高一物理_动能定理练习题
- 格式:doc
- 大小:168.00 KB
- 文档页数:3
高一物理77动能与动能定理习题及答案1. 一物体从静止开始在光滑水平面上滑行,经过一定距离后达到速度v,求它的动能。
答:由动能定理可得,物体的动能等于产生它动能的力的功。
由于在光滑水平面上物体没有受到重力的作用,因此物体产生动能的力是摩擦力(摩擦力的大小与物体的速度成正比),所以物体的动能为:E = Ff × s = (μk × m × g × s) / 2其中,Ff为摩擦力,s为物体的滑行距离,μk为动摩擦因数,m为物体质量,g为重力加速度。
由于物体从静止开始运动,初动能为0。
2. 一名运动员以30m/s的速度向前冲,他的质量为80kg,求他的动能。
答:运动员的动能可以用动能定理计算,即:E = (1/2)mv² = (1/2) × 80kg × (30m/s)² = 36000J所以运动员的动能为36000焦耳。
3. 一个物体以5m/s的速度向右运动,它撞击一个静止的物体,两个物体黏在一起后以4m/s的速度向右运动,求两个物体的动能变化。
答:撞击时,物体1的动能为:E1 = (1/2)mv1² = (1/2) × m × 5m/s² = 12.5mJ物体2的动能为0。
撞击后,两个物体黏在一起,以v2 = 4m/s的速度向右运动,它们的总质量为m1 + m2,所以它们的动能为:E2 = (1/2)(m1 + m2)v2² = (1/2)(m1 + m2) × 4m/s²两个物体的动能变化为:ΔE = E2 - E1 = [ (1/2)(m1 + m2) × 4m/s² ) - (1/2)mv1² ] =(1/2)(m1 + m2) × 4m/s² - (1/2)mv1²4. 如果一个人用力推一个质量为50kg的物体,使它在10m的距离内加速到10m/s,求这个人用力的大小和这个物体的动能。
高一物理动能和动能定理试题1.来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流强度为1mA的细柱形质子流。
已知质子电荷e=1.60×10-19C。
这束质子流每秒打到靶上的质子数为。
假定分布在质子源到靶之间的加速电场是均匀的,在质子束与质源相距L和4L的两处,各取一段极短的相等长度的质子流,其中的质子数分别是n1和n2,则 = 。
【答案】;2:1.【解析】1S内打到靶上的质子所带总电量为q=1×10-3×1=1×10-3C 则质子个数为I 1=n1ev1I2=n2ev2在L处与4L处的电流相等:I1=I2故 n1ev1=n2ev2得由动能定理在L处 EqL=mv12得在4L处 4EqL=mv22得由以上式得【考点】动能定理;电流强度。
2.在光滑的水平薄板中心有一个小孔O,在小孔内穿过一条细线,线的一端系一小球,小球以O 为圆心在板上做匀速圆周运动,半径为R,此时线的拉力为F。
若逐渐增大拉力至6F时,小球仍以O点为圆心做半径为R/2的匀速圆周运动。
则在此过程中拉力对小球所做的功为A.FR B.2FR C.3FR/2D.7FR/4【答案】A【解析】据动能定理,根据圆周运动可以计算出拉力对小球所做的功为 FR选A。
3.如图所示,木块A、B叠放在光滑水平面上,A、B之间不光滑,用水平力F拉B,使A、B一起沿光滑水平面加速运动,设A对B的摩擦力为F1,B对A的摩擦F2,则以下说法正确的是(A)F1对B做正功,F2对A不做功(B)F1对B做负功,F2对A做正功(C)F2对A做正功,F1对B不做功(D)F2对A不做功,F1对A做正功【答案】B【解析】A对B的摩擦力为F1方向向左,阻碍运动即F1对B做负功。
B对A的摩擦F2向右,对物体起动力作用即F2对A做正功选B。
4.如图所示,一物块以6m/s的初速度从曲面A点,运动到B点速度仍为6m/s,若物块以5m/s的初速度仍由A点下滑,则它运动到B点时的速度A.大于5m/sB.等于5m/sC.小于5m/sD.条件不足,无法计算【答案】A【解析】物块以6m/s的初速度从曲面A点,运动到B点速度仍为6m/s可知由A--B重力做功跟摩擦力做功大小相等,若物块以5m/s的初速度仍由A点下滑向心力减小则正压力减小相应的摩擦力也会减小,则克服摩擦力做功也会变小,所以合外力做功大于零,它运动到B点时的速度大于5m/s选A。
高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。
【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。
其v-t图象如图所示。
则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。
【考点】动能定理。
3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。
【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。
【考点】动能定理。
4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。
