八年级第二学期数学期终复习(1)(含答案)-
- 格式:doc
- 大小:440.00 KB
- 文档页数:6
芜湖市张镇中学八年级数学下学期复习(一)姓名 班级 学号 得分一、选择题(每小题3分,共24分) 1.在式子,1a πxy2,4332c b a ,x+65,87y x +,9x+y10中,分式的个数是( )(A ) 2 ( B ) 3 ( C ) 4 ( D ) 52.如果把分式yx x +10中的x 、y 都扩大10倍,则分式的值( )(A )扩大100倍 (B )扩大10倍 (C )不变 (D )缩小到原来的1013.下列等式成立的是( )( A )()23- =-9 ( B )()23--=91 ( C )()212a =14a( D )0.0000000618=6.18×710-4.某厂去年的产值是m 万元,今年的产值是n 万元(m ﹤n ),则今年的产值比去年的产值增加的百分比是( ) ( A )n n m -×100%( B )mm n -×100%( C )(mn +1)×100%( D )mm n 10-×100%5.已知总电阻R 与1R 、2R 关系式是R1=11R +21R ,若R =6欧姆,1R =32R ,则1R 、2R 的值分别是( )(A )1R =45欧姆,2R =15欧姆,( B )1R =24欧姆, 2R =8欧姆 ( C ) 1R =29欧姆, 2R =23欧姆,( D ) 1R =32欧姆, 2R =92欧姆6、若分式6922-+-x x x 的值为0,则x 的值为( )(A)±3 (B)-3或2 ( C )3 (D)-37、若关于x的分式方程42-x =3+xm -4有增根,则m的值是( )(A)-2 (B)2 (3)4 (D)-48、计算a -b+ba b+22 ( )(A)ba b b a ++-22 (B)a+b (C)ba b a ++22 (D)a-b二、填空题(每小题3分,共18分)9、x、y满足关系 时,分式yx y x +-无意义10、22222nm mn n m +=mn 211、2361a-÷aa 612-的结果是12、已知a1-b1=5,则bab a b ab a ---+2232的值是13、我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识的习惯。
2020-2021学年八年级数学下学期期中考试试题时间:90分钟 满分:120分 考试内容:第十六章至第十八章一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020江苏连云港赣榆期末,4,★☆☆)若3-m 为二次根式,则m 的取值范围是 ( )A.m<3B.m≤3C.m≥3D.m>32.(2020江苏盐城期末,5,★☆☆)若a>0,则下列二次根式中,属于最简二次根式的是 ( )A.1aB.1a2 C. aD.a 23.(2020上海浦东新区建平中学期末,2,★☆☆)下列计算正确的是 ( )A.-(-3)2=-3B.(- 3 )2=9C.(-3)2=±3 D.9116 =3144.(2019山西忻州期中,1,★☆☆)下列各式化简后,与3的被开方数相同的是 ( )A.12B.18C.19D.235.如图,每个小正方形的边长为1,四边形的顶点A,B,C,D 都在格点上,则下面4条线段的长度为10 的是( A. ABB.BCC. CDD. AD6.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC =4,CD =12,AD =13,则四边形ABCD 的面积为 ( )A.72B.36C.66D.427.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,则下列说法正确的是 ( )A. CE =BCB. DE =12ABC.∠AED=∠CD.∠A=∠C8.(2020湖南邵阳隆回期末,5,★☆☆)如图,已知直线a∥b∥c,直线d 与直线a,b,c 分别垂直且相交于A,B,C 三点,若AB =2,AC =6,则平行线b 、c 之间的距离是 ( )A.2B.4C.6D.89.(2020四川眉山东坡学校模拟,11,★★☆)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为10cm 、24cm,AE ⊥BC 于点E,则AE 的长是 ( )A.5 3 cmB.2 5 cmC.24013cm D.1201310.(2020四川宜宾叙州期末,12,★★☆)如图正方形ABCO 和正方形DEFO 的顶点A,E,0在同一直线l 上,且EF =2 ,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD =17 ,④△COF 的面积S △CDF =3,其中正确结论 的个数为 ( )A.1B.2C.3D.4二、填空题(本大题共8小题,每小题4分,共32分)11.(2020湖北武汉东湖高新区期末,11,★☆☆)49=________;1-33 的相反数为________; 3 -2 =________12.(2020福建厦门湖里五缘实验学校期末,13,☆☆)在□ABCD 中,∠C:∠D=5:4,则∠B 的度数为________ 13.已知△ABC 的三边长分别为a,b,c,且a,满足b =5-a +a -5 +12,c =13,则S △A BC =________14.如图,∠CAB=30°,点D 在射线AB 上,且AD =4,点P 在射线AC 上运动,当△ADP 是直角三角形时,PD 的长为 ________15.(2020广东清远英德期末,16,★★☆)如图,在平行四边形ABCD 中,∠C=42°,过点D 作BC 的垂线DF,交AB 于点E,交CB 的延长线于点F,则∠BEF 的度数为________16.如图,正方形ABCD 的边长是2,对角线AC 、BD 相交于点O,点E 、F 分别在边AD 、AB 上,且OE⊥OF,则四边形 AFOE 的面积为________17.(2020湖南娄底期末,18,★★☆)1+13=213,2+14=314,3+15=415,……观察各式,则第n(n≥1)个等式为________________________。
