第三章 中值定理与导数的应用经典例题
- 格式:doc
- 大小:164.50 KB
- 文档页数:2
第三章 微分中值定理与导数的应用答案§3.1 微分中值定理1. 填空题(1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是ππ-4.(2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有3 个实根,分别位于区间)5,3(),3,2(),2,1(中.2.选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点,使0)(='ξf 成立的( B ).A .必要条件B .充分条件C .充要条件D .既非充分也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是(C ).A .x e x f =)( B. ||)(x x f = C.21)(x x f -= D.⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点,使下式成立( B ).A .),()()()()(2112b a f x x x f x f ∈'-=-ξξB .ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C .211221)()()()(x x f x x x f x f <<'-=-ξξD .211212)()()()(x x f x x x f x f <<'-=-ξξ3.证明恒等式:)(2cot arctan ∞<<-∞=+x x arc x π.证明: 令x arc x x f cot arctan )(+=,则01111)(22=+-+='x x x f ,所以)(x f 为一常数.设c x f =)(,又因为(1)2f π=,故)(2cot arctan ∞<<-∞=+x x arc x π.4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x <<3x b <<,证明:在),(31x x 内至少有一点,使得0)(=''ξf .证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .5.证明方程062132=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则031)2(,01)0(<-=->=f f ,根据零点存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在),(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02112>++ηη矛盾.故方程062132=+++x x x 只有一个实根.6. 设函数)(x f 的导函数)(x f '在],[b a 上连续,且0)(,0)(,0)(<><b f c f a f ,其中是介于b a ,之间的一个实数. 证明: 存在),(b a ∈ξ, 使0)(='ξf 成立.证明:由于)(x f 在],[b a 内可导,从而)(x f 在闭区间],[b a 内连续,在开区间(,)a b 内可导.又因为()0,()0f a f c <>,根据零点存在定理,必存在点1(,)a c ξ∈,使得0)(1=ξf .同理,存在点2(,)c b ξ∈,使得0)(2=ξf .因此()f x 在[]21,ξξ上满足罗尔定理的条件,故存在),(b a ∈ξ, 使0)(='ξf 成立.7. 设函数)(x f 在]1,0[上连续, 在)1,0(内可导. 试证:至少存在一点(0,1)ξ∈, 使()2[(1)(0)].f f f ξξ'=-证明:只需令2)(x x g =,利用柯西中值定理即可证明. 8.证明下列不等式(1)当π<<x 0时,x xxcos sin >. 证明: 设t t t t f cos sin )(-=,函数)(t f 在区间],0[x 上满足拉格朗日中值定理的条件,且t t t f sin )(=', 故'()(0)()(0), 0f x f f x x ξξ-=-<<, 即0sin cos sin >=-ξξx x x x (π<<x 0)因此,当π<<x 0时,x xxcos sin >. (2)当0>>b a 时,bba b a a b a -<<-ln . 证明:设x x f ln )(=,则函数在区间[,]b a 上满足拉格朗日中值定理得条件,有'()()()(),f a f b f a b b a ξξ-=-<<因为'1()f x x =,所以1ln ()a a b b ξ=-,又因为b a ξ<<,所以111a bξ<<,从而bba b a a b a -<<-ln . §3.1 洛毕达法则1. 填空题 (1)=→xxx 3cos 5cos lim2π35-(2)=++∞→xx x arctan )11ln(lim0 (3))tan 11(lim 20x x x x -→=31(4)0lim (sin )xx x +→=1 2.选择题(1)下列各式运用洛必达法则正确的是( B ) A .==∞→∞→nn nn n en ln limlim 11lim=∞→nn eB .=-+→x x x x x sin sin lim0 ∞=-+→xxx cos 1cos 1lim 0C . x x x x x x x x x cos 1cos1sin 2lim sin 1sin lim020-=→→不存在 D .x x e x 0lim →=11lim 0=→x x e(2) 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A .x x x sin lim 20→B .x x x tan 0)1(lim +→C . xx x x sin lim +∞→ D .x nx e x +∞→lim3.求下列极限(1)nn mm a x a x a x --→lim .解: n n m m a x a x a x --→lim =nm n m a x a nm nx mx ---→=11lim. (2)20222lim xx x x -+-→. 解:20222lim xx x x -+-→=x x x x 22ln 22ln 2lim 0-→-=2)2(ln 2)2(ln 2lim 220x x x -→+=2)2(ln . (3)30tan sin lim xxx x -→. 解:30tan sin lim x x x x -→=32030)21(lim )1(cos tan lim x x x x x x x x -⋅=-→→=21-. (4)20)(arcsin 1sin lim x x e x x --→.解:20)(arcsin 1sin lim x x e x x --→=201sin lim x x e x x --→=212sin lim 2cos lim 00=+=-→→x e x x e x x x x . (5)xx x x xx ln 1lim 1+--→.解: )ln 1()(x x x x x +=',x x x x xx ln 1lim 1+--→=xx x x x 11)ln 1(1lim 1+-+-→=22111)ln 1(limx x x x x xx x --+-→2])ln 1([lim 1221=++=++→x x x x x x .(6))111(lim 0--→x x e x . 解:2121lim )1(1lim )111(lim 22000==---=--→→→x xe x x e e x x x x x x x (7)x x xtan 0)1(lim +→. 解:1)1(lim 202000sin limcsc 1lim cot ln limln tan lim tan 0=====+→+→+→+→+----→x xx x xxxx xx x x x x eeee x.(8))31ln()21ln(lim xxx +++∞→. 解: )31ln()21ln(lim x x x +++∞→=2ln 23ln(12)12lim ln(12)3lim 3lim1x x x x x x x x x →+∞→+∞→+∞+++== =xx x 212lim 2ln 3++∞→=2ln 3.(9)n n n ∞→lim .解: 因为1lim 1limln 1lim ===∞→∞→∞→x x xx x x x eex ,所以n n n ∞→lim =1.§3.3 泰勒公式1.按1-x 的幂展开多项式43)(24++=x x x f . 解: 10)1(,64)(3='+='f x x x f ,同理得24)1(,24)1(,18)1()4(=='''=''f f f ,且0)()5(=x f .由泰勒公式得:43)(24++=x x x f =432)1()1(4)1(9)1(108-+-+-+-+x x x x .2.求函数x e x x f 2)(=的带有佩亚诺型余项的阶麦克劳林公式.解:因为)(!!2!112n nxx o n x x x e +++++= , 所以xe x xf 2)(==2222[1()]1!2!(2)!n n x x x x o x n --+++++-=)()!2(!2!1432n n x o n x x x x +-++++ . 3.求一个二次多项式)(x p ,使得)()(22x x p x ο+=. 解:设x x f 2)(=,则2ln 2)(x x f =',2)2(ln 2)(x x f =''. 