高中物理知识点总结-简谐运动
- 格式:doc
- 大小:20.00 KB
- 文档页数:1
第1节简谐运动学习目标要求核心素养和关键能力1.知道什么是弹簧振子,理解振动的平衡位置和位移。
2.知道弹簧振子的位移—时间图像,知道简谐运动的过程及其图像。
3.会结合简谐运动的图像分析运动过程特点。
1.核心素养科学思维:理解弹簧振子的理想化模型和简谐运动的“对称性”思维。
2.关键能力物理建模能力和数形结合分析问题的能力。
知识点一弹簧振子钟摆来回摆动,水中浮标上下浮动,担物行走时扁担下物体的颤动,树梢在微风中的摇摆……在生活中我们会观察到很多类似这样的运动。
这些运动的共同点是什么?提示钟摆来回摆动,水中浮标上下浮动,扁担下物体的颤动、树梢的摇摆等都是以某个位置为中心来回往复运动。
❶机械振动物体或物体的一部分在一个位置附近的往复运动称为机械振动,简称振动。
❷平衡位置弹簧未形变时,物体所受的合力为0,处于平衡位置。
❸弹簧振子(1)组成:小球和弹簧组成的系统称为弹簧振子,简称振子(2)理想化模型弹簧振子是一种理想化模型,近似条件①弹簧的质量与小球相比可以忽略。
②小球运动时空气阻力很小,可以忽略。
③小球与杆之间无摩擦。
1.平衡位置振子不振动时,保持静止状态的位置;振子振动时,速度最大的位置。
2.振动特征(1)有一个“中心位置”,即平衡位置。
(2)运动具有往复性。
3.弹簧振子的位移及其变化位移指相对平衡位置的位移,由平衡位置指向振子所在的位置。
当振子从平衡位置向最大位移处运动时,位移增大;反之,位移减小。
4.运动学分析当振子从平衡位置向最大位移处移动时,位移在增大,速度在减小;当振子向平衡位置移动时,位移减小,速度增大,平衡位置处位移为零,速度最大;最大位移处速度为零。
【例1】(多选)弹簧上端固定在O点,下端连接一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,关于小球的平衡位置,下列说法正确的是()A.在小球运动的最低点B.在弹簧处于原长时的位置C.在小球速度最大时的位置D.在小球原来静止时的位置答案CD解析平衡位置是振动系统不振动时,小球(振子)处于平衡状态时所处的位置,可知此时小球所受的重力大小与弹簧的弹力大小相等,即mg=kx,也即小球原来静止的位置,故选项D正确,A、B错误;当小球处于平衡位置时,其加速度为零,速度最大,选项C正确。
103(4)简谐运动的两种模型 模型弹簧振子单摆示意图简谐 运动 条件①弹簧质量可忽略 ②无摩擦等阻力 ③在弹簧弹性限度内①摆线为不可伸缩的轻细线 ②无空气等的阻力 ②最大摆角小于10° 回复力弹簧的弹力提供F=kx 摆球重力沿切向的分力 F 回=-mg sin θ=-mg lx 平衡 位置弹簧处于原长处最低点周期与振幅无关T =2πL g L 为摆长,表示从悬点到摆球重心的距离。
简谐运动的特点受力 特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动 特征 靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量 特征振幅越大,能量越大。
在运动过程中,系统的动能和势能相互转化,机械能守恒选修3-4 周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T;动能和势能也随时间做周期性变化,其变化周期为T2对称性特征关于平衡位置O对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O用时相等2.简谐运动的公式和图象(1)简谐运动的表达式①动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
②运动学表达式:x=Asin(ωt+φ),其中A代表振幅,ω=2πf表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相。
(2)简谐运动的图象①从平衡位置开始计时,函数表达式为x=Asinωt,图象如图甲所示。
②从最大位移处开始计时,函数表达式为x=Acosωt,图象如图乙所示。
(3)根据简谐运动图象可获取的信息①振幅A、周期T(或频率f)和初相位φ(如图所示)。
②某时刻振动质点离开平衡位置的位移。
③某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定。
一、简谐运动特征
1、动力学特征:,注意k不等同于弹簧的劲度系数,是由振动装置本身决定的常数;动力学特征也是判断某机械运动是否为简谐运动的依据。
2、运动学特征:,此式表明加速度也跟位移大小成正比,并总指向平衡位置。
由此可见,简谐运动是一变加速运动,且加速度和速度都在做周期性的变化。