2022—2023年人教版八年级数学(下册)期末总复习及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10 B.12 C.16 D.187.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD =15,则CD 的长为( )A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD 的面积是_______。
数学八下期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3答案:B2. 一个正数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:A4. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D7. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A8. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A9. 一个数的平方是9,那么这个数可能是:A. 3B. -3C. 9D. 3或-3答案:D10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是2,那么这个数是______。
答案:83. 一个数的倒数是2,那么这个数是______。
答案:1/24. 一个数的绝对值是5,那么这个数可能是______。
答案:5或-55. 一个数的相反数是-7,那么这个数是______。
答案:7三、解答题(共50分)1. 解方程:2x - 3 = 7。
(10分)答案:x = 52. 计算:(3x^2 - 2x + 1) - (x^2 + 3x - 4)。
(10分)答案:2x^2 - 5x + 53. 已知一个三角形的两边长分别为5和12,求第三边长的取值范围。
湖北省2019–2020学年下学期期中测试卷八年级数学一、选择题(本大题共10小题,每小题3分,共30分)1.下列二次根式中,最简二次根式是A .8B .223C .37xD 22x y +.2.如果3,4,a 是勾股数,则a 的值是A .5B .C .或5D .73.下列各式中,计算正确的是A .1212= B .2(33)9-= C .2(21)322+=+ D .1052÷=4.如图,一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 外移A .7米B .8米C .9米D .10米5.在四边形ABCD 中,给出条件:①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ;⑤∠A=∠C ;⑥∠B=∠D .将其中的任意两个进行组合,能判定四边形ABCD 是平行四边形的有A .10组B .9组C .8组D .7组6.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A .4B .2.4C .4.8D .57.已知()()22m 12,n 12,7m 14m 93n 6n 7=+=-----则代数式的值为A .8B .–8C .10D .–6 8.如图,在▱ABCD 中,对角线AC 、BD 相交成的锐角α为60°,若AC=10,BD=8,则▱ABCD 的面积是A .20B .20C .30D .309.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5 10.如图,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且CE=DF ,AE ,BF 相交于点O ,下列结论:①AE=BF ;②AE⊥BF ;③AO=OE ;④S △AOB =S 四边形DEOF 中,正确的有A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分)112x 9-x 的取值范围是_______.12.若实数x 、y 满足y 2020x x 20202019=-+-+,()2020x-y =则_______.13.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM=3,BC=10,则OB 的长为___________.14.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为________.15.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=,∠AEO=120°,则FC 的长度为___________316.如图,P 是边长为4的正方形ABCD 的对角线BD 上的一动点,且点E 是边AD 的中点,求PE+PA 的最小值为___________.三、解答题(本大题共8个小题,满分72分)17.(本题满分8分,每小题4分)计算:(1)120-555(2((551515231523+. 18.(8分)先化简,再求值:3x 3x 36x xy 4x 36xy ,x y 3.y y y 2+-+==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭其中, 19.(8分)如图,已知平行四边形ABCD 的两条对角线相交于点O ,E 是BO 的中点,过B 点作AC 的平行线,交CE 的延长线于点F ,连接BF.(1)求证:FB=AO ;(2)当平行四边形ABCD 满足什么条件时,四边形AFBO 是菱形?说明理由.20.(本题满分8分)在Y ABCD 中,点E 、F 分别在边BC 、AD 上,且BE=DF .(1)如图1,连接AE 、CF ,求证:四边形AECF 是平行四边形;(2)如图2,连接AE 、BF 交于点G ,连接DE 、CF 交于点H ,连接GH ,若E 为BC 的中点,在不添加辅助线的情况下,请直接写出以G 、H 为顶点的平行四边形.21.