2)2(ln )0(,2ln )0(,1)0(=''='=f f f ,故 )(!2)2(ln !12ln 12222x x x xο+++=, 则 222)2(ln 2ln 1)(x x x p ++=为所求.4.利用泰勒公式求极限)]11ln([lim 2xx x x +-∞→. 解:因为 ))1((3)1(2)1(1)11ln(332xo x x x x ++-=+,所以 )11ln(2x x x +-=)])1((3)1(2)1(1[3322x o x x x x x ++--=)1(3121x o x +-, 故 21)]1(3121[lim )]11ln([lim 2=+-=+-∞→∞→x o x x x x x x . 5. 设)(x f 有三阶导数,且0)1(,0)(lim 20==→f xx f x ,证明在)1,0(内存在一点,使0)(='''ξf .证明: 因为 0)(lim 20=→xx f x ,所以0)0(,0)0(,0)0(=''='=f f f .由麦克劳林公式得:332!3)(!3)(!2)0()0()0()(x f x f x f x f f x f ξξ'''='''+''+'+=(介于0与之间),因此 !3)()1(ξf f '''=,由于0)1(=f ,故0)(='''ξf .§3.4函数的单调性与曲线的凹凸性1.填空题(1)函数)ln(422x x y -=的单调增加区间是),21()0,21(+∞-,单调减少区间)21,0()21,( --∞.(2)若函数)(x f 二阶导数存在,且0)0(,0)(=>''f x f ,则xx f x F )()(=在+∞<<x 0上是单调增加.(3)函数12+=ax y 在),0(∞+内单调增加,则. (4)若点(1,3)为曲线23bx ax y +=的拐点,则=a 23-,29,曲线的凹区间为)1,(-∞,凸区间为),1(∞.2.单项选择题(1)下列函数中,( A )在指定区间内是单调减少的函数. A .x y -=2),(∞+-∞B .x y e =)0,(-∞ C .x y ln =),0(∞+D .x y sin =),0(π(2)设)12)(1()(+-='x x x f ,则在区间)1,21(内( B ). A .)(x f y =单调增加,曲线)(x f y =为凹的 B.)(x f y = 单调减少,曲线)(x f y =为凹的 C. )(x f y =单调减少,曲线)(x f y =为凸的 D.)(x f y =单调增加,曲线)(x f y =为凸的(3))(x f 在),(+∞-∞内可导,且21,x x ∀,当21x x >时,)()(21x f x f >,则( D ) A. 任意0)(,>'x f x B. 任意0)(,≤-'x f x C. )(x f -单调增 D. )(x f --单调增(4)设函数)(x f 在]1,0[上二阶导数大于0, 则下列关系式成立的是( B ) A. )0()1()0()1(f f f f ->'>' B. )0()0()1()1(f f f f '>->' C. )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->' 2.求下列函数的单调区间 (1)1--=x e y x .解:1-='x e y ,当0>x 时,0>'y ,所以函数在区间),0[+∞为单调增加; 当0<x 时,0<'y ,所以函数在区间]0,(-∞为单调减少.(2)(2y x =-解:)1(31031-='-x x y ,当1>x ,或0<x 时,0>'y ,所以函数在区间),1[]0,(+∞-∞ 为单调增加; 当01x <<时,0<'y ,所以函数在区间]1,0[为单调减少.(3))1ln(2x x y ++=解:011111222>+=++++='xxx x x y ,故函数在),(+∞-∞单调增加.3.证明下列不等式(1)证明: 对任意实数和, 成立不等式||1||||1||||1||b b a a b a b a +++≤+++.证明:令x x x f +=1)(,则0)1(1)(2>+='x x f ,)(x f 在) , 0 [∞+内单调增加. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即 ||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++(2)当1>x 时, 1)1(2ln +->x x x .证明:设)1(2ln )1()(--+=x x x x f ,11ln )('-+=xx x f ,由于当1x >时,211()0f x x x''=->,因此)(x f '在),1[+∞单调递增, 当1x >时, 0)1()(='>'f x f , 故)(x f 在),1[+∞单调递增,当1>x 时, 有0)1()(=>f x f .故当1>x 时,0)1(2ln )1()(>--+=x x x x f ,因此1)1(2ln +->x x x .(3)当0>x 时,6sin 3x x x ->.证明:设6sin )(3x x x x f +-=,021cos )(2=+-='x x x f ,当0>x ,()sin 0f x x x ''=->,所以)(x f '在),0[+∞单调递增,当0>x 时, 0)0()(='>'f x f , 故)(x f 在),0[+∞单调递增, 从而当0>x 时, 有0)0()(=>f x f . 因此当0>x 时,6sin 3x x x ->.4. 讨论方程k x x =-sin 2π(其中为常数)在)2,0(π内有几个实根.解:设()sin ,2x x x k πϕ=-- 则()x ϕ在]2,0[π连续,且k k -=-=)2(,)0(πϕϕ,由()1cos 02x x πϕ'=-=,得2arccos x π=为)2,0(π内的唯一驻点.()x ϕ在2[0,arccos ]π上单调减少,在2[arccos ,]2ππ上单调增加.故k ---=242arccos)2(arccos 2πππϕ为极小值,因此)(x ϕ在]2,0[π的最大值是,最小值是k ---242arccos2ππ.(1)当,0≥k 或242arccos2--<ππk 时,方程在)2,0(π内无实根;(2)当0242arccos2<<--k ππ时,有两个实根;(3) 当242arccos2--=ππk 时,有唯一实根.5.试确定曲线d cx bx ax y +++=23中的a 、b 、c 、d ,使得2-=x 处曲线有水平切线,)10,1(-为拐点,且点)44,2(-在曲线上.解:c bx ax y ++='232,b ax y 26+='',所以2323(2)2(2)062010(2)(2)(2)44a b c a b a b c d a b c d ⎧-+-+=⎪+=⎪⎨+++=-⎪⎪-+-+-+=⎩ 解得:16,24,3,1=-=-==d c b a .6.求下列函数图形的拐点及凹或凸的区间(1)12-+=x xx y 解:222)1(11-+-='x x y ,323)1(62-+=''x xx y ,令0=''y ,得0=x ,当1x =±时不存在.当01<<-x 或1>x 时,0>''y ,当1-<x 或10<<x 时,0<''y .故曲线12-+=x xx y 在)1,0()1,( --∞上是凸的, 在区间和),1()0,1(+∞- 上是凹的,曲线的拐点为)0,0(.(2)32)52(x x y -=拐点及凹或凸的区间解:y '=,y ''=.当0=x 时,y y ''',不存在;当21-=x 时,0=''y .故曲线在)21,(--∞上是凸的, 在),21(+∞-上是凹的,)23,21(3--是曲线的拐点,7.利用凹凸性证明: 当π<<x 0时, πxx >2sin证明:令πx x x f -=2sin )(, 则π12cos 21)(-='x x f , 2sin 41)(xx f -=''.当π<<x 0时,0)(<''x f , 故函数πxx x f -=2sin )(的图形在),0(π上是凸的,从而曲线)(x f y =在线段AB (其中)(,()),0(,0(ππf B f A )的上方,又0)()0(==πf f , 因此0)(>x f ,即πx x >2sin .§3.5 函数的极值与最大值最小值1.填空题(1)函数x x y 2=取极小值的点是1ln 2x =-. (2) 函数31232)1()(--=x x x f 在区间]2,0[上的最大值为322)21(=f ,最小值为(0)1f =- .2.选择题(1) 设)(x f 在),(+∞-∞内有二阶导数,0)(0='x f ,问)(x f 还要满足以下哪个条件,则)(0x f 必是)(x f 的最大值?(C )A .0x x =是)(x f 的唯一驻点B .0x x =是)(x f 的极大值点C .)(x f ''在),(+∞-∞内恒为负D . )(x f ''不为零(2) 已知)(x f 对任意)(x f y =满足x e x f x x f x --='+''1)]([3)(2,若00()0 (0)f x x '=≠,则(B )A. )(0x f 为)(x f 的极大值B. )(0x f 为)(x f 的极小值C. ))(,00x f x (为拐点D. )(0x f 不是极值点, ))(,00x f x (不是拐点(3)若)(x f 在至少二阶可导, 且1)()()(lim2000-=--→x x x f x f x x ,则函数)(x f 在处( A ) A . 取得极大值 B . 取得极小值 C . 无极值 D . 不一定有极值 3. 求下列函数的极值 (1)()3/223x x x f -=. 解:由13()10f x x -'=-=,得1=x .4''31(),(1)03f x x f -''=>,所以函数在1=x 点取得极小值.