动能定理典型练习题典型例题讲解1.下列说法正确的是( )A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有0212-=mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有2210mv Fh mgh -=- ②由①②两式解得hh H mg F += 另解:研究物体运动的全过程,根据动能定理有000)(=-=-+Fh h H mg解得hh H mg F +=3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)【解析】设物体克服摩擦力图5-3-5Hh图5-3-4图5-3-6图5-3-7所做的功为W ,对物体由A 运动到B 用动能定理得221mv W mgh =- Jmv mgh W 32612151012122=⨯⨯-⨯⨯=-=即物体克服阻力所做的功为32J.课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:13.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(-C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD )A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2' B.v 2<v 2’ C.v 2=v 2’ D .沿水平面到B 点时间与沿斜面到达B 点时间相等. 7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα得αμαcos 21sin mgS 20mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传知工件与传送带间的动摩擦因数23=μ,g 取送至h =2m 的高处.已10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:图5-3-8图5-3-10V 0S 0αP 图5-3-9)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220⨯==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
高一物理动能定理的理解试题答案及解析1.质量为0.01kg、以800m/s的速度飞行的子弹与质量为0.8kg、以10m/s的速度飞行的皮球相比A.子弹的动量较大B.皮球的动量较大C.子弹的动能较大D.皮球的动能较大【答案】C【解析】根据,子弹的动量P1=8Kg.m/s;皮球的动量P2=8Kg.m/s;所以两者动量相等;根据,子弹的动能EK1="3200J;" 皮球的动能EK2=40J;所以子弹的动能较大,选项C正确。
【考点】动量及动能的概念。
2.一质量为m的滑块,以速度v在光滑水面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v(方向与原来相反),在这段时间内,水平力所做的功为:()A.B.C.D.【答案】A【解析】水平力做的功等于物体动能的变化量,所以,选A。
3.水平地面上,一运动物体在10 N摩擦力的作用下,前进5 m后停止,在这一过程中物体的动能减少了()A.10 J B.25 JC.50 J D.100 J【答案】C【解析】根据动能定理内容:合外力做功等于动能变化量,所以开始动能为fs=50J,C对;4.某运动的物体动能为Ek,若将其质量和速度均变为原来的2倍,则物体的动能变为() A.2Ek B.4EkC.8Ek D.16Ek【答案】C【解析】根据动能公式,质量和速度都变为原来的2倍,动能变为原来的8倍,C对;5.一个物体的速度从0增加到v,再从v增加到2v,前后两种情况下,物体所受的合外力对物体做的功之比是()A.1∶1B.1∶3C.1∶2D.1∶4【答案】B【解析】,B对;6.在足球比赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角贴着球门射入,球门高为h ,足球飞入球门的速度为v ,足球质量为m ,则红队球员将足球踢出时对足球做的功为 : ( )A .B .C .D .【答案】C【解析】以踢球后到最高点应用动能定理,,则W=,C 对;7. 一人用力踢质量为1 kg 的皮球,使球由静止以10m/s 的速度飞出,假定人踢球瞬间对球的平均作用力是200N ,球在水平方向运动了20 m 停止,那么人对球所做的功为 A .500J B .4000J C .50J D .1000J【答案】C【解析】根据动能定理,人对球所做的功等于动能的变化量,即,C 正确。