(本题满分8分)如图,在矩形ABCD 中,AB=4cm ,BC=8cm ,点P 从点D 出发向点A 运动,运动到点A 即停止;同时点Q 从点B 出发向点C 运动,运动到点C 即停止.点P 、Q 的速度的速度都是1cm/s ,连结PQ ,AQ ,CP ,设点P 、Q 运动的时间为t (s ).(1)当t 为何值时,四边形ABQP 是矩形?(2)当t 为何值时,四边形AQCP 是菱形?(3)分别求出(2)中菱形AQCP 的周长和面积.22.(10分)如图1,已知AD ∥BC ,AB ∥CD ,∠B=∠C .(1)求证:四边形ABCD为矩形;(2)M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①如图2,若N为AB中点,BN=2,求CN的长;②如图2,若CM=3,CN=4,求BC的长.23(10分).如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H分别是DE、BE、BC的中点.(1)求∠FGH度数(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.24.(本题满分12分).如图所示,在平面直角坐标系中,正方形OABC的点A、C分别在x 轴和y轴的正半轴上,点B(6,6)在第一象限,AP平分∠CAB交OB于P.(1)求∠OPA的度数和OP的长;(2)点P不动,将正方形OABC绕点O逆时针旋转至图2的位置,∠COP=60°,AP交OB于点F,连接CF.求证:OF+CF=PF;(3)如图3,在(2)的条件下,正方形的边AB交x轴于点D、OE平分∠BAD,M、N是OB、OE 上的动点,求BN+MN的最小值,请在图中画出示意图并简述理由.湖北省2019–2020学年八年级数学下学期期中测试卷 (解析版) 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列二次根式中,最简二次根式是A .8B .223C .37xD 22x y +. 【答案】D2.如果3,4,a 是勾股数,则a 的值是A .5B .C .或5D .7 【答案】A3.下列各式中,计算正确的是A .1212= B .2(33)9-= C .2(21)322+=+D .1052÷=【答案】C 4.如图,一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 外移A .7米B .8米C .9米D .10米【答案】B 5.在四边形ABCD 中,给出条件:①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ;⑤∠A=∠C ;⑥∠B=∠D .将其中的任意两个进行组合,能判定四边形ABCD 是平行四边形的有A .10组B .9组C .8组D .7组【答案】C6.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A .4B .2.4C .4.8D .5【答案】C 7.已知()()22m 12,n 12,7m 14m 93n 6n 7=+=-----则代数式的值为 A .8B .–8C .10D .–6 【答案】A8.如图,在▱ABCD 中,对角线AC 、BD 相交成的锐角α为60°,若AC=10,BD=8,则▱ABCD 的面积是A .20B .20C .30D .30 【答案】B 9.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D 5【答案】C 10.如图,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且CE=DF ,AE ,BF 相交于点O ,下列结论:①AE=BF ;②AE⊥BF ;③AO=OE ;④S △AOB =S 四边形DEOF 中,正确的有A .1个B .2个C .3个D .4个【答案】C二、填空题(本大题共6小题,每小题3分,共18分)11.若代数式2x 9x 3--在实数范围内有意义,则x 的取值范围是_______.【答案】x 3x 3>≤-或12.若实数x 、y 满足y 2020x x 20202019=-+-+,()2020x-y =则_______.【答案】1.13.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM=3,BC=10,则OB 的长为___________.【答案】3414.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为________.【答案】4.15.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=,∠AEO=120°,则FC 的长度为___________3 【答案】316.如图,P 是边长为4的正方形ABCD 的对角线BD 上的一动点,且点E 是边AD 的中点,求PE+PA 的最小值为___________.【答案】25三、解答题(本大题共8个小题,满分72分) 17.(本题满分8分,每小题4分)计算:(1)120-555(2((551515231523+. 【解答】(1)原式5555(2)原式=553-–12=83-18.(8分)先化简,再求值:3x 3x 3xy 36xy ,x y 3.y y y 2+-+==⎛⎛ ⎝⎝其中, 【解答】原式=2x 3xy y-() 3x ,y 3=322==-当时,原式19.(8分)如图,已知平行四边形ABCD 的两条对角线相交于点O ,E 是BO 的中点,过B 点作AC 的平行线,交CE 的延长线于点F ,连接BF.(1)求证:FB=AO ;(2)当平行四边形ABCD 满足什么条件时,四边形AFBO 是菱形?说明理由.【解答】证明:(1)如图,取BC的中点G,连接EG.∵E是BO的中点,∴EG是△BFC的中位线,∴EG=0.5BF.同理,EG=0.5OC,∴BF=OC.