(2)xx x f 1)(=.解:定义域为),0(+∞,11ln 21, (1ln )x xxy ey xx x'==-, 令0y '=得驻点x e =,当(0,)x e ∈时,0y '>,当(,)x e ∈+∞时,0y '<.因此ee e y 1)(=为极大值.4. 求14123223+-+=x x x y 的在]4,3[-上的最大值与最小值. 解:(3)23, (4)132y y -==.由266120y x x '=+-=,得1=x ,2-=x .而34)2(,7)1(=-=y y , 所以最大值为132,最小值为7.5.在半径为的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积最大. 解:设圆锥体的高为, 底半径为,故圆锥体的体积为h r V 2 31π=, 由于222)(R r R h =+-,因此)2( 31)(2h Rh h h V -=π)20(R h <<, 由0)34( 31)(2=-='h Rh h V π,得34R h =,此时R r 322=.由于内接锥体体积的最大值一定存在,且在)2,0(R 的内部取得. 现在0)(='h V 在)2,0(R 内只有一个根,故当34R h =, R r 322=时, 内接锥体体积的最大. 6.工厂与铁路线的垂直距离AC 为20km ,点到火车站的距离为100km .欲修一条从工厂到铁路的公路CD , 已知铁路与公路每公里运费之比为3:5,为了使火车站与工厂间的运费最省,问点应选在何处?解:设AD x =,与间的运费为, 则)100(340052x k x k y -++= (1000≤≤x ),其中是某一正数. 由0)34005(2=-+='xx k y ,得15=x .由于k y x 400|0==,k y x 380|15==, 2100511500|+==x y ,其中以k y x 380|15==为最小,因此当AD =15=x km 时,总运费为最省.7.宽为的运河垂直地流向宽为的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少?解: 问题转化为求过点的线段AB 的最大值. 设木料的长度为, y CB x AC ==,,木料与河岸的夹角为,则l y x =+,且t by t a x sin ,cos ==, t b t a l sin cos +=)2,0(π∈t .则ttb t t a l 22sin cos cos sin -=', 由0='l 得3tan a bt =, 此时233232)(b a l +=,故木料最长为233232)(b a l +=.§3.6函数图形的描绘1.求23)1(+=x x y 的渐近线. 解:由 -∞=+-→231)1(lim x x x ,所以1x =为曲线)(x f y =的铅直渐近线.因为 2)1(lim )(lim ,1)1(lim lim 2322-=-+=-=+=∞→∞→∞→∞→x x x x y x x x y x x x x所以2-=x y 为曲线)(x f y =的斜渐近线.2.作函数23)1(22--=x x y 的图形。
M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。
可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。
—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。
可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。
「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。
第三章 中值定理与导数的应用(A)1.在下列四个函数中 ,在 1,1 上满足罗尔定理条件的函数是 ()A . y8 x 1 B . y 4x 2 1 C . y1D . y sin x1 x 22.函数 f x满足拉格朗日中值定理条件的区间是 ( )x A . 2,2B .2,0C . 1,2D . 0,13.方程 x 5 5x 1 0 在1,1 内根的个数是 ()A .没有实根B .有且仅有一个实根C .有两个相异的实根D .有五个实根4.若对任意 x a, b ,有 f x g x ,则 ( )A .对任意 x a,b ,有 f x g xB .存在 x 0 a,b ,使 f x 0 g x 0C .对任意 x a,b ,有 f x g x C 0 ( C 0 是某个常数 )D .对任意 x a,b ,有 f xg xC (C 是任意常数 )5.函数 f x3x 5 5x 3 在 R 上有 ()A .四个极值点;B .三个极值点C .二个极值点D . 一个极值点6.函数 f x 2x 3 6x 2 18x 7 的极大值是 ()A .17B .11C .10D . 97.设 f x 在闭区间1,1 上连续,在开区间1,1 上可导,且 f xM ,f 0 0 ,则必有 ()A . f xM. f xMC . f x MD . f x MB8.若函数 f x 在 a, b 上连续,在 a,b 可导,则 ()A .存在 0,1 ,有 f b f a f b a b aB .存在0,1 ,有 f af bf ab a b aC .存在 a, b ,有 f a f b f a bD .存在a, b ,有 fbf afa b9.若 a 2 3b 0 ,则方程 f x x 3 ax 2 bx c0 ( )A .无实根B .有唯一的实根C .有三个实根D .有重实根 .求极限 x 2 sin 1()limx时,下列各种解法正确的是10 sin xx 0A .用洛必塔法则后,求得极限为 0B .因为 lim 1不存在,所以上述极限不存在x 0 xx xsin 1C .原式 lim 0x 0sin x xD .因为不能用洛必塔法则,故极限不存在11.设函数 y1 2x2 ,在 ()xA . ,单调增加B .,单调减少C . 1,1 单调增加,其余区间单调减少D .1,1 单调减少,其余区间单调增加e x ()12.曲线 y1 xA .有一个拐点B .有二个拐点C .有三个拐点D . 无拐点 13.指出曲线 yx的渐近线 ()3 x 2 A .没有水平渐近线,也没有斜渐近线B . x3 为其垂直渐近线,但无水平渐近线C .即有垂直渐近线,又有水平渐近线D . 只有水平渐近线2x 2 114.函数 f xx 3 1 3 在区间 0,2 上最小值为 ()A . 729B . 0C .1D .无最小值4x ln 1 x 15.求 limx 2x 01 116.求 limxx 0ln 1 x17.求 lim1 2 sin xxcos3x6118.求 lim 1 x 2 xx 01ln x19.求 limarctgxx220.求函数 y x 3 3x 29x 14 的单调区间。
第三章中值定理与导数的应用(习题课)题组一: 中值定理1.考察函数 22-21()1-1⎧≤⎪=⎨>⎪⎩x x f x x x 在[ 0 , 2 ]上关于拉格朗日定理的正确性.解: (1) 验证 f (x )在 x = 1处的连续性 。
(2) 验证 f (x )在 x = 0处右连续; x = 2处左连续。
(3) 验证 f (x )在 x = 1处的可导性。
2. 求下列极限1ln(1)(1)limcot π→-x x x解:1ln(1)lim cot x x x π→-=∞∞型1121lim csc xx xππ--→-211sin lim 1x x x ππ→=-00型112sin cos lim1x x x ππππ→⋅⋅=-0=(2) 0lim 42(1)x x x x e πππ→⎛⎫- ⎪+⎝⎭0(12)lim 4(1)xx x e x e πππ→+-=+1(0)xe x x ππ-→0lim4(1)x x xx e πππ→⋅=+2401lim 1xx e ππ→=+28.π=0lim 42(1)x x x x e πππ→⎛⎫- ⎪+⎝⎭解:(3) 112lim 2n nn n a a -→∞⎛⎫+- ⎪⎝⎭0⋅∞型112()lim 2xxn f x x a a-→∞⎛⎫=+- ⎪⎝⎭设112lim ()lim 2xxx x f x x a a -→∞→∞⎛⎫∴=+- ⎪⎝⎭11122limx x x a a x -+-→∞=00型111ln 2limx xxa a ax --→∞=211ln 2lim()a x xx a a -→∞=+00型2ln .a =112lim 2nnn n a a-→∞⎛⎫∴+- ⎪⎝⎭2ln .a =解:(4)2222211lim(cos )sin →+-+-x x x xx e x解: 因为21x +=1122(1)244122!1(),-+++x x o x 2=x e 221(),++x o x cos =x 222!1(),-+x o x 2sin x(0)→x 2x所以 原式 = 221lim→+-x x 1122(1)244122![1()]-+++x x o x 222!1()-+-x o x 22(1())++x o x 2[]x44844302()lim ()→+=-+x x o x x o x 1.12=-3. 设 f ( x ) 在 0()0,''≠f x 证明:当 0∆→时,x 000[()()]/()'+∆-∆-∆与f x x f x x f x x是同阶无穷小. 