高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v=5 m/s对滑块有:(x+L)=vt-12μ1gt2对木板有:x=12at2解得:t=1 s或t=73s(不合题意,舍去)故本题答案是:(1)70 N (2)1 m/s2(3)1 s【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用4.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg 即F =f =μmg.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1解得v′=12v.5.夏天到了,水上滑梯是人们很喜欢的一个项目,它可简化成如图所示的模型:倾角为θ=37°斜滑道AB 和水平滑道BC 平滑连接(设经过B 点前后速度大小不变),起点A 距水面的高度H =7.0m ,BC 长d =2.0m ,端点C 距水面的高度h =1.0m .一质量m =60kg 的人从滑道起点A 点无初速地自由滑下,人与AB 、BC 间的动摩擦因数均为μ=0.2.(取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点),求: (1)人从A 滑到C 的过程中克服摩擦力所做的功W 和到达C 点时速度的大小υ; (2)保持水平滑道端点在同一竖直线上,调节水平滑道高度h 和长度d 到图中B ′C′位置时,人从滑梯平抛到水面的水平位移最大,则此时滑道B′C′距水面的高度h ′.【答案】(1) 1200J ;45当h '=2.5m 时,水平位移最大 【解析】 【详解】(1)运动员从A 滑到C 的过程中,克服摩擦力做功为:11W f s mgd μ=+ f 1=μmg cos θ s 1=sin H hθ- 解得W =1200J mg (H -h )-W =12mv 2 得运动员滑到C 点时速度的大小v =45(2)在从C 点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h '=12gt 2 下滑过程中克服摩擦做功保持不变W =1200J 根据动能定理得:mg (H -h ')-W =12mv 02运动员在水平方向的位移:x =v 0t x当h '=2.5m 时,水平位移最大.6.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '=【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-=由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.7.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h=3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,求:(1)物体由静止沿斜面下滑到斜面末端需要多长时间;(2)传送带左右两端AB间的距离l至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少;(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?【答案】(1)1.6s (2)12.8m (3)160J (4)h′=1.8m【解析】(1)mgsinθ=ma, h/sinθ=,可得t="1.6" s.(2)由能的转化和守恒得:mgh=μmgl/2,l="12.8" m.(3)在此过程中,物体与传送带间的相对位移:x相=l/2+v带·t,又l/2=,而摩擦热Q=μmg·x相,以上三式可联立得Q="160" J.(4)物体随传送带向右匀加速,当速度为v带="6" m/s时向右的位移为x,则μmgx=,x="3.6" m<l/2,即物体在到达A点前速度与传送带相等,最后以v带="6" m/s的速度冲上斜面,由=mgh′,得h′="1.8" m.滑块沿斜面下滑时由重力沿斜面向下的分力提供加速度,先求出加速度大小,再由运动学公式求得运动时间,由B点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此可求得AB间距离,产生的内能由相互作用力乘以相对位移求得8.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m.A、B用一根绝缘轻杆相连,A带的电荷量为q=+7×10﹣7C,B不带电,质量分别为m A=0.01kg、m B=0.08kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s2.(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ', 根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB 对A 根据动能定理:qER ﹣m A gR +W T1=E KA 对B 根据动能定理:1T B W m gR E '-= 联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点 (2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B , 因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B 对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+= 对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+- 由此可得:当3tan 4α=时,A 、B 的最大速度均为max 22/v s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.10.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