3、能量特征:机械能守恒,注意振动物体通过平衡位置时势能为零的说法不够确切,应说成此位置势能最小。
4、对称特征:关于平衡位置对称的两点等物理量的大小相等,此外还体现在过程量上的相等,如从某点到平衡位置的时间和从平衡位置到与该点关于平衡位置对称点的时间相同等等。
二、简谐运动的分析方法
1、判断振动是简谐运动的思路:正确受力分析;找出平衡位置
();设物体偏离平衡位置位移为x,找到,即可得证。
2、判断简谐运动的变化的思路:
例、如图所示,一个质点在平衡位置O点附近做简谐运动,若从O点开始计时,经过3s质点第一次经过M点,再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点所需的时间是_______________。
解析:设图中a、b两点为质点振动过程中的最大位移处,若开始质点从O
点向右运动,O→M历时3s,M→b→M历时2s,则=4s,T=16s,质点第三次经过M点所需时间
t=16s-2s=14s。
若开始计时时刻质点从O点向左运动,O→a→O→M历时3s。
M→b→M历时2s,则,质点第三次经过M点所需时
间
本题的求解关键在于灵活运用简谐运动中的对称性,同时还要注意振动方向的不确定性造成此题的多解;除此之外,对简谐运动过程中各个物理量在四个T/4时段内和五个特殊时刻的情况分析也要清楚。
第2节 简谐运动的描述知识点归纳知识点一、简谐运动的物理量1.振幅是指振动物体离开平衡位置的最大距离,通常用字母A 表示,是标量. 2.振子完成一次完整的振动过程称为一次全振动,不论从哪一位置开始计时,弹簧振子完成一次全振动所用的时间总是相同的.3.做简谐运动的物体完成一次全振动所需要的时间,叫做振动的周期,用字母T 表示.其物理意义是表示物体振动的快慢.4.单位时间内完成全振动的次数,叫做振动的频率,用字母f 表示;其单位是赫兹,符号是Hz.5.周期与频率的关系是T =1/f .频率的大小表示振动的快慢.6.用来描述周期性运动在各个时刻所处的不同状态的物理量叫相位,当t =0时的相位称做初相位,用字母φ表示.知识点二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示离开平衡位置的位移,A 表示简谐运动的振幅,表示振动的强弱.2.式中ω叫做“圆频率”,它与周期频率的关系为ω=2πT =2πf .可见ω、T 、f 相当于一个量,描述的都是振动的快慢.简谐运动的表达式也可写成:x =A sin ⎝⎛⎭⎫2πT t +φ或x =A sin(2πft +φ).3.式中(ωt +φ)表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,单位为弧度,相位每增加2π,意味着物体完成了一次全振动.4.式中φ表示t =0时简谐运动质点所处的状态,称为初相位或初相.5.相位差:即某一时刻的相位之差两个具有相同ω.的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.知识点三、对全振动的理解1.全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫做一次全振动.如图所示,从O点开始,一次全振动的完整过程为O→A→O→A′→O;从A点开始,一次全振动的完整过程为A→O→A′→O→A。
做机械振动的物体的偏离平衡位置的位移x 随时间t 做正弦规律变化时,物体的运动就被称之为简谐运动,其基本规律是sin()x A t ωϕ=+,其中ω为简谐运动的圆频率,由振动系统本身决定,A 为振幅,φ为初相位,这两者由振动系统的初始状态决定。
一、求导角度理解已知位移随时间的变化规律,即可根据x v t ∆=∆和v a t∆=∆得出振动物体的速度、加速度随时间的变化规律,这需要用到求导的知识。
1、简谐运动的速度规律:由x v t∆=∆得m cos()cos()v x A t v t ωωϕωϕ'==+=+,其中m v A ω=。
2、简谐运动的加速度规律:由v a t ∆=∆得2m sin()sin()a v A t a t ωωϕωϕ'==-+=-+,其中2m a A ω=。
由上述分析可知,振动物体的位移x 和速度v 这两个物理量中,一个振动量按正弦规律变化,另一个振动量就按余弦规律变化,而且有2a x ω=-,即振动物体的加速度a 大小正比于物体偏离平衡位置的位移x ,方向与位移x 的方向相反。
二、从运动方程角度理解将2a x ω=-写成微分方程,即222d d x x t ω=-,由数学知识可知,这个方程的解为sin()x A t ωϕ=+,其中A 为振幅,φ为初相位,这两者由振动系统的初始状态决定。
三、从动力学角度理解由牛顿第二定律,有2F ma m x ω==-,令2k m ω=,可得F kx =-,即做简谐运动的物体的回复力F 大小正比于物体偏离平衡位置的位移x ,方向与位移x 的方向相反。