又∵点O是▱ABCD的对角线交点,∴AO=CO,∴BF=AO.又∵BF∥AC,即BF∥AO,∴四边形AOBF为平行四边形,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.20.(本题满分8分)在Y ABCD中,点E、F分别在边BC、AD上,且BE=DF.(1)如图1,连接AE、CF,求证:四边形AECF是平行四边形;(2)如图2,连接AE、BF交于点G,连接DE、CF交于点H,连接GH,若E为BC的中点,在不添加辅助线的情况下,请直接写出以G、H为顶点的平行四边形.【解答】(1)证AF平行且等于CE即可.(2)AGHF,FGHD,GEHF,GBEH,GECH.21.(本题满分8分)如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.【解答】(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即224t =8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2×12×3×4=20(cm2).22.(10分)如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①如图2,若N为AB中点,BN=2,求CN的长;②如图2,若CM=3,CN=4,求BC的长.【解答】(1)证明:如图1中,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠C,∴∠B=∠C=90°,∴四边形ABCD是矩形.(2)①如图2中,延长CM、BA交于点E.∵AN=BN=2,∴AB=CD=4,∵AE∥DC,∴∠E=∠MCD,在△AEM和△DCM中,∠E=∠MCD,∠AME=∠CMD,AM=DM,∴△AME≌△DMC,∴AE=CD=4,∵∠BNC=2∠DCM=∠NCD,∴∠NCE=∠ECD=∠E,∴CN=EN=AE+AN=4+2=6.②如图2中由①可知,△EAM≌△CDM,EN=CN,∴EM=CM=3,EN=CN=4,设BN=x,则BC2=CN2–BN2=CE2–EB2,∴42–x2=62–(x+42,∴x=,∴BC=2222137 CN BN422⎛⎫-=-=⎪⎝⎭23(10分).如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H分别是DE、BE、BC的中点.(1)求∠FGH度数(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.【解答】(1)∵度F,G,H分别是DE,BE,BC的中点知∴FG∥AB,GH∥AC∵道AB⊥回AC∴FG⊥GH即∠FGH=90°(2)连答接HM,则HM∥BD,HM=12BD=4同理GH=12CE=3∵BD⊥CE,∴HM⊥GH由勾股定理的可得GM=524.(本题满分12分).如图所示,在平面直角坐标系中,正方形OABC的点A、C分别在x 轴和y轴的正半轴上,点B(6,6)在第一象限,AP平分∠CAB交OB于P.(1)求∠OPA的度数和OP的长;(2)点P不动,将正方形OABC绕点O逆时针旋转至图2的位置,∠COP=60°,AP交OB于点F,连接CF.求证:OF+CF=PF;(3)如图3,在(2)的条件下,正方形的边AB交x轴于点D、OE平分∠BAD,M、N是OB、OE 上的动点,求BN+MN的最小值,请在图中画出示意图并简述理由.【解答】(1)如图1,∵AC,OB是正方形OABC的对角线,∴OA=AB,∠2=∠3=∠BAC=45°,∵AP是∠BAC的角平分线,∴∠1=∠BAC=22.5°,∴∠OAP=∠3+∠1=67.5°,在△OAP中,∠OPA=180°﹣∠2﹣∠OAP=67.5°,∴∠OAP=∠OPA,∴OA=OP,∵B(6,6),∴AB=6,∴OA=AB=6,∴OP=6;(2)如图2,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∵∠COP=60°,∴∠AOP=150°,由(1)知,OP=OA∴∠P=15°,由(1)知,∠POG=45°,∴∠AGO=∠P+∠POG=60°,∵OB是正方形的对角线,∴∠BOC=45°,∵∠COP=60°,∠POG=45°,∴∠BOG=∠COP=60°,∴△OFG是等边三角形,∴OF=FG=OG,∴△COF≌△POG(SAS),∴PG=CF,∴CF+OF=PG+FG=PF;(3)如图3,过点B作BQ⊥OE于Q,延长BQ交x轴于B',∵OE是∠DOB的平分线,∴BQ=B'Q,∴点B'与点B关于OE对称,连接B'M'交OE于N',∴BN'+M'N'=B'N'+M'N'=B'M',过点B'作B'M⊥OB于M,交OE于E,此时,BN+MN最小,∵OB是边长为6的正方形的对角线,∴OB=62由作图知,OB'=OB=62由(2)易知,∠BOH=30°,在Rt△B'OM中,B'M=OB'=3即:BN+MN的最小值为32.。
一、选择题1.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)2.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,245.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .8.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差9.(0分)[ID :10186]如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A.20B.16C.12D.810.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√313 11.(0分)[ID:10175]函数y=x√x+3的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.213.