第八讲 超导材料
- 格式:pptx
- 大小:2.86 MB
- 文档页数:73
超导材料工作原理超导材料是一类在极低温下表现出无电阻和完全磁场排斥效应的材料。
它们具有许多独特的性质和应用潜力。
本文将详细介绍超导材料的工作原理,包括超导现象的起因、超导材料的特性以及超导转变的机制。
一、超导现象的起因超导现象指的是在某些物质中,当低温降到某一临界温度以下时,它们的电阻突然消失,呈现出完全的电流输送能力。
这一现象可以通过以下两个主要原因来解释:1. 电子对的形成:在超导材料中,电子存在于形成“库珀对”的配对态。
这些电子通过与晶格振动相互作用,使它们之间形成配对,称为库珀对。
这种配对可以减小电子之间的相互排斥,从而有效地躲避了散射,降低了电阻。
2. 相干性:超导材料中的库珀对会形成一个相干态,其中电子的量子状态关联起来,使它们能够沿着一个方向运动而不受到散射的干扰。
这样,电子可以在材料中形成一个连续的电流,并且没有电阻损耗。
二、超导材料的特性超导材料具有一系列独特的特性,使得它们在科学研究和技术应用中表现出了巨大的潜力。
以下是超导材料的一些主要特性:1. 零电阻:在超导态下,超导材料的电阻变为零。
这意味着电流可以在材料中无损耗地流动,使超导器件具有更高的效率和能量转换能力。
2. 完全磁场排斥效应:超导材料在超导态下对外磁场表现出完全排斥的效应,这被称为迈斯纳效应。
这使得超导材料在磁悬浮、磁共振成像和磁力传感器等领域有着重要的应用。
3. 孤立磁通量量子:在超导材料中,当外磁场进入材料时,磁场会形成由量子束缚的磁通线。
这些磁通量子是超导材料中一个独特的现象,对研究超导材料的性质和应用具有重要意义。
三、超导转变的机制超导材料的超导转变指的是从正常态(有电阻)向超导态(无电阻)的相变过程。
这一相变可以通过以下两个机制来实现:1. BCS机制:由巴丁、库珀和斯奈德(BCS)提出的BCS理论是解释超导现象的关键理论之一。
该理论认为,超导的触发是由于库珀对在材料中的形成,而库珀对的形成又是由于电子与晶格振动(声子)相互作用引起的。
超导材料的结构与特性分析超导材料是指在低温下电阻为零的材料。
在超导体中,电子会以无阻力的方式流动,因此电流可以在其中流动无限长的时间。
这使超导材料在许多领域中具有重要应用,例如在MRI医疗成像和在电力输送中节省能源。
本文将介绍超导材料的结构与特性,帮助读者了解这种材料的基本原理和应用。
1. 超导材料的结构超导材料的结构可以分为两类:金属超导体和氧化物超导体。
1.1 金属超导体金属超导体是由固态金属制成的。
这种材料在超过临界温度时表现出金属性质,而在低于临界温度时表现出超导性质。
金属超导体的晶体结构类似于钻石结构,其中原子按照一定的规则排列。
金属超导体的临界温度通常较低,一般在个位数经ˍơ。
1.2 氧化物超导体氧化物超导体是由氧化物构成的复杂结构材料。
这种材料通常具有复杂的晶体结构,由于原子之间的相互作用而表现出超导性质。
例如,一种氧化物超导体是由铜、氧和铁组成的,其晶体结构非常复杂,并且原子之间形成了许多不同的结构。
氧化物超导体的临界温度通常较高,可以达到数十开尔文。
2. 超导材料的特性超导材料具有许多独特的特性,这些特性是当今科学和工程中广泛应用超导材料的重要原因之一。
以下是超导材料的一些主要特性。
2.1 零电阻超导材料不会在流动电流时损失能量,即电阻为零。
这意味着电流可以在其中流动无限长的时间,因此超导材料被广泛用于需要高电流密度的应用,例如电动汽车和磁共振成像。
2.2 磁通排斥超导材料对磁场表现出强烈的反抗力。
当材料降至超导状态时,它对磁场形成了一种称为磁流体的排斥力,这意味着磁通不能穿透材料。
这种特性使超导材料适用于制造高磁场强度的磁体,例如MRI扫描器和核磁共振仪。
2.3 超导泄漏材料的超导状态不是永久的,当磁场密度超过材料能承受的临界值时,它将失去超导性。
这种现象称为超导泄漏,它限制了超导材料在强磁场应用中的使用。
2.4 临界温度超导材料的临界温度是指材料必须降至的温度,以便表现出超导性质。
超导材料在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料称为超导材料。
现已发现有28种元素和几千种合金和化合物可以成为超导体。
一.超导材料特性1.零电阻性超导材料处于超导态时电阻为零,能够无损耗地传输电能。
如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。
这种“持续电流”已多次在实验中观察到。