将2k m ω=变形,可得ω=,则振动系统的周期为2πT ω==,此即为做简谐运动的物体的周期公式,由这个公式可以看出,简谐运动的周期仅仅由振动系统本身决定——振动物体的质量m 和比例系数k 。
对于弹簧振子模型,可以这样理解T =相同的回复力引起的加速度越小,振子回到平衡位置的时间就会越长;从最大位移处回到平衡位置过程中,弹簧的劲度系数越小,则相同位移处的回复力越小,振子的加速度越小,振子回到平衡位置的时间就会越长。
选 修3—4一、知识网络周期:gLT π2=机械振动简谐运动物理量:振幅、周期、频率 运动规律简谐运动图象阻尼振动受力特点回复力:F= - kx弹簧振子:F= - kx 单摆:x L mgF -= 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例声波,超声波及其应用机械波形成和传播特点 类型横波 纵波 描述方法 波的图象 波的公式:vT =λx=vt电磁波电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在赫兹证实电磁波的存在电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收电磁波与信息化社会:电视、雷达等电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线相对论简介相对论的诞生:伽利略相对性原理狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性长度的相对性:20)(1cv l l -=时间间隔的相对性:2)(1cv t -∆=∆τ相对论的时空观狭义相对论的其他结论:相对论速度变换公式:21cv u v u u '+'=相对论质量: 20)(1cv m m -=质能方程2mc E=广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲引力场的存在使得空间不同位置的时间进程出现差别二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。
区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反⑵“k ”对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: “x = A sin (ωt +φ)”3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。
专题46 简谐运动考点一简谐运动物理量的分析考点二简谐运动的周期性与对称性考点三简谐运动的表达式和图像的理解和应用考点四单摆及其周期公式考点五受迫振动和共振1.简谐运动概念:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动是简谐运动。
2.分析简谐运动问题紧抓住两个模型——弹簧振子和单摆,结合两种模型的振动情景分析求解.考点一简谐运动物理量的分析1.简谐运动的物理量1)位移:振动质点在某一时刻的位移指的是质点在该时刻相对平衡位置的位移.2)回复力:F=-kx;回复力是使物体返回到平衡位置的力,回复力的方向时刻指向平衡位置。
3)振幅:振动质点离开平衡位置的最大距离;振幅越大,简谐运动能量越大。
4)周期:振动物体完成一次全振动所需要的时间。
5)频率:振动物体完成全振动的次数与所用时间之比。
6)相位:物理学中把(ωt+φ)叫作相位,它代表了做简谐运动的物体此时正处于一个运动周期中的哪个状态。
2.靠近平衡位置时,物体的a、F、x都减小,v增大;远离平衡位置时,a、F、x都增大,v减小1.(2021·高考河北卷)如图,一弹簧振子沿x轴做简谐运动,振子零时刻向右经过A点,2 s后第一次到达B点,已知振子经过A、B两点时的速度大小相等,2 s内经过的路程为0.4 m。
该弹簧振子的周期为________s,振幅为________m。