高一物理动能定理试题答案及解析1.一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平力F的作用下,从P点缓慢地移动到Q点,如图所示,则力F所做的功为()A.mglcosθB.Flsin θC.mgl(1-cos θ)D.Flcos θ【答案】C【解析】小球缓慢移动过程中认为动能不变,合力为零,小球在水平力F的作用下,从P点缓慢地移动到Q点的过程中,外力的功与小球克服摩擦力所做的功相等,即,C正确。
【考点】动能定理的应用2.关于功和物体动能之间的关系,以下说法中正确的是()A.如果物体所受合外力做功为零,则物体所受合外力就为零B.如果物体所受合外力做功为零,则物体的动能就不会发生改变C.做变速运动的物体其动能有可能保持不变D.如果物体的动能不变,则物体受到的合外力一定为零【答案】BC【解析】试题解析:如果物体所受合外力做功为零,物体所受合外力不一定为零,例如物体在水平桌面上做匀速圆周运动时,拉力总与物体的运动方向垂直,故物体受到的合外力的功为零,但物体受到的合力却不为零,故A错误;根据动能定理,如果物体所受合外力做功为零,则物体的动能变化量也为零,即物体的动能就不会发生改变,B正确;速度是矢量,大小如果不变,方向改变时,物体的速度也在改变,但物体的动能此时就是不变的,故C正确;由于做匀速圆周运动的物体的动能不变,但是它受到的合外力却不为零,故D错误。
【考点】动能定理。
3.如图所示,倾角为45°的光滑斜面AB与竖直的光滑半圆轨道在B点平滑连接,半圆轨道半径R=0.40m,一质量m=1.0kg的小物块在A点由静止沿斜面滑下,已知物块经过半圆轨道最高点C时对轨道的压力恰好等于零,物块离开半圆形轨道后落在斜面上的点为D(D点在图中没有标出)。
g取10m/s2。
求:A点距水平面的高度h。
【答案】【解析】(1)对物块从A点运动C点的过程,由机械能守恒有:①由题意物块在C点时,有:②由①②式得:【考点】考查了圆周运动,机械能守恒定律的应用4.如图所示,一质量为m的物块从光滑斜面顶端的A点由静止开始下滑,A点到水平地面BC的高度H=2m,通过水平地面BC(BC=2m)后滑上半径为R=1m的光滑1/4圆弧面CD,上升到D点正上方0.6m(图中未画出最高点)后又再落下。
高中动能定理试题及答案一、选择题1. 动能定理表明,一个物体的动能变化量等于外力对它做的功。
以下哪个选项描述了正确的动能定理?A. 动能的变化量等于外力做的功B. 动能的变化量等于外力做的功的负值C. 动能的变化量等于外力做的功的两倍D. 动能的变化量等于外力做的功的一半答案:A2. 一个物体从静止开始,沿着光滑斜面下滑,其动能变化量与下列哪个因素无关?A. 斜面的长度B. 斜面的角度C. 物体的质量D. 物体的初速度答案:D二、填空题3. 动能定理的数学表达式为:\(\Delta E_k = W\),其中\(\Delta E_k\)表示动能的变化量,W表示_______。
答案:外力做的功4. 一个质量为2kg的物体从高度为5m的平台上自由落体,忽略空气阻力,其落地时的动能为_______J(g取10m/s²)。
答案:100三、计算题5. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车,经过10s后停止。
假设汽车在刹车过程中受到的阻力是恒定的,求阻力的大小。
答案:2000N四、简答题6. 描述动能定理在实际生活中的应用。
答案:动能定理在实际生活中有广泛的应用,例如在汽车的制动系统设计中,通过计算刹车时的动能变化量,可以确定所需的制动力,以确保车辆在安全距离内停止。
此外,在运动训练中,运动员通过控制动能的变化来优化运动表现,如跳高运动员通过助跑来增加起跳时的动能,以跳得更高。
五、实验题7. 设计一个实验来验证动能定理。
请描述实验步骤和预期结果。
答案:实验步骤:- 准备一个斜面、一个质量已知的小车、一个测力计和一把尺子。
- 将小车放置在斜面的不同高度,测量小车从静止开始滑下到达斜面底部的速度。
- 使用测力计测量小车在滑下过程中受到的摩擦力。
- 计算小车在不同高度滑下时的动能变化量和摩擦力做的功。
预期结果:- 预期小车的动能变化量与摩擦力做的功相等,从而验证动能定理。
高一物理动能定理试题1.两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A点为MN上的一点。