(0分)[ID:10172]如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-214.(0分)[ID:10170]如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD15.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10321]如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.18.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____.19.(0分)[ID :10311]若2(3)x -=3-x ,则x 的取值范围是__________.20.(0分)[ID :10299]已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.21.(0分)[ID :10286]一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.22.(0分)[ID :10268]在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=,则CFH ∠=________.23.(0分)[ID :10256]已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.24.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______25.(0分)[ID :10247]已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.三、解答题26.(0分)[ID :10408]如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.27.(0分)[ID :10383]已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG ,①求证:∠ODG =∠OCE ;②当 AB =1 时,求 HC 的长.28.(0分)[ID:10342]已知:如图,在▱ABCD中,设BA=a,BC=b.(1)填空:CA=(用a、b的式子表示)(2)在图中求作a+b.(不要求写出作法,只需写出结论即可)29.(0分)[ID:10339]如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.∆中,D是BC边上一点,E是AD的中点,过30.(0分)[ID:10335]如图所示,ABC=,连接BF.点A作BC的平行线交CE的延长线于F,且AF BD(1)求证:D是BC的中点;=,试判断四边形AFBD的形状,并证明你的结论.(2)若AB AC【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.A4.A5.B6.B7.B8.D9.D10.D11.B12.B13.D14.D15.C二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD得出∠BAD =180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解18.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及19.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤320.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键21.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方22.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直23.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一24.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题25.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质. 2.D解析:D【解析】【分析】 63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7.【详解】 63n 273n ⨯7n 7n∴7n 7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.A解析:A【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.5.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.7.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
初二数学第二学期期末复习资料参考答案(1-14)1初二数学期末复习资料参考答案(第一套)一、CBCAD ,CADDB ,CBCDD ,BCC二:1、10cm ,96cm 2;2、<;3、10;4、1;5、)2)(2(3-+y y ;三:1、45;2、aac b 42-;3、243-;4、33017-;5、0;6、1-x ;7、534-;8、ba b a -+;四、BC =32五、连结BD ,可证对角线互相平分。
六、0(第二套)一:1、±3,±3,-43;2、x --;3、100a ;4、>35;5、495;6、)2)(2(-+x x x 7、41;8、22-;9、2363-;9、1;10、n m 2- 二、CADBB ,BBAAD 三、1、3732861+-;2、3;3、2415334-;4、0;5、334;6、b a + 四、a =8,b =63 五、①11++a a =5;②c =26,211=S 附加题:1、原方程可化为 a a a =-+-2001)2000(解方程得:a =4002001,故所求的值为2001。