证明:0000()()()limx f x x f x f x x x∆→+∆-'-∆∆00020()()()lim ()x f x x f x x f x x ∆→'+∆--∆⋅=∆0型x 0的某一邻域内具有二阶导数,且接3.000()()lim2x f x x f x x∆→''+∆-=∆01().2f x ''=且0()0.f x ''≠0000()()()lim x f x x f x f x x cx∆→+∆-'-∆∴=∆(非零常数)故当 0∆→时,x 000[()()]/()'+∆-∆-∆与f x x f x x f x x是同阶无穷小.4. 证明:当 x >1时, 212arctan arccos 214π-=+x x x 证明: 212()arctan arccos 214x f x x x π=--+设22221112()()()12121()1xf x x xx x ''=--⋅++-+22222211111(1)x xx x x +-=-⋅+-+0=()()f x c c ∴=为常数接4.取 x = 1 得(1)c f =12arctan1arccos 2114π=--+0=()0f x ∴=212arctan arccos .214x x x π-=+即5. 证明函数 ()()ln[sin()1]=--+f x x a b x 的导 数在 ( a , b )内必有零点.证明: ()()0f a f b ==Rolle 定理(,)()0.a b f ξξ'∃∈=使6. 设 f ( x )可导, ()()'+f x f x 的零点.证明: 1212()()0.f x f x x x ==<设且()(),xF x e f x =⋅设显然 F (x )在[ x 1 , x 2 ]上满足Rolle 定理, 12(,)()0.x x F ξξ'∴∃∈=使(()())0e f f ξξξ'+=即()()0.f f ξξ'+=故试证在 f ( x )的两个零点之间必有7. 设 f ( x ) 在 ()1,'>f x ()0,<f a 试证方程 ()0=f x 在 (,())-a a f a 内有唯一实数根.证明: 先证根的存在性.()[,()],f x a a f a -显然在上满足拉格朗日中值定理(())()()(())f a f a f a f f a ξ'∴--=-(,())a a f a ξ∈-(())()(1())f a f a f a f ξ'-=-即()0,()1f a f x '<>而(())0f a f a ->故[ a , +∞ ) 上连续,在 ( a , +∞ ) 内可导且接7.由零点定理知 ()0=f x 在 (,())-a a f a 内有实数根.再证根的唯一性()1,f x '>因为()(,()).f x a a f a -所以在上单调增加故 ()0=f x 在 (,())-a a f a 内有唯一实根. 综合以上两部分可知结论成立.8. 设 f ( x ) 在 (0)(1)0,==f f 11,2⎛⎫= ⎪⎝⎭f 试证:在( 0 , 1 )内至少 有一点 ξ , 使 () 1.ξ'=f 证明: ()(),F x f x x =-设11(1)-1,().22F F ==则由零点定理得: (,1)()0.F ηη∃∈=1使2(0)0,F =又知在[0 , η ]上应用Rolle 定理得: ()0,(0,).F ξξη'=∈()10.f ξ'-=即[ 0 , 1 ]上连续,在( 0 , 1 )内可导且9. 设 f ( x ) 和g ( x ) 且对一切 x ∈( a , b )有 ()0,'≠g x (,)ξ∈,a b 则必存在 使 ()()().()()()ξξξξ'-='-f f f a g g b g 证明: ()()()()()()()()0f g g f g b f f a g ξξξξξξ''⋅+⋅''-⋅-⋅=将结果变形为:()()()()()()()F x f x g x g b f x f a g x =--设()[,]:F x a b 对在上应用拉格朗日中值定理得()()()(),(,).F b F a F b a a b ξξ'-=-∈在 [ a , b ]上连续,在( a , b )内可导接9.[()()]()[()()]()f f ag g b g f ξξξξ''-=-即()0g x '≠()0g ξ'∴≠()()0g b g ξ-=假设()()g b g ξ=即()[,]Rolle :g x b ξ对在上应用中值定理得(,)(,)()0.b a b g ηξη'∃∈⊂=使()0.g x '≠这与矛盾()()0.g b g ξ-≠故于是有 ()()().()()()ξξξξ'-='-f f f a g g b g10.设 f ( x ) 在 [ 0 , 1 ] (1)0,=f 试证:在( 0 , 1 )内至少 有一点 ξ , 使2()().f f ξξξ'=-证明: 2()()f f ξξξ'=-()2()0f f ξξξ'⋅+=2()2()0f f ξξξξ'⋅+⋅=2()()F x x f x =设,显然 F (x ) 在[0,1]上满足Rolle 中值定理. (0,1)()0,F ξξ'∴∃∈=使2()2()0f f ξξξξ'⋅+⋅=即上连续,在( 0 , 1 )内可导且 2()().f f ξξξ'=-故1. 讨论方程 21=x x 并求出它们所在的区间. 解: 题组二: 导数的应用()21,x f x x =-设()2(1ln 2).x f x x '=+则()0f x '=令1ln 2x =-得x()f x '()f x 1(,)ln 2-∞-1ln 2-1(,)ln 2-+∞-∞+∞-0-+-+的实数根的个数,接1. 1ln 2-x y o 因此方程有唯一实数根1(,).ln 2-+∞介于2. 设 f ( x ) 连续 0()lim 2,1cos →=-x f x x则在 x = 0 处 f ( x )为________. A. 不可导 B. 可导且 (0)0'≠f C. 取极大值D.取极小值解: (0)f '=0()(0)lim 0x f x f x →--0()1cos lim()1cos x f x x x x →-=⋅-0()1cos lim()1cos x f x x x x →-=⋅-01cos 2lim x x x→-=⋅0=且 f ( 0 ) = 0 ,接2.0()lim 21cos x f x x→=-1cos 0x -≥20>极限的局部保号性(0,)U δ∃(0,),x U δ∈当时()0f x >(0)f = x = 0为函数极小值点.3.设 f ( x ) 在 x = x 0的 如果 00()()0,'''==f x f x 而 0()0,'''≠f x 讨论 x = x 0为极值点还是( x 0 , f (x 0))为拐点.解: 0()f x '''=000()()lim x x f x f x x x →''''--00()lim x x f x x x →''=-0.≠000x x x x →+->时000x x x x →--<时00()()f x f x +-''''''=0()f x x ''在的左右方变号.( x 0 , f (x 0))为拐点.某一邻域内具有三阶连续导数,接3.由泰勒公式得()f x =20000033000()()()()()2!()()(())3!f x f x f x x x x x f x x x o x x '''+-+-'''+-+-00()()0f x f x '''==0()0f x '''≠330000()()()()(())3!f x f x f x x x o x x '''-=-+-000()()x x x x f x f x →+→--时与时变号( x 0 , f (x 0))不是极值点.4. 试确定常数 2=++y ax bx c与曲线 cos =y x 在 x = 0 处有相同的切线和曲率.解: a , b , c 使抛物线 记 21()y x axbx c =++2()cos y x x =因两曲线同过 0,x =所以有 12(0)(0)y y=1c =因两曲线在 0x =有相同的斜率, 所以有 12(0)(0)y y ''=02|x ax b =+=0sin |x x =-0b =接4.因两曲线在 0x =有相同的曲率, 所以有3322122212|(0)||(0)|(1(0))(1(0))y y y y ''''=''++又因为 12(0)(0)y y ''=所以 12|(0)||(0)|y y ''''=1||2a =5. 设f ( x ) 在 ()()ϕ=f x x x在 x = a (a ≠ 0)有极值,试证:曲线f ( x ) 在(a , f (a ) )处 的切线过原点. 证明: ( - ∞ , +∞ ) 上可微,函数 曲线 ()yf x =在 (,())a f a 处的切线为 ()()()y f a f a x a '-=-因为 ()x ϕ在 x a =取得极值, 所以 ()0a ϕ'=而 ()a ϕ'=()|x a x ϕ='()()|x a f x x='=2()()|x a f x x f x x='-=2()()f a a f a a '-=0=接5.所以()()f a f a a'=()()()y f a f a x a '-=-将其代入切线方程得 ()f a y x a=于是切线过原点。
第三章 微分中值定理和导数的应用3.1 验证罗尔定理对函数21x y -=在区间]1,1[-上的正确性。
3.2 验证罗尔定理对函数x y sin ln =在区间⎥⎦⎤⎢⎣⎡65,6ππ上的正确性。
3.3 不用求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明0)(/=x f 有几个实根,并指出它们所在的区间。
3.4 试证明对函数r qx px y ++=2应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间。