2.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,平衡位置为O,小球在A、B间振动,如图所示.下列结论正确的是( )A.小球在O位置时,动能最大,加速度最小B .小球在A 、B 位置时,动能最大,加速度最大C .小球从A 经O 到B 的过程中,回复力一直做正功D .小球在O 位置时系统的总能量大于小球在B 位置时系统的总能量3.(多选)如图所示,物体A 与滑块B 一起在光滑水平面上做简谐运动,A 、B 之间无相对滑动,已知水平轻质弹簧的劲度系数为k ,A 、B 的质量分别为m 和M ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,则下列说法正确的是( )A .物体A 的回复力是由滑块B 对物体A 的摩擦力提供的 B .滑块B 的回复力是由弹簧的弹力提供的C .物体A 与滑块B (整体看成一个振子)的回复力大小跟位移大小之比为kD .若A 、B 之间的动摩擦因数为μ,则A 、B 间无相对滑动的最大振幅为μ(M+m )gk考点二 简谐运动的周期性与对称性1.周期性:做简谐运动的物体的位移、回复力、加速度和速度均随时间做周期性变化,变化周期就是简谐运动的周期T ;动能和势能也随时间做周期性变化,其变化周期为T22.对称性:(1)如图所示,做简谐运动的物体经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等(2)物体由P 到O 所用的时间等于由O 到P ′所用时间,即t PO =t OP ′ (3)物体往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO(4)从平衡位置和最大位移之外的任意一点开始计时,经过半个周期,质点一定运动到关于平衡位置的对称点且运动方向相反.3.对于周期性和对称性问题可以通过画运动过程示意图来辅助分析,也可以利用振动图象解决.4.(多选)一振子沿x 轴做简谐运动,平衡位置在坐标原点.t =0时振子的位移为-0.1 m ,t =1 s 时位移为0.1 m ,则( )A .若振幅为0.1 m ,振子的周期可能为23 sB .若振幅为0.1 m ,振子的周期可能为45 sC .若振幅为0.2 m ,振子的周期可能为4 sD .若振幅为0.2 m ,振子的周期可能为6 s5.一个质点在平衡位置O 点附近做简谐运动,若从O 点开始计时,经过3 s 质点第一次经过M 点,如图所示,再继续运动,又经过4 s 第二次经过M 点,则再经过多长时间第三次经过M 点( )A .7 sB .14 sC .16 sD .103 s6.下列说法中正确的是( )A .若t 1、t 2两时刻振动物体在同一位置,则t 2-t 1=TB .若t 1、t 2两时刻振动物体在同一位置,且运动情况相同,则t 2-t 1=TC .若t 1、t 2两时刻振动物体的振动反向,则t 2-t 1=T2D .若t 2-t 1=T2,则在t 1、t 2时刻振动物体的振动反向7.如图所示,质量为m 的物体放在弹簧上,与弹簧一起在竖直方向上做简谐运动,当振幅为A 时,物体对弹簧的最大压力是物重的1.5倍,则物体对弹簧的最小压力是________.要使物体在振动中不离开弹簧,振幅不能超过________.(重力加速度为g )考点三 简谐运动的表达式和图像的理解和应用1.简谐运动的表达式x =A sin_(ωt +φ0),ωt +φ0为相位,φ0为初相位,ω为圆频率,ω=2πT.2.简谐运动的振动图像表示做简谐运动的物体的位移随时间变化的规律,是一条正弦曲线.甲:x =A sin2πT t乙:x =A sin (2πTt +π2).3.从图像可获取的信息(1)振幅A 、周期T (或频率f )和初相位φ0(如图所示). (2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度大小和方向,速度的方向也可根据下一相邻时刻质点的位移的变化来确定.(4)某时刻质点的回复力方向:回复力总是指向平衡位置,回复力方向和位移方向相反. (5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况. 4.路程与振幅的关系(1)振动物体在一个周期内的路程为四个振幅. (2)振动物体在半个周期内的路程为两个振幅. (3)振动物体在14个周期内的路程不一定等于一个振幅.8.一质点做简谐运动,其位移x 与时间t 的关系图像如图所示,由图可知( )A .质点振动的频率是4 Hz ,振幅是2 cmB .质点经过1 s 通过的路程总是2 cmC .0~3 s 内,质点通过的路程为6 cmD .t =3 s 时,质点的振幅为零9.(2022·北京西城区统测)用小球和轻弹簧组成弹簧振子,使其沿水平方向振动,振动图像如图所示,下列描述正确的是( )A .1~2 s 内,小球的速度逐渐减小,加速度逐渐增大B .2~3 s 内,弹簧的势能逐渐减小,弹簧弹力逐渐增大C .t =4 s 时,小球的动能达到最大值,弹簧的势能达到最小值D .t =5 s 时,弹簧弹力为正的最大值,小球的加速度为负的最大值10.(多选)如图所示,水平弹簧振子沿x 轴在M 、N 间做简谐运动,坐标原点O 为振子的平衡位置,其振动方程为x =5sin ⎝⎛⎭⎪⎫10πt +π2 cm 。
高中物理知识点总结-简谐运动
简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.。