2、原式=[]222)()()(21a c c b b a -+-+-=5 3、由题意可得:x ≥3,y <0。
当3≤x <4时,原式=2-y ;当x ≥4时,原式=62--y x ;(第三套)一:1、219;6、36;2、23+;3、≥2;4、x -;5、4cm ;6、5cm ;7、20cm ;8、6cm ;9、9cm ;10、8cm ;11、7.2;12、310,310。
13、7.5;14、450。
二、DDACA ,DBDDB ,C三:1、原式=24=-xyx y 2、原式=311111-=-=-+-a a a a 3、可证:△ADF ≌△BCF (SAS )4、提示:证AEDB 是平行四边形得AE 平行且等于BD ,又因为BD =DC ,所以AE 平行且等于DC ,故ADCE 是平行四边形,又因∠ADC =Rt ∠,所以ADCE 是矩形。
初二数学期末复习资料参考答案(第一套)一、CBCAD ,CADDB ,CBCDD ,BCC二:1、10cm ,96cm 2;2、<;3、10;4、1;5、)2)(2(3-+y y ;三:1、45;2、aacb 42-;3、243-;4、33017-;5、0;6、1-x ; 7、534-;8、ba ba -+; 四、BC =32五、连结BD ,可证对角线互相平分。
六、0(第二套)一:1、±3,±3,-43;2、x --;3、100a ;4、>35;5、495;6、)2)(2(-+x x x 7、41;8、22-;9、2363-;9、1;10、n m 2- 二、CADBB ,BBAAD 三、1、3732861+-;2、3;3、2415334-;4、0;5、334;6、b a + 四、a =8,b =63 五、①11++a a =5;②c =26,211=S 附加题:1、原方程可化为a a a =-+-2001)2000(解方程得:a =4002001,故所求的值为2001。
2、原式=[]222)()()(21a c cb b a -+-+-=5 3、由题意可得:x ≥3,y <0。
当3≤x <4时,原式=2-y ;当x ≥4时,原式=62--y x ;(第三套)一:1、219;6、36;2、23+;3、≥2;4、x -;5、4cm ;6、5cm ;7、20cm ; 8、6cm ;9、9cm ;10、8cm ;11、7.2;12、310,310。
13、7.5;14、450。
二、DDACA ,DBDDB ,C三:1、原式=24=-xyxy 2、原式=311111-=-=-+-a aa a 3、可证:△ADF ≌△BCF (SAS )4、提示:证AEDB 是平行四边形得AE 平行且等于BD ,又因为BD =DC ,所以AE 平行且等于DC ,故ADCE 是平行四边形,又因∠ADC =Rt ∠,所以ADCE 是矩形。
八年级数学复习题一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.) 1.有意义的x 取值范围是( )A.1x ≥B. 1x >C. 2x ≠D.1x ≥且2x ≠2.下列四组线段中,可以构成直角三角形的是( ) 1,,3沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm4某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是( ) 捐款(元) 10 15 20 50 人数 1 5 4 2A . 15,15B . 17.5,15C . 20,20D . 15,20 5.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( ) A .3种 B . 4 C .5种 D .6种A . 四个角相等的四边形是矩形B . 对角线相等的平行四边形是矩形C . 对角线垂直的四边形是菱形D . 对角线垂直的平行四边形是菱形7.(2014•德州)雷霆队的杜兰特当选为2013﹣2014赛季NBA 常规赛MVP ,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为( )场次 1 2 3 4 5 6 7 8 得分3028283823263942A . 29 28B . 28 29C . 28 28D . 28 278.如图,菱形ABCD 中,∠B =60°,AB =2cm ,E 、F 分别是BC 、CD 的中点,连结AE 、EF 、AF ,则△AEF 的周长为( )A .23cmB . 43cmC .33cmD .3cm9.如图所示,四边形OABC 是正方形,边长为6,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为(2,0),P 是OB 上一动点,则PA +PD 的最小值为A .5B .10C .4D .610.(2014•襄阳)如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( ) A . ①② B . ②③C . ①③D . ①④第10题 二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.) 11. 有一组数据:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .12.如图,菱形ABCD 中,∥B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为(第12题) (第15题)13.实数P 在数轴上的位置如图所示,化简2(1)p -+2(2)p -=________.14.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是第8题 AB C DEF O ABCD P第9题21P15.