2.完全抗磁性超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。
3.约瑟夫森效应两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。
当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。
这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。
4.同位素效应超导体的临界温度Tc与其同位素质量M有关。
M越大,Tc 越低,这称为同位素效应。
二.基本临界参量1.临界温度外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。
Tc值因材料不同而异。
2.临界磁场使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。
Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。
3.临界电流和临界电流密度通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。
Ic一般随温度和外磁场的增加而减少。
单位截面积所承载的Ic称为临界电流密度,以Jc表示。
超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。
三.超导材料应用超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。
尤其是高温超导材料的应用用非常广阔,大致可分为三类:大电流应用、电子学应用和抗磁性应用。
超导材料当电流通过金属时,金属会发热。
用熔点高的金属丝制成的电热原件,当有电流通过时,电能将转换为热能,从而获得高温。
Ni、Cr;Ni、Cr、Fe;Ni、Cr、Al等合金以及W、Mo、Pt等金属确实是常用的电热元件材料。
电流通过金属〔或合金〕而使金属发热是由于金属内部存在着电阻,电阻具有阻碍电流通过的性质。
人们早道,金属的电阻随温度的升高而增大,电阻的增大反过来又促进金属的发热,如此恶性循环,用金属导线送电时,传输的电流因而受到限制,如铜导线在自然冷却的条件下,同意通过的最大电流密度为2~6A /mm2;电流再大,会因发热过多而有烧坏导线的危险。
金属的这一弱点,促使人们去研究低温时金属电阻的变化。
金属材料的电阻通常随温度的降低而减小。
20世纪初,科学家发明汞冷却到低于4.2K时,电阻突然消逝,导电性几乎是无限大的,当外加磁场接近固态汞随后又撤去后,电磁感应产生的电流会在金属汞内部长久地流动而可不能衰减,这种现象称为超导现象。
具有超导性质的物体称为超导体。
超导体电阻突然消逝的温度称为临界温度〔Tc)。
在临界温度以下时,超导体的电阻为零,也确实是电流在超导体中通过时没有任何损失。
超导体的最突出的性质是它们处于超导状态时,材料内部的电阻为零,电流通过时不发热,每平方毫米同意通过的电流可达到数万安培。
超导体的另一性质确实是将超导体放入磁场中,超导体内部产生的磁感应强度为零,具有完全的抗磁性。
目前,已发明近30种元素的单质,8000多种化合物和合金具有超导性能。
超导材料大致可分为纯金属、合金和化合物三类。
具有最高临界温度〔Tc〕的纯金属是镧,Tc=12.5K;合金型目前要紧有银钛合金,Tc=9.5K;化合物型要紧有银三锡,Tc=18.3K;钒三镓,Tc=16.5K。
1986年以来,高温超导体的研究取得了重大突破。
1987年发明,在氧化物超导材料中有的在240K出现超导迹象。
由镧、锶、铜和氧组成的陶瓷材料在287K 的室温下存在超导现象,这为超导材料的应用开辟了广阔的前景。
超导材料的工作原理超导材料是一种具有极低电阻和完全排斥磁场的材料。
超导现象是一种在低温下出现的量子现象,它基于电子之间形成的库伦配对和库伦势能的减小。
超导现象的发现和理解对于物理学和工程学领域都具有重要意义。
一、超导现象的发现超导现象的发现可以追溯到1911年。
当时,荷兰物理学家海克·卡曼斯和海尔曼·奥尼斯发现,在低温下,汞的电阻突然减为零。
这一发现引起了科学界的广泛兴趣,并催生了对超导现象的深入研究。
二、超导材料的特性超导材料具有以下几个显著的特性:1. 零电阻:超导材料在超导状态下具有极低的电阻,电流可以在其中自由流动,而无需消耗能量。
这使得超导材料在能量传输和电路应用方面具有巨大优势。
2. 完全磁场排斥:超导材料在超导状态下表现出完全排斥磁场的特性,这被称为迈斯纳效应。