3.5 验证担格朗日定理对于函数x x f arctan )(=在区间[0,1]上的正确性。
3.6 对函数3)(x x f =及1)(2+=x x g 在区间[1,2]上验证柯西中值定理的正确性。
3.7 对函数x x f sin )(=,x x g cos )(=在区间⎥⎦⎤⎢⎣⎡2,0π验证柯西中值定理的正确性。
3.8 对函数2)(x x f =,x x g =)(在区间[1,4]上验证柯西中值定理的正确性。
3.9 试证当⎪⎭⎫ ⎝⎛-∈2,2ππx 时,|tan |||x x ≤(等号只有在0=x 时成立)。
3.10 证明下列不等式:(1)b a b a -≤-arctan arctan ;(2)y x y x -≤-sin sin ;(3))()(11y x nx y x y x ny n n n n -<-<--- (y x n >>,1);(4)如果20παβ<≤<,试证:αβαβαββα22cos tan tan cos -≤-≤-; (5)设0>n ,试证:1111arctan 1arctan 1)1(122+<+-<++n n n n 。
3.11 试证:21arctan arcsin xx x -= (11<<-x )。
3.12 若k x f =)(/,k 为常数,试证:b kx x f +=)(。
第三章 中值定理与导数的应用第1节 中值定理1.若)(x f 在),(b a 可导且)()(b f a f =,则( B )。
A.至少存在一点ξ∈),(b a 使0)('=ξfB. 不一定存在点ξ∈),(b a 使0)('=ξfC.恰存在一点ξ∈),(b a 使0)('=ξfD.对任意的ξ∈),(b a 均不能使0)('=ξf2.已知)(x f 在],[b a 可导,且方程0)(=x f 在),(b a 有两个不同的根α与β,则0)('=x f 在),(b a ( A )。
A.必有根B.可能有根C.没有根D.无法确定根的存在性 3.下列函数中在[-1,1]上满足罗尔定理条件的是( C )。
A.xeB.||ln xC.21x -D.211x - 4.若)3)(2)(1()(---=x x x x x f ,则0)('=x f 的实根个数为( B )。
A.4个 B.3个C.2个D.0个5.函数334)(x x f =在]3,0[上满足拉格朗日定理的条件,则=ξ( C )。
A.3- B.3 C.3 D.26、证明等式)1,0(21arctan 1arcsin 22∈=-+-x x x x π。
证:设)1,0(1arctan1arcsin )(22∈-+-=x xx x x f 。
由于 0111111)1(1111)(22222222222=-+-+--=-----⋅-++--⋅='xx x x x x x x xxx xx x x x x f 所以C x f ≡)(,)1,0(∈x 。
为了确定C , 取21=x 得26331arctan 23arcsin )21(πππ=+=+==f C 。
故)1,0(,21arctan1arcsin 22∈=-+-x x x x π。
7、设1,0><<n a b ,证明:)()(11b a na b a b a nb n n n n -<-<---。
>第三章 微分中值定理与导数的应用一、选择题1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=3、的凸区间是 x e y x -=( )) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞,4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )(A)xx sin )x (f = (B)2)1x ()x (f += (C) 3 2x )x (f = (D)1x )x (f 2+=5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,&8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) .(A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C)3 π(D) 010、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )]5 4, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )的极值必定不是的极值点为必定为曲线的驻点, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000、二、填空题 1、__________________e y82x的凸区间是曲线-=.2、______________ 2 x y x 的极小值点是函数=.3、的凸区间为曲线x 3 e y x+=_____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= . 5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= . 6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 . 7、函数 x sin ln y =在 [65, 6 ππ] 上的罗尔中值点ξ= . …8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。
第三章 中值定理与导数的应用(A)1.在下列四个函数中,在[]1,1-上满足罗尔定理条件的函数是( ) A .18+=x y B .142+=x y C .21xy = D .x y sin = 2.函数()xx f 1=满足拉格朗日中值定理条件的区间是 ( ) A .[]2,2- B . []0,2- C .[]2,1 D .[]1,0 3.方程0155=+-x x 在()1,1-内根的个数是 ( ) A .没有实根 B .有且仅有一个实根 C .有两个相异的实根 D .有五个实根 4.若对任意()b a x ,∈,有()()x g x f '=',则 ( ) A .对任意()b a x ,∈,有()()x g x f = B .存在()b a x ,0∈,使()()00x g x f =C .对任意()b a x ,∈,有()()0C x g x f +=(0C 是某个常数)D .对任意()b a x ,∈,有()()C x g x f +=(C 是任意常数) 5.函数()3553x x x f -=在R 上有 ( )A .四个极值点;B .三个极值点C .二个极值点D . 一个极值点 6.函数()7186223+--=x x x x f 的极大值是 ( ) A .17 B .11 C .10 D .97.设()x f 在闭区间[]1,1-上连续,在开区间()1,1-上可导,且()M x f ≤',()00=f ,则必有 ( )A .()M x f ≥B .()M x f >C .()M x f ≤D .()M x f < 8.若函数()x f 在[]b a ,上连续,在()b a ,可导,则 ( ) A .存在()1,0∈θ,有()()()()()a b a b f a f b f --'=-θ B .存在()1,0∈θ,有()()()()()a b a b a f b f a f --+'=-θC .存在()b a ,∈θ,有()()()()b a f b f a f -'=-θD .存在()b a ,∈θ,有()()()()b a f a f b f -'=-θ9.若032<-b a ,则方程()023=+++=c bx ax x x f ( )A .无实根B .有唯一的实根C .有三个实根D .有重实根10.求极限xx x x sin 1sinlim20→时,下列各种解法正确的是 ( )A .用洛必塔法则后,求得极限为0B .因为xx 1lim0→不存在,所以上述极限不存在 C .原式01sin sin lim 0=⋅=→x x x x xD .因为不能用洛必塔法则,故极限不存在 11.设函数212x xy +=,在 ( ) A .()+∞∞-,单调增加 B .()+∞∞-,单调减少 C .()1,1-单调增加,其余区间单调减少 D .()1,1-单调减少,其余区间单调增加12.曲线xe y x+=1 ( )A .有一个拐点B .有二个拐点C .有三个拐点D . 无拐点 13.指出曲线23x xy -=的渐近线 ( ) A .没有水平渐近线,也没有斜渐近线 B .3=x 为其垂直渐近线,但无水平渐近线 C .即有垂直渐近线,又有水平渐近线 D . 只有水平渐近线14.函数()()312321--=x x x f 在区间()2,0上最小值为 ( )A .4729B .0C .1D .无最小值 15.求()201ln lim x x x x +-→16.求()⎪⎪⎭⎫⎝⎛-+→x x x 11ln 1lim 0 17.求x xx 3cos sin 21lim6-→π18.求()xx x1201lim +→19.求xx arctgx ln 12lim ⎪⎭⎫⎝⎛-+∞→π20.求函数149323+--=x x x y 的单调区间。