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是 三、解答题(本大题共7小题,共55分.) 16.(本题满分6分) (1) 计算:×﹣4××(1﹣)0;17.(本题满分8分)如图,在Rt △ABC 中,∠C =90°,AC =3.点D 为BC 边上一点,且BD =2AD ,∠DAC =30°,求△ABC 的周长(结果保留根号).18.(2014•扬州10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制): 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是 队.19.已知一次函数b kx y +=的图像经过点)2,1(,且与直线x y 2-=平行. (1)求一次函数的解析式;(2)若点),1(a A -在一次函数b kx y +=的图像上,求a 的值.20.已知:如图,在矩形ABCD 中,AB =3cm ,BC =6cm ,在边BC 上有一点E ,联结AE ,AE =AD ,联结DE . (1)求EC 的长; (2)求∠CDE 的度数;21.如图,在∥ABDC 中,分别取AC 、BD 的中点E 和F ,连接BE 、CF ,过点A 作AP ∥BC ,交DC 的延长线于点P . (1)求证:∥ABE ∥∥DCF ;ACDBBE ACD(第20题图)(2)当∥P满足什么条件时,四边形BECF是菱形?证明你的结论.22.如图,在Rt∥ABC中,∥B=90°,AC=60,AB=30.D是AC上的动点,过D作DF∥BC 于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当∥DEF是直角三角形时,求x的值.。
新人教版八年级数学(下册)期末总复习及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.已知13xx+=,则2421xx x++的值是()A.9 B.8 C.19D.184.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.21a 8a=__________.3.若m+1m=3,则m2+21m=________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
八年级第二学期数学期终复习试卷(1)
一、选择题:
1、在代数式2
34
51
,,,,23x
b x x y x y a π
+-+-中,分式有( ) A 、 2个 B 、3个 C 、4 个 D 、5个
2、反比例函数图像经过点P(2,3),则下列各点中,在该函数图像上的是( )
(A 29,
3B ⎛
⎫ ⎪
⎝
⎭ ()6,1C - 39,2D ⎛
⎫- ⎪⎝⎭
3、成人体内成熟的红细胞的平均直径一般为0.000007245m 保留三个有效数字的近似数,
可以用科学记数法表示为( ) A 、5
7.2510m -⨯ B 、6
7.2510m ⨯ C 、6
7.2510m -⨯ D 、6
7.2410m -⨯ 4、已知:如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,
OE ∥DC 交BC 于点E ,AD =6cm ,则OE 的长为( ) A 、6 cm B 、4 cm C 、3 cm D 、2 cm 5、已知样本数据为5,6,7,8,9,则它的方差为( ).
A 、10 B
C 、2 D
6、将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积。
则这样的折
纸方法共有( )
A 、1种
B 、2种
C 、4种
D 、无数种 7、下列说法中,正确的个数有( )
①已知直角三角形的面积为2,两直角边的比为1:2
,最短边长为1
; ③在ABC ∆中,若::1:5:6A B C ∠∠∠=,则ABC ∆为直角三角形; ④等腰三角形面积为12,底边上的高为4,则腰长为5。
A 、1个 B 、2个 C 、3个 D 、4个 8、在同一坐标系中,一次函数y=kx -k 和反比例函数2k y x
=
的图像大致位置可能是下图
中的 ( )
A B C D
A
B C D E
O
9、如图,已知动点P 在函数()102y x x
=
>的图像上运动,PM ⊥x 轴于点M ,PN ⊥y 轴
于点N ,线段PM 、PN 分别与直线AB :y=-x+1交于点E 、F ,则AF·BE 的值为 ( )
A 、4
B 、2
C 、1
D 、
12
E B C
A E D
H
G
F
(第9题) (第11题) (第12题) 10、在△ABC 中,AB=15,AC=20,BC 边上高AD=12,则BC 的长为( ) A 、25 B 、7 C 、 25或7 D 、不能确定
11、如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( ) A 、
5
1 B 、
4
1 C 、
3
1 D 、
10
3
12、如图,在□ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,试判断下列结论:
①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=
;21BG
④S △ABE =S △AGE ,其中正确的结论是( ) A .l 个 B .2个 C .3个 D .4个 二、填空题 13、当x=2时,分式
22x x m
-无意义,则当x=3时,分式
m x x m
+的值为 。
14、若关于x 的分式方程
2
223
3
m
x x -=
--无解,则常数m 的值为 。
15、梯形ABCD 中,AB ∥DC , E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,梯
形ABCD 的边满足条件 时,四边形EFGH 是菱形。
16、某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_________.