一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动.取无限远处的电势为零,则A.q由A向O的运动是匀加速直线运动B.q由A向O运动的过程电势能逐渐减小C.q运动到O点时的动能最大D.q运动到O点时电势能为零【答案】BC【解析】两等量正电荷周围部分电场线如右图所示,其中P、Q连线的中垂线MN上,从无穷远到O过程中电场强度先增大后减小,且方向始终指向无穷远方向.故试探电荷所受的电场力是变化的,q由A向O的运动做非匀加速直线运动,故A错误.电场力方向与AO方向一致,电场力做正功,电势能逐渐减小;故B正确.从A到O过程,电场力做正功,动能增大,从O到N过程中,电场力做负功,动能减小,故在O点试探电荷的动能最大,速度最大,故C正确.取无限远处的电势为零,从无穷远到O点,电场力做正功,电势能减小,则q运动到O点时电势能为负值,故D错误.【考点】考查了带电粒子在电场中的运动2.如图所示,物体在长1m的斜面顶端由静止下滑,然后进入由圆弧与斜面连接的水平面,(由斜面滑至平面时无能量损失)若物体与斜面及水平面的动摩擦因数均为0.5,斜面倾角为37°,取g=10m/s2,已知:sin37°=0.6,cos37°=0.8。
求:(1)物体到达斜面底端时的速度大小;(2)物体能在水平面上滑行的距离。
【答案】(1)(2)【解析】试题分析(1)物体在斜面滑下的过程中,重力做功,滑动摩擦力做功为,是斜面的长度,由动能定理得:斜面上:…①解①式得:…②(2)平面上,由动能定理得:…③由①、②式得:…④【考点】考查了动能定理的应用3.如图所示,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一有内阻的电动机相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升.摩擦及空气阻力均不计.则()A.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的动能B.升降机匀速上升过程中,升降机底板对人做的功等于人增加的机械能C.升降机上升的全过程中,电动机消耗的电能等于升降机增加的机械能D.升降机上升的全过程中,电动机消耗的电能大于升降机增加的机械能【答案】BD【解析】根据动能定理可知,升降机匀加速上升过程中,升降机底板对人做的功等于重力做功与人增加的动能,即等于人增加的机械能,故A错误,B正确;根据功能关系可知,升降机上升的全过程中,电动机消耗的电能等于升降机增加的机械能和电动机消耗的内能之和,故C错误,D正确。
动能定理基础练习
命题人:白建涛审题人:霍本龙
一、不定项选择题(每小题至少有一个选项)
1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是()
A.如果物体所受合外力为零,则合外力对物体所的功一定为零;
B.如果合外力对物体所做的功为零,则合外力一定为零;
C.物体在合外力作用下做变速运动,动能一定发生变化;
D.物体的动能不变,所受合力一定为零。
2.下列说法正确的是()
A.某过程中外力的总功等于各力做功的代数之和;
B.外力对物体做的总功等于物体动能的变化;
C.在物体动能不变的过程中,动能定理不适用;
D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定()
A.水平拉力相等 B.两物块质量相等
C.两物块速度变化相等D.水平拉力对两物块做功相等
4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能() A.与它通过的位移s成正比
B.与它通过的位移s的平方成正比
C.与它运动的时间t成正比
D.与它运动的时间的平方成正比
5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为()
A.s B.s/2 C.2
/s D.s/4
6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为()
A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶4
7.质量为m的金属块,当初速度为v
时,在水平桌面上滑行的最大距离为L,如
果将金属块的质量增加到2m,初速度增大到2v
,在同一水平面上该金属块最多能滑行的距离为()
A.L B.2L C.4L D.0.5L
8.一个人站在阳台上,从阳台边缘以相同的速率v
,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能() A.上抛球最大 B.下抛球最大 C.平抛球最大D.三球一样大
9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v
,当它落到
地面时速度为v,用g表示重力加速度,则此过程中物块克服空气阻力所做的功等
于()
A.2
2
2
1
2
1
mv
mv
mgh-
- B.mgh
mv
mv-
-2
2
2
1
2
1
C.2
2
02
1
2
1
mv
mv
mgh-
+D.2
2
2
1
2
1
mv
mv
mgh-
-
10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考
平面,则物体刚被抛出时,其重力势能与动能之比为()