第三章 中值定理与导数的应用一、 基本内容(一) 中值定理1.罗尔定理如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf .2.拉格朗日中值定理如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得ab a f b f f --=')()()(ξ 其微分形式为x f x f x x f ∆⋅'=-∆+)()()(ξ这里10,<<∆⋅+=θθξx x .推论 如果函数)(x f 在开区间),(b a 内的导数恒为零,那么)(x f 在),(b a 内是一个常数.3.柯西中值定理如果函数)(x f 及)(x g 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)(x g '在),(b a 内的每一点均不为零,那么在),(b a 内至少有一点ξ,使得)()()()()()(ξξg f a g b g a f b f ''=-- 中值定理是导数应用的理论基础,在应用中值定理证明题时,关键是构造适当的辅助函数.(二) 洛必达法则1.法则1如果函数)(x f 及)(x g 满足条件:(1)0)(lim =→x f a x , 0)(lim =→x g ax ; (2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ;(3))()(l i m x g x f a x ''→存在(或为无穷大),那么 )()(lim )()(lim x g x f x g x f a x ax ''=→→ 2.法则2如果函数)(x f 及)(x g 满足条件:(1)0)(lim =∞→x f x , 0)(lim =∞→x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) )()(limx g x f x ''∞→存在(或为无穷大); 那么)()(lim )()(lim x g x f x g x f x x ''=∞→∞→ 以上两个法则是针对00型未定式. 对∞∞型未定式,也有相应的两个法则. 对∞⋅0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞∞型来求. (三) 泰勒公式1.带拉格朗日余项的泰勒公式设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有+-''+-'+=200000)(2)())(()()(x x x f x x x f x f x f ! )()(!)(00)(x R x x n x f n n n +-+ 10)1()()!1()()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项.(四) 函数的单调性函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导.(1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;(2) 如果在),(b a 内0)(<'x f ,那么函数)(x f y =在],[b a 上单调减少.(五) 函数的极值与最值1.函数在一点取得极值的必要条件设函数)(x f y =在0x 点取得极值,如果)(x f 在0x 点可导,那么0)(0='x f .使0)(='x f 的点x 称为函数)(x f 的驻点.驻点不一定是极值点.驻点和不可导点是函数的所有可能的极值点.2.极值点的两个判别定理判别之一 设函数)(x f y =在0x 点连续,在0x 的某去心领域),(0δx U内可导,有(1) 如果在),(00x x δ-内0)(<'x f ,在),(00δ+x x 内0)(>'x f ,那么)(x f 在0x 取得极小值;(2) 如果在),(00x x δ-内0)(>'x f ,在),(00δ+x x 内0)(<'x f ,那么)(x f 在0x 取得极大值;(3) 如果)(x f '在),(0δx U 内符号保持不变,那么)(x f 在0x 没有极值.判别之二 设函数)(x f y =在0x 点处有二阶导数,且0)(0='x f ,则有(1) 如果0)(0>''x f ,那么在0x 取得极小值;(2) 如果0)(0<''x f ,那么在0x 取得极大值.3.函数的最大值与最小值的求法(1) 求出)(x f '在),(b a 内的零点和不存在的点n x x x ,,,21 ,计算出)(x f 在这些点处的函数值)(,),(),(21n x f x f x f ;(2) 计算出)(x f 在],[b a 的两个端点上的值)(),(b f a f(3) )}(),()(,),(),(m ax {21b f a f x f x f x f n 是)(x f 在],[b a 上的最大值)}(),()(,),(),(m in{21b f a f x f x f x f n 是)(x f 在],[b a 上的最小值. (六)曲线的凹凸与函数的作图1.凹凸的定义设函数)(x f y =在闭区间],[b a 上连续,如果对于],[b a 上任意两点21,x x ,恒有2)()()2(2121x f x f x x f +<+那么称曲线)(x f y =在],[b a 上是凹的;如果恒有2)()()2(2121x f x f x x f +>+ 那么称曲线)(x f y =在],[b a 上是凸的.2.凹凸的判定设函数)(x f y =在],[b a 上连续,在),(b a 内具有二阶导数,那么(1) 如果在),(b a 内0)(>''x f ,那么函数)(x f y =在],[b a 上的图形是凹的;(2) 如果在),(b a 内0)(<''x f ,那么函数)(x f y =在],[b a 上的图形是凸的.3.拐点及其求法连续曲线)(x f y =上凹弧与凸弧的分界点称为这曲线的拐点.求出所有0)(=''x f 或)(x f ''不存在的点n x x x ,,,21 ,拐点从),,2,1())(,(n i x f x i i =中找.4.函数作图(1) 确定函数的定义域;(2) 求出函数的单调区间和极值点,曲线的凹凸区间和拐点;(3) 求函数图形的水平渐近线和铅直渐近线;(4) 求出函数在特殊点(包括间断点及一阶导数、二阶导数为零或不存在的点)处的函数值,定出图形上相应的点,结合前面的结果,连结这些点画出函数图形的大概形状.(七)曲率1. 定义 称dSd S K S αα=∆∆=→∆0lim 为曲线)(x f y =在M 点处的曲率.其中S ∆是 M M '的长度,α∆是曲线在M 与M '处切线的夹角,M 与M '是曲线上两点.2. 计算公式若)(x f y =,则232)1()(y y x K '+''=.3. 曲率与曲率半径ρ的关系K1=ρ二、练习题3.1 设)(x f 可导,求证:)(x f 的两个零点之间一定有)()(x f x f '+的零点. 证明 设0)()(==b f a f ,a<b ,令)()(x f e x F x =,则0)()(==b F a F , 根据罗尔定理,存在),(b a ∈ξ使得0)(='ξF ,即0)]()([='+ξξξf f e .于是0)()(='+ξξf f .3.2 设函数)(x f 在]1,0[上三次可导,且0)1()0(==f f ,设)()(3x f x x F =.证明;存在)1,0(∈ξ,使0)(='''ξF .证明 由条件可知 0)1()0(==F F ,F(x)在]1,0[上可导,根据罗尔定理,存在)1,0(1∈ξ使得0)(1='ξF又由)()(3)(32x f x x f x x F '+='知道0)0(='F这样0)()0(1='='ξF F ,0)(='x F 在],0[1ξ可导. 根据罗尔定理,存在)1,0(),0(12⊂∈ξξ使得0)(2=''ξF又由)()(6)(6)(32x f x x f x x xf x F ''+'+=''知道0)0(=''F根据罗尔定理,存在)1,0(),0(2⊂∈ξξ使得0)(='''ξF3.3 设)(x f 在闭区间[a ,b ]上连续,在开区间(a ,b )内可导,0>a .证明:在 (a ,b )内存在321,,x x x ,使233222213)()(2)()()(x x f b ab a x x f b a x f '++='+='证明 由拉格朗日中值定理 .存在),(1b a x ∈,使得)()()(1x f ab a f b f '=-- 根据柯西中值定理,存在),(),,(32b a x b a x ∈∈使得))((3)()()())((2)()()(32333322222x x F x x f a b a f b f x x F x x f a b a f b f ='=--='=-- 由上面三个等式可知原结论成立 .3.4 设)(x f 在[0,1]上连续,在(0,1)内可导,且)1()0(f f =.求证:在(0,1)内存在的两个不同的21,c c ,使0)()(21='+'c f c f .证明 将[0,1]分成两部分]1,21[],21,0[分别在其上应用拉格朗日中值定理,得 )1,21()(211)21()1()21,0()(021)0()21(2211∈'=--∈'=--c c f f f c c f f f 又由条件)1()0(f f =,可知0)()(21='+'c f c f3.5 已知 0)3sin (lim 230=++→b xa x x x ,求b a ,的值 . 