨⎧x =5y =24. 7.有不同的搬法.为保证“影子不变”,可依如下原则操作:在每一行和每一列中,除保留一摞最高的不动以外,该行(列)的其余各摞都搬成只剩最下面的一个小正方体.如图所示,20个方格中的数字,表示5行6列共20摞中在搬完以后最终留下的正方体个数.照这样,各行可搬个数累计为27,即最多可搬走27个小正方体.8.要使平面展开图的周长最小,剪开的七条棱长就要尽量小,因此要先剪开四条髙(因为c 最小),再剪开一条长a 厘米的棱(否则,不能展开成平面图),最后再剪开两条宽b 厘米的棱(如图中所表示的①〜⑦这七条棱).由此可得图甲,这时最小周长是c ×8+b ×4+a ×2=2a +4b +8c 厘米.图甲 图乙要使平面展开图的周长最大,剪开的七条棱长就要尽量大,因此要先剪开四条最长的棱(长a ),再剪开两条次长的棱(宽b ),最后剪开一条最短的棱(高c ),即得图乙,这时最大周长是a ×8+b ×4+c ×2=8a +4b +2c 厘米.9.如图,由题意知AB =12,CD =13,AC =12,BD =13,过点D 作DE 垂直于AB 于点E ,则DE =12,于是Rt △BDE 中BE =5.延长AC ,BD 交于F ,则由CD :AB =5:10=1:2知CF =12,AF =24于是一个杯子的容积等于两个圆锥的体积之差,即22311102451270033V cm p p p =贩-贩= 而大容器内果汁的体积是23512700cm p p 创=所以果汁可以倒满1400070020p p ?杯。
专题21从不同的方向看阅读与思考20世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到目前为止,我们从没有生活在这样的几何时期,周围的一切都是几何学.”生活中蕴含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇特的建筑,不断移动、反转、放大缩小的电视画面……图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从以下方面得以体现:1.立体图形的展开与折叠;2.从各个角度观察立体图形;3.用平面去截立体图形.观察归纳、操作实验、展开想象、推理论证是探索图形世界的基本方法.例题与求解【例1】如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么x y=____.(四川省中考试题)解题思路:展开与折叠是两个步骤相反的过程,从折叠还原成正方体入手.【例2】如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个(四川省成都中考试题)主视图左视图俯视图888102x y解题思路:根据三视图和几何体的关系,分别确定该几何体的列数和每一列的层数. 【例3】由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图. (1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,求n 的值.(贵州省贵阳市课改实验区中考试题)解题思路:本例可以在“脑子”中想象完成,也可以用实物摆一摆.从操作实验入手,从俯视图可推断左视图只能有两列,由主视图分析出俯视图每一列小正方形的块数情况是解本例的关键,而有序思考、分类讨论,则可避免重复与遗漏.【例4】如图是由若干个正方体形状木块堆成的,平放于桌面上.其中,上面正方体的下底面四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少?(江苏省常州市中考试题)解题思路:所有正方体侧面面积和再加上所有正方体上面露出的面积和,就是所求的面积.从简单入手,归纳规律.【例5】把一个正方体分割成49个小正方体(小正方体大小可以不等),请画图表示.俯视图 主视图(江城国际数学竞赛试题)解题思路:本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需要把图形性质与计算恰当结合.【例6】建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.(1)根据上面的多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是____.(2)—个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是___.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x y的值.解题思路:对于(1),通过观察、归纳发现V,F,E之间的关系,并迁移应用于解决(2),(3).模型应用如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.(浙江省宁波市中考试题改编)能力训练A 级1.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是___.(山东省菏泽市中考试题)第3题图2.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是____.(湖北省武汉市中考试题)3.—个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为____.(山东省烟台市中考试题)4.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有__(山东省青岛市中考试题)5.一个画家有14个边长为1m 的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂颜色的总面积为( )A .19m 2B .41m 2C .33m 2D .34m 2654321第1题主视图左视图 俯视图第2题图① 图② 图③左视图左视图(山东省烟台市中考试题)6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为( )A .3B .4C .5D .6(河北省中考试题)7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( )A .20B .22C .24D .26(河北省中考试题)8.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )(2012年温州市中考试题)9.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是____(立方单位),表面积是____(平方单位); (2)画出该几何体的主视图和左视图.主视图俯视图 A B CD甲主视方向 乙正面(广州市中考试题)10.用同样大小的正方体木块搭建的几何体,从正面看到的平面图形如图①所示,从上面看到的平面图形如图②所示.(1)如果搭建的几何体由9个小正方体木块构成,试画出从左面看这个几何体所得到的所有可能的平面图形.(2)这样的几何体最多可由几块小正方体构成?