超导材料能够将磁场完全从其内部排斥,在磁场边界处形成一个磁屏蔽区域,这对于磁场应用和磁悬浮技术具有重要作用。
3. 战斗击退:当超导体受到足够大的磁场时,它会失去超导态,并逐渐恢复到正常导体状态。
这种现象被称为战斗击退,其机制与超导材料内部电流的分布和磁场对电子配对的影响有关。
三、超导材料的工作原理涉及两个重要的概念:库伦配对和库伦势能的减小。
1. 库伦配对:在超导材料中,电子通过相互吸引形成成对的状态,这种成对的电子被称为库伦配对。
这种形成配对状态的机制是由电子-声子相互作用引起的。
声子是晶格振动的量子,它能够在超导材料中传递电子之间的相互作用。
2. 库伦势能的减小:在超导材料中,由于配对电子的自旋和动量是互补的,电子之间的静电库伦势能会减小。
这种减小导致了超导材料电子对的稳定存在。
在超导材料中,减小的库伦势能超过了与电子散射和能量分散相关的耗散效应,电子对可以在整个材料中自由移动,从而导致了零电阻的现象。
四、超导材料的应用超导材料的广泛应用涵盖了多个领域,包括能源传输、电力设备、医学成像和科学研究等。
1. 能源传输:由于超导材料具有零电阻的特性,其用于电力传输可以大大减少能量损耗和传输过程中的电流损失。
超导材料超导材料超导材料是指在超导态下能够实现零电阻和完全磁通排斥的物质。
这是一种非常特殊的材料,在低温下具有很高的电导率。
超导材料的发现对科学和工业领域都产生了巨大的影响。
本文将介绍超导材料的概念、发现历史、特性和应用等方面的内容。
超导材料的概念最早可以追溯到1911年,当时荷兰物理学家海克·卡末林·奥恩斯和海尔曼·科内斯发现了汞在低温下的超导性质。
自那以后,科学家们一直在寻找更多的超导材料,并不断探索和研究超导现象的原理。
超导材料的最大特点是零电阻。
当超导材料被冷却到临界温度以下时,材料内的电流可以在不损耗能量的情况下持续流动。
这意味着超导材料可以实现高电流密度和高电导率,可以在电力输送、磁共振成像等方面发挥巨大的潜力。
除了零电阻外,超导材料还具有完全磁通排斥的特性。
当磁场穿过超导材料时,超导电子将把磁力线排斥出材料,形成所谓的“迈斯纳效应”。
这种特性使超导材料在磁悬浮、磁阻限制等领域具有广泛的应用。
超导材料的发现和研究对科学产生了巨大的影响。
它不仅突破了传统材料的电阻极限,也为解决能源和环境问题提供了新的思路。
例如,在能源输送方面,超导材料可以大大减少电能损耗,提高输电效率。
在磁共振成像方面,超导磁体可以提供极强的磁场,使成像更加精确并缩短检查时间。
此外,超导材料还在科学研究中发挥着重要作用。
它在粒子物理学、高能物理学和凝聚态物理学等领域有广泛的应用。
例如,在核聚变研究中,超导材料可以用于制造超导磁体,产生强大的磁场来控制等离子体。
超导材料的应用还延伸至工业领域。
在交通运输方面,超导磁悬浮技术可以实现高速列车的悬浮和推进,提供更快、更安全、更节能的交通方式。
在能源领域,超导磁能储存技术可以在低谷电力储能和紧急供电方面发挥重要作用。
虽然超导材料在理论和实验研究中取得了重要进展,但目前仍面临着一些挑战。
首先是超导材料的高温超导问题。
迄今为止,大多数超导材料的超导转变温度都在很低的液氮温度以下,这限制了超导材料应用于实际场景的可能性。
科学与技术名词解释超导材料嘿,你知道超导材料不?超导材料啊,那可真是神奇得很呢!就好像是打开了一扇通往新世界的大门。
超导材料,简单来说,就是在特定条件下电阻会突然消失的材料。
你能想象吗?电流在它里面那叫一个畅通无阻啊!比如说铜丝,电流通过的时候会有电阻,会发热。
但超导材料呢,电流就像在超级高速公路上飞驰,毫无阻碍!
咱来打个比方吧,普通材料就像是一条坑坑洼洼的小路,电流走起来跌跌撞撞;而超导材料就是那平坦宽阔的大马路,电流可以撒欢地跑。
这差距,是不是一下子就明显了?
超导材料的发现,那可真是科学界的一大壮举!这就好比在黑暗中突然点亮了一盏明灯。
科学家们一直在努力探索超导材料的奥秘,试图让它更好地为我们服务。
还记得有一次,我和几个朋友讨论超导材料。
我说:“这超导材料要是能广泛应用,那得多厉害啊!”朋友马上接话:“那可不,到时候什么磁悬浮列车、超导储能,不都能变得更牛了嘛!”另一个朋友也兴奋地说:“对啊对啊,那咱们的生活可就发生大变化啦!”你看,大家对超导材料都充满了期待呢!
超导材料的应用前景那是无比广阔啊!在能源领域,它能让能量传输更高效;在交通领域,能让磁悬浮列车跑得更快更稳。
它就像是一把万能钥匙,能打开无数个可能的大门。
我觉得超导材料就是未来的希望,它会给我们的生活带来翻天覆地的变化,难道不是吗?我们一定要好好关注它的发展,说不定哪天它就会给我们带来巨大的惊喜呢!。