解 因 0)3sin (lim 230=++→b x a x x x ,由洛必达法则 )00(333cos 3lim )00(3sin lim 220330x bx a x x bx ax x x x ++=++→→由033cos 3lim 20=++→bx a x x 可知3-=a 再继续用洛必达法则0663cos 27lim )00(663sin 9lim )00(3333cos 3lim 00220=+-=+-=+-→→→b x x bx x xbx x x x x 于是 063cos 27lim 0=+-→b x x ,知 29=b3.6用洛必达法则求下列极限:(1)21)1ln(lim x e x x +++∞→;(2)x x x ln 1)arctan 2(lim -∞→π; (3)210)ln ln (lim x x x x bx b a x a --→; (4))0,,()3(lim 10>++→c b a c b a x xx x x解 (1)21)1ln(lim x e x x +++∞→ =21)1(lim x x e e x xx +++∞→ =1111lim2+⋅+-+∞→xe x x =1 (2)x x x ln 1)arctan 2(lim -∞→π =x x x e ln )arctan 2ln(lim -∞→π=xx x x e arctan 21lim2-+-∞→π =x x x x x e arctan 211lim 22-⋅+-∞→π =x xx e arctan 21lim --∞→π=22111lim x x x e +---∞→ =1-e(3) 令y b x b a x a x x x x =--→210)ln ln (lim )00()ln ln()ln ln(lim ln 20x b x b a x a y x x x ---=→ = xb x b b b b a x a a a a x x x x x 2ln ln ln ln ln ln lim 0-----→ xa x a aa a x x x 2ln ln ln lim 0--→ )1ln (2ln )1(lim 0→--=→a x a xa a x x x =2ln 2ln lim 220a a a x x =→ 同理 2ln 2ln ln ln lim 20b x b x b bb b x x x =--→ 故 2ln ln ln 22b a y -= 原式=2ln ln 22b a e-(4) 令y c b a x xx x x =++→10)3(lim3ln 3ln ln ln 3ln ln ln 3lim )00(3ln lim ln 00abc c b a c c b b a a c b a x c b a y x x x x x x x xx x x =++=++⋅++=++=→→ 故 原式33ln abc e abc ==3.7 设)(x f 与)(x g 在),0[+∞存在二阶导数,且满足条件:)0()0(g f =,)0()0(g f '=',)0)(()(>''>''x x f x g .试分别用函数的单调性、拉格朗日中值定理和泰勒公式证明:0>x 时,)()(x f x g >.证明 (法一)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F于是)(x F '在),0(+∞单调递减又由)0(F ''存在,故)(x F '在0=x 连续,即有)(x F '在[]+∞,0 单调递减 .所以,当0>x 时,0)0()(='<'F x F ,于是)(x F 在[]+∞,0单调递减,所以,当0>x 时,0)0()(=<F x F 即0)()(<-x g x f ,)()(x f x g >. (法二)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F由拉格朗日中值定理,得()0)),0(()()]0()([),0()()0()(<∈⋅⋅''=⋅'-'=∈'=-ξηξηξξξx F x F F x xF F x F 故 0)(<x F ,)()(x f x g >.(法三)令)()()(x g x f x F -=由条件 )0(0)(,0)0(,0)0(><''='=x x F F F根据泰勒公式 2)(21)0()0()(x F x F F x F ξ''+'+= 其中),0(,0x x ∈>ξ 故 0)(<x F ,)()(x f x g >.3.8 利用泰勒公式计算极限:)cot 1(1lim0x x x x -→. 解 原式=xx x x x tan tan lim 20-→ =)~(tan tan lim 30x x x x x x -→ =)1~(cos cos sin lim 30x xx x x x -→ =322330)](21[)(6lim xx o x x x o x x x +--+-→ =3330)(31lim xx o x x +→ =313.9 设函数)(x f 在[0,1]上具有连续的三阶导数,且2)1(,1)0(==f f ,0)21(='f . 证明 在(0,1)内至少存在一点ξ,使24|)(|≥'''ξf . 证明 将)(x f 在210=x 点展开,并分别令0=x 和1=x ,得)2()21(6)()21(2)21()21)(21()21()1()1()21(6)()21(2)21()21)(21()21()0(322312ξξf f f f f f f f f f '''+''+'+=-'''+-''+-'+= (2)—(1)得: )]()([481112ξξf f '''-'''= 48|)()(||)(||)(|1221='''-'''≥'''+'''ξξξξf f f f取ξ为1ξ和2ξ中三阶导数的绝对值较大的点,因)1,21(),21,0(21∈∈ξξ故)1,0(∈ξ,且有 24|)(|≥'''ξf3.10 数列 ,,,3,2,13n n 中哪一项最大解 令 xx x f 1)(=,则)ln 1()ln 1()(211x x x x x x f x x -='='- 当),0(e x ∈时,0)(>'x f ,f(x)在],0(e 单增;当),(+∞∈e x 时,0)(<'x f ,f(x)在),[+∞e 单减因为 32<<e ,故值最大的项只能为2或33,而由2332<可知,2<33,所以33最大.3.11 证明:当0>x 时,有)1l n()1(1x x e x ++>-.证明 令),1ln()1(1)(x x e x f x ++--=则0)0(=f0)0(,)1ln(1)(='+--='f x e x f xxe xf x +-=''11)( 当0>x 时,0)(=''x f ,)(x f '在),0[+∞单增,而0)0(='f ,故0)(>'x f ,)(x f 在),0[+∞单增,而0)0(=f 故0)(>x f ,即当0>x 时,有)1ln()1(1x x e x ++>-3.12 在椭圆12222=+by a x 位于第一象限的部分上求一点P ,使该点处的切线、椭圆及两坐标所围图形的面积为最小)0,0(>>b a .解 要使所述的面积最小,因椭圆在第一象限部分面积为定值,只要使切线与两坐标所围三角形面积最小即可 .设),(00y x P .则由02222=⋅+dxdy b y a x yx a b b y a x dx dy ⋅-=-=222222 可知P 点处椭圆切线方程为 )(000220x x y x a b y y -⋅-=- 分别令y=0和x=0,可得两截距为 022020022020y a b y x Y x b a x y X +⋅=+⋅=故此三角形面积为))((2102202002200y ab y x x b a x y +⋅+⋅ 因),(00y x 在椭圆上,可令0000sin ,cos θθb y a x ==.代入上式,可得此面积为02sin θab ,因此当12sin 0=θ即40πθ=时,此面积最小,此时b y a x 22,2200== . 综上,当P 点坐标为)22,22(b a 师,题中所述面积最小.测验题(三)1. 设)(x f 和)(x g 在[a ,b ]上连续,在(a ,b )内可导,且0)()(==b f a f ,证明:0)()()()(='+'x g x f x g x f 在(a ,b )内有解证明 令)()()(x g x f x F =,则F(x)在[a ,b ]满足罗尔定理的条件,存在),(b a ∈ξ使得0)(='ξF ,即0)()()()()(='+'='x g x f x g x f x F 在(a ,b )内有解.2. 设)(x f 在],0[π上连续,在()π,0内可导,且0)0(=f ,证明:存在),0(πξ∈使)(2tan )(2ξξξf f ='.证明 欲证)(2tan )(2ξξξf f =',只要 02sin )(212cos )(=-'ξξξξf f 令2cos )()(x x f x F =,有0)0(=f 得0)()0(==πF F . )(x F 在[0,π]满足罗尔定理的条件,故存在),0(πξ∈使得0)(='ξF ,即02si n )(212cos )(=-'ξξξξf f .3. 用洛必达法则求下列极限(1)()1sin lim 20--→x x e x x x ; (2)])11[(lim e xx x x -+∞→. 解()()()61642cos lim 412sin lim 12cos 1lim 1sin lim )1(20202020=+++=++-=+--=--→→→→x x x x x xx x x xx x x x e x xe e e x e x xe e x e x e x x e x xx221)1ln(1lim )1ln()1(lim )11,)1(()1()]1ln()1([)1(lim 1]111)1ln(1[)1(lim )1(lim )1(])11[(lim )2(02012101010e tt e t t t t e t e t t t t t t t t t t t t te t x t e xx t t t t t t t t t x x -=-+-=+⋅+-=→+→+++⋅+-+=+⋅++⋅-+=-+==-+→→→→→∞→注意令4. 已知bx ax x x f ++=23)(在1=x 处有极值2-,试确定系数a 和b ,并求出)(x f 的所有极值和曲线)(x f y =的拐点.