并在所用木块最多的情况下,画出从左面看到的所有可能的平面图形.(“创新杯”邀请赛试题)B 级1.如图,是一个正方体表面展开图,请在图中空格内填上适当的数,使这个正方体相对两个面上标注的数值相等.(《时代学习报》数学文化节试题)2.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的取值之和为____.(江苏省江阴市中考试题)图① 图②a a -2-1a-主视图俯视图3.如图是一个立方体的主视图、左视图和俯视图,图中单位为厘米,则立体图形的体积为____立方厘米.(“华罗庚金杯赛”试题)4.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A .2B .3C .4D .5(江苏省常州市中考试题)5.由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆,那么大立方体被涂过油漆的面数是( )A.1B .2C .3D .4(“创新杯”邀请赛试题)6.小明把棱长为4的正方体分割成了29个棱长为整数的小正方体,则其中棱长为1的小正方体的个数是( )A .22B .23C .24D .25(浙江省竞赛试题)7.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?主视图左视图左视图(江苏省竞赛试题)8.一个长方体纸盒的长、宽、高分别是a ,b ,c (a >b >c )厘米.如图,将它展开成平面图,那么这个平面图的周长最小是多少厘米?最大是多少厘米?(江苏省竞赛试题)9.王老师将底面半径为20厘米、高为35厘米的圆柱形容器中的果汁全部倒入如图所示的杯子中,若杯口直径为20厘米,杯底直径为10厘米,杯高为12厘米,杯身长13厘米,问果汁可以倒满多少杯?(世界数学团体锦标赛试题)10.一个边长为5厘米的正方体,它是由125个边长为1厘米的小正方体组成的..P 为上底面ABCD 的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是1厘米的小正方体?(深圳市“启智杯”数学思维能力竞赛试题)专题21 从不同的方向看10121320① ② ⑦ ⑥ ④⑤③ a bc 右面 (水平线)正面例1 14 提示:2x =8,y =10,x +y =14. 例2 D例3 (1)左视图有以下5种情形:(2)n =8,9,10,11.例4正方体个数至少为4个.正方体露在外面的面积和的最大值为9.提示:最下面正方体1个面的面积是1,侧面露出的面积和是4,每相邻两个正方体中上面的1个正方体每个面的面积都正好是其下面正方体1个面面积的12,所有正方体侧面面积之和加上所有正方体的上面露出的面积和(正好是最下面正方体上底面的面积1)即是这些正方体露在外面的面积和.如:2个正方体露出的面积和是4+42+1=7,3个正方体露出的面积和是4+42+44+1=8,4个正方体露出的面积和是4+42+44+48+1=812,5个正方体露出的面积和是4+42+44+48+416+1=834,6个正方体露出的面积和是4+42+44+48+416+432+1=878,…… 故随着小正方体木块的增加,其外露的面积之和都不会超过9.例5为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49个小正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,如果能切出1个棱长为4的正方体,则有⎩⎨⎧a +8b +64=216a +b =49-1,解之得b =1467.不合题意,所以切不出棱长为4的正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,棱长为3的正方体有c 个,则⎩⎨⎧a +8b +27c =216a +b +c =49,解得a =36,b =9,c =4, 故可分割棱长分别为1,2,3的正方体各有36个,9个,4个,分法如图所示.例6(1)6 6 V +F -E =2 (2)20 (3)这个多面体的面数为x +y ,棱数为24×32=36条.根据V+F -E =2,可得24+(x +y )-36=2,∴x +y =24. 模型应用设足球表面的正五边形有x 个,正六边形有y 个,总面数F 为x +y 个.因为一条棱连着两个面,所以球表面的棱数E 为12(5x +6y ),又因为一个顶点上有三条棱,一条棱上有两个顶点,所以顶点数V =12(5x +6y )·23=13(5x +6y ). 由欧拉公式V +F -E =2得(x +y )+13(5x +6y )-12×(5x +6y )=2,解得x =12.所以正五边形只要12个.又根据每个正五边形周围连着5个正六边形,每个正六边形又连着3个正五边形,所以六边形个数5x3=20,即需20个正六边形.A 级1.6 2.5 3.8 4.4(2n -1) 5.C 6.B 7.C 8.B 9(1)5 22 (2)略 10.(1)(2)11块.B 级1.上空格填12,下空格填2 2.38 3.2π 4.B5.D 提示:设大立方体的棱长为n ,n >3,若n =6,即使6个面都油漆过,未油漆的单位立方体也有43=64个>45,故n =4或5.除掉已漆的单位立方体后,剩下未漆的构成一个长方体,设其长、宽、高分别为a ,b ,c ,abc =45,只能是3×3×5=45,故n =5.6.C 提示:若分割出棱长为3的正方体,则棱长为3的正方体只能有1个,余下的均是棱长为1的正方体,共37个不满足要求.设棱长为2的正方体有x 个,棱长为1的正方体有y 个,则⎩⎨⎧x +y =298x +y =64,得⎩⎨⎧x =5y =24. 7.有不同的搬法.为保证“影子不变”,可依如下原则操作:在每一行和每一列中,除保留一摞最高的不动以外,该行(列)的其余各摞都搬成只剩最下面的一个小正方体.如图所示,20个方格中的数字,表示5行6列共20摞中在搬完以后最终留下的正方体个数.照这样,各行可搬个数累计为27,即最多可搬走27个小正方体.8.要使平面展开图的周长最小,剪开的七条棱长就要尽量小,因此要先剪开四条髙(因为c 最小),再剪开一条长a 厘米的棱(否则,不能展开成平面图),最后再剪开两条宽b 厘米的棱(如图中所表示的①〜⑦这七条棱).由此可得图甲,这时最小周长是c ×8+b ×4+a ×2=2a +4b +8c 厘米.图甲图乙要使平面展开图的周长最大,剪开的七条棱长就要尽量大,因此要先剪开四条最长的棱(长a ),再剪开两条次长的棱(宽b ),最后剪开一条最短的棱(高c ),即得图乙,这时最大周长是a ×8+b ×4+c ×2=8a +4b +2c 厘米.9.如图,由题意知AB =12,CD =13,AC =12,BD =13,过点D 作DE 垂直于AB 于点E ,则DE =12,于是Rt △BDE 中BE =5.延长AC ,BD 交于F ,则由CD :AB =5:10=1:2知CF =12,AF =24于是一个杯子的容积等于两个圆锥的体积之差,即22311102451270033V cm p p p =贩-贩= 而大容器内果汁的体积是23512700cm p p 创=所以果汁可以倒满1400070020p p ?杯。