A.sin2θ B.cos2θ C.tan2θD.cot2θ
11.将质量为1kg的物体以20m/s的速度竖直向上抛出。
当物体落回原处的速率为
16m/s。
在此过程中物体克服阻力所做的功大小为()
A.200J B.128J C.72J D.0J
12.一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度为2m/s,
则下列说法中正确的是()
A.手对物体做功12J B.合外力对物体做功12J
C.合外力对物体做功2J D.物体克服重力做功10J
13.物体A和B叠放在光滑水平面上m A =1kg,m B =2kg,B上作用一个3N
的水平拉力后,A和B一起前进了4m,如图1所示。
在这个过程中B对A做
的功等于()
A.4J B.12J C.0D.-4J
14.一个学生用100N的力,将静止在操场上的质量为0.6kg的足球,
以15 m/s的速度踢出20m远。
则整个过程中学生对足球做的功为(
)
A.67.5J B.2000J C.1000J D.0J
15.一个质量为m的小球,用长为L的轻绳悬挂在O点,小球在水平
拉力F作用下,从平衡位置P点很缓慢地拉到Q点,如图2所示,则
拉力F做的功为()
A.m gLcosθ B.m gL(1-cosθ)
C.FLsinθD.FLcosθ
二、填空题
16.如图3所示,地面水平光滑,质量为m的物体在水平恒
力F的作用下,由静止从A处移动到了B处;此过程中力F
对物体做正功,使得物体的速度(增大、减少、
不变)。
如果其它条件不变,只将物体的质量增大为2m,在
图1
P
θ
Q
O
F
图2
物体仍由静止从A 运动到B 的过程中,恒力F 对物体做的功 (增大、减少、不变);物体到达B 点时的速度比原来要 (大、少、不变)。
如果让一个具有初速度的物体在粗糙水平地面上滑行时,物体的速度会不断减少,这个过程中伴随有 力做 功(正、负、零)。
可见做功能使物体的速度发生改变。
17.一高炮竖直将一质量为M 的炮弹以速度V 射出,炮弹上升的最大高度为H ,则炮弹上升的过程中克服空气阻力所做的功为 ,发射时火药对炮弹做功为 。
(忽略炮筒的长度)
18.质量为m 的物体静止在水平桌面上,物体与桌面间的动摩擦因数为μ,今用一水平力推物体,使物体加速运动一段时间,撤去此力,物体再滑行一段时间后静止,已知物体运动的总路程为s ,则此推力对物体做功 。
三、计算题 20.一个质量为m=2kg 的铅球从离地面H=2m 高处自由落下,落入沙坑中h=5cm
深处,如图所示,求沙子对铅球的平均阻力。
(g 取10m/s 2)
21.质量为m 的物体由半圆形轨道顶端从静止开始释放,如图4所示,A 为轨道最低点,A 与圆心0在同一竖直线上,已知圆弧轨道半径为R ,运动到A 点时,物体对轨道的压力大小为2.5m g ,求此过程中物体克服摩擦力做的功。
22.如图6所示,m A =4kg ,A 放在动摩擦因数μ=0.2的水平桌面上,m B =1kg ,B 与地相距h=0.8m ,A 、B 均从静止开始运动,设A 距桌子边缘足够远,g 取10m/s 2,求: (1)B 落地时的速度;
(2)B 落地后,A 在桌面滑行多远才静止。
【思考题】如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平的,其距离为d = 0.50m ,盆边缘的高度为h = 0.30m 。
在A 处放一个质量为m 的小物块并让其从静止出发下滑。
已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ= 0.10。
小物块在盆内来回滑动,最后停下来,则停下的地点到B 的距离为( )
A .0.50m
B .0.25m
C .0.10m
D .0
h
H
动能定理练习参考答案:
巩固基础: 一、选择题
1.A 2.AB 3.D 4.AD 5.D 6.B 7.C 8.D 9.C 10.C 11.C 12.ACD 13.A 14.A 15.B 二、填空题
16.增大;不变;小;滑动摩擦;负; 17.
mgH mv -221;22
1
mv 18.μmgs 三、计算题
19.∵全过程中有重力做功,进入沙中阻力做负功
∴W 总=mg (H+h )—fh
由动能定理得:mg (H+h )—fh=0—0
得h
h H mg f )
(+=
带入数据得f=820N
20.物体在B 点:R
v m mg 2
=-N
∴mv B 2=(N-mg )R=1.5mgR
∴
mgR mgR 4
375.0mv 212
B == 由动能定理得:mgR 43W mgR f =+ ⇒ mgR 41
W f -=
即物体克服摩擦力做功为mgR 4
1
22.10.从开始运动到B 落地时,A 、B 两物体具有相同的速率。
①以A 与B 构成的系统为研究对象,根据动能定理得 2)(2
1
v m m gh m gh m B A A B +=-μ B
A A
B m m gh
m m v +-=
)(2μ,带入数据得v=0.8m/s
②以A 为研究对象,设滑行的距离为s ,由动能定理得:
2
210v m gs m A A -=-μ,得g
v s μ22=,带入数据得s=0.16m
思考题.D。