解 b ax x x f ++='23)(2因)(x f 在1=x 处有极值2-,故⎩⎨⎧-=++==++='21)1(023)1(b a f b a f 解得⎩⎨⎧-==30b a ,因此有x x x f 3)(3-=. 解33)(2-='x x f ,得1±=x .当)1,(--∞∈x 时,0)(>'x f ;当)1,1(-∈x 时,0)(<'x f ;当),1(+∞∈x 时,0)(>'x f ,所以)(x f 在1-=x 点处取得极大值2)1(=-f ,在1=x 处取得极小值2)1(=f .解06)(==''x x f ,得0=x .当0<x 时,0)(<''x f ,当0>x 时,0)(>''x f ,故(0,0)点是曲线)(x f y =的拐点.5. 证明:当e x x >>12时,有122121ln ln x x x x x x << 证明 考虑函数x x y ln = ),(,0ln 12+∞∈<-='e x xx y 所以函数在),(+∞e 单调递减,即当e x x >>12时有2211ln ln x x x x >即2121ln ln x x x x < 再考虑函数x x y ln =,),(,0ln 1+∞∈>+='e x x y所以函数在),(+∞e 单调递增,即当e x x >>12时有2211ln ln x x x x <即1221ln ln x x x x <6. 若)(x f '在),0[+∞严格单调递增,且0)0(=f ,证明:x x f )(在),0(+∞严格单调递增.证明 对任意的0>x ,)(x f 在],0[x 连续,在(0,x )可导,故存在),0(x ∈ξ使得 )()()0()(ξf xx f x f x f '==- xf x f x x x f x f x x f x f x x x f )()()()()()()(2ξ'-'=-'=-'='⎥⎦⎤⎢⎣⎡ 因)(x f '在),0[+∞严格单调递增,故)()(ξf x f '>',所以0)(>'⎥⎦⎤⎢⎣⎡x x f 则x x f )(在),0(+∞严格单调递增.7. 设在],1[+∞上处处有0)(<''x f ,且3)1(,2)1(-='=f f ,证明:在),1(+∞内方程0)(=x f 仅有一个实根.证明 由0)(<''x f 知)(x f '在),1[+∞严格递减.由零阶泰勒公式,有)2,1(),12)(()1()2(∈-'+=ξξf f f 由于3)1()(-='<'f f ξ,2)1(=f ,故01)2(<-<f由连续函数的介值定理,存在)2,1(0∈x 使得0)(0=x f又由于)(x f '在),1[+∞严格递减.,0)1(<'f 可知对任意的),1[+∞∈x 有0)1()(<'≤'f x f ,故)(x f 在),1[+∞严格递减.所以0)(=x f 在),1(+∞内有唯一实根.。
高等数学第三章之中值定理与导数应用部分测试题(附答案)一、单选题 (每小题4分,共计20分)1、设),,(),12)(1()(+∞-∞∈+-='x x x x f 则在)1,21(内曲线)(x f ( )(A)单调增凹的; (B)单调减凹的; (C)单调增凸的; (D)单调减凸的。
2、已知)(x f 在0=x 的某个邻域内连续,且0)0(=f ,2cos 1)(lim0=-→x x f x ,则在点0=x 处)(x f ( )(A)不可导; (B)可导,且0)0('≠f ; (C )取得极大值; (D)取得极小值。
3、设)(x f 有二阶连续导数,且0)0('=f ,1||)("lim=→x x f x ,则( ) (A))0(f 是)(x f 的极大值; (B))0(f 是)(x f 的极小值; (C)))0(,0(f 是曲线)(x f y =的拐点; (D))0(f 不是)(x f 的极值点。
4、设)(x f 、)(x g 在[]b a ,连续可导,0)()(≠x g x f ,且)()()()(x g x f x g x f '<',则当b x a <<时,则有( )(A))()()()(a g a f x g x f <; (B))()()()(b g b f x g x f <; (C))()()()(a g a f x g x f <; (D))()()()(a f a g x f x g >。
5、)(x f 在),(b a 内连续,0)()(),,(000=''='∈x f x f b a x ,则)(x f 在0x x = 处(D ) (A)取得极大值; (B)取得极小值;(C)一定有拐点))(,(00x f x ; (D)可能取得极值,也可能有拐点。
二、填空题(每小题4分,共计20分)1、=→x x x ln lim 0_______。
第三章 微分中值定理与导数的应用答案§3.1 微分中值定理1. 填空题(1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是ππ-4.(2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中.2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件(2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ).A . xe xf =)( B. ||)(x x f = C. 21)(x x f -= D. ⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξD . 211212)()()()(x x f x x x f x f <<'-=-ξξ3.证明恒等式:)(2cot arctan ∞<<-∞=+x x arc x π.证明: 令x arc x x f cot arctan )(+=,则01111)(22=+-+='xx x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2f π=,故 )(2c o t a r c t an ∞<<-∞=+x x arc x π.4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x <<3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf .证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .5. 证明方程062132=+++x x x 有且仅有一个实根.证明:设621)(32x x x x f +++=, 则031)2(,01)0(<-=->=f f ,根据零点存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在),(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02112>++ηη矛盾.故方程062132=+++x x x 只有一个实根.6. 设函数)(x f 的导函数)(x f '在],[b a 上连续,且0)(,0)(,0)(<><b f c f a f ,其中c 是介于b a ,之间的一个实数. 证明: 存在),(b a ∈ξ, 使0)(='ξf 成立.证明: 由于)(x f 在],[b a 内可导,从而)(x f 在闭区间],[b a 内连续,在开区间(,)a b 内可导.又因为()0,()0f a f c <>,根据零点存在定理,必存在点1(,)a c ξ∈,使得0)(1=ξf . 同理,存在点2(,)c b ξ∈,使得0)(2=ξf .因此()f x 在[]21,ξξ上满足罗尔定理的条件,故存在),(b a ∈ξ, 使0)(='ξf 成立.7. 设函数)(x f 在]1,0[上连续, 在)1,0(内可导. 试证:至少存在一点(0,1)ξ∈, 使()2[(1)(0)].f f f ξξ'=- 证明: 只需令2)(x x g =,利用柯西中值定理即可证明.8.证明下列不等式(1)当π<<x 0时,x xxcos sin >. 证明: 设t t t t f cos sin )(-=,函数)(t f 在区间],0[x 上满足拉格朗日中值定理的条件,且t t t f sin )(=', 故'()(0)()(0), 0f x f f x x ξξ-=-<<, 即0sin cos sin >=-ξξx x x x (π<<x 0)因此, 当π<<x 0时,x xxcos sin >.(2)当 0>>b a 时,bba b a a b a -<<-ln . 证明:设x x f ln )(=,则函数在区间[,]b a 上满足拉格朗日中值定理得条件,有'()()()(),f a f b f a b b a ξξ-=-<< 因为'1()f x x=,所以1ln ()a a b b ξ=-,又因为b a ξ<<,所以111a b ξ<<,从而bba b a a b a -<<-ln .§3.1 洛毕达法则1. 填空题 (1) =→xxx 3cos 5cos lim2π35-(2)=++∞→xx x arctan )11ln(lim0 (3))tan 11(lim 20x x x x -→=31(4)0lim(sin )xx x +→=12.选择题(1)下列各式运用洛必达法则正确的是( B ) A . ==∞→∞→nn n n n en ln limlim 11lim=∞→nn eB . =-+→x x x x x sin sin lim0 ∞=-+→xxx cos 1cos 1lim 0C . xx x x x x x x x cos 1cos1sin 2lim sin 1