17、命题“菱形是对角线互相垂直的四边形”的逆命题是 。
18、已知()2
1213x y -+-与2
1025z z -+互为相反数,则以x 、y 、z 为边的三角形是 三角形。
(填“直角”、“等腰”、“任意”)
19、如下左图,点A 是反比例函数4y x
=
上任意一点,过点A 作AB ⊥x 轴于点B ,则S △
AOB =。
20、如下右图,Rt △ABC 中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,
则阴影部分面积为 。
三、解答与证明题 21、计算(1)2
2
243
69
a a a a a --÷
+++; (2)(-2m 2n -2)2·(3m -1n 3)-3
22、解方程:105221
12x x x
+
=--。
23、某气球内充满了一定质量的气体,当温度不变时,气球内的气压()p kpa 与气体体积
()3
V m
成反比例函数,其图像如图所示,当气球内的气压大于140kpa 时,气球将会爆炸,
为了安全起见,请你求出气体体积的范围
24、2004年12月28日,我国第一条城际铁路-----合宁铁路(合肥至南京)正式开工建设,
建成后,合肥至南京的铁路运行里程将由目前的312km缩短至154km,设计时速是现行时速的2.5倍。
旅客列车运行时间将因此缩短约3013h,求合宁铁路的设计时速。
25、下图是某篮球队队员年龄结构直方图,根据图中信息解答下列问题:
(1)该队队员年龄的平均数;
(2)该队队员年龄的众数和中位数.
26、如图,把长方形ABCD沿BD对折,使C点落在C′的位置时,BC′与AD交于E,
若AB=6cm,BC=8cm,
求重叠部分△BED的面积。
27、如图所示,在平面直角坐标系中,第一象限的角平分线OM与反比例函数的图像相交
于点M,已知OM的长是(1)求点M的坐标;
(2)求此反比例函数的关系式。
1、 A
2、B
3、C
4、C
5、C
6、D
7、D
8、C
9、C 10、C 11、B 12、D13、3
4
14、
± 2 15、AD=BC16、81.517、对角线互相垂直的四边形为菱形18、直角19、220、30
21、(1)原式=
()()()
2
a 3a 2
a 3a 2a 2+-++- ()a 33a 2
+=
+分;(2)原式=
4
4
39
1
427
m n
m n
-- ()713
4227
m n
-=
分7
134(3
)27m
n
=分.22、 解:在方程两边同时乘以()21x -得 (
)()
1052212x x -=
-
分 解得:()1
32
x =分 检验:当12
x =时,210x -=
12
x ∴=
是原方程的增根, 即原分式方程无解
23、解:设()0m p m v
=≠,把点()0.8,120代入,120,960.8
m m p m v
=
=
∴=得
()()969624
2140,435
p v v
v ∴=
≤∴≥ 分,
又分
所以气体体积不小于32435m 24、解:设合宁铁路的设计时速为2.5/xkm h ,现行时速为/xkm h
()312
154
3.1332.5x x
-=分 解得:()
804x =分 经检验80x =是原分式方程的解 2.5200x ∴=
答:合宁铁路的设计时速为200/km h 25、(1)21岁,(2)21岁,21岁.
26、解:设,A E x =因为BDC '∆是由对折得到的,所以BCD BC D '∆≅∆
()0
90,,90,90,,,,2C C A B C D A A B C D
A C A
B
C
D A
E B C E C
A B E C D E A E E C B E E D ''∴∠=∠==∠=='''∴∠=∠==∠=∠''∴∆≅∆∴==而又;分
()()
()
2
2
2
22
2
8768,44
11775686622
4
4
E D B B E B C E C x
R t A E B A B A E B E x x x S ∆''=-=-∆+=∴+=-∴=∴=
⨯⨯-
⨯⨯
=在中有分分 即重叠部分的面积为
754
27、解:(1)过点M 作MN x ⊥轴于点N ,设点M 的坐标为()00,M x y ∵点M 在第一象限的角平分线上∴000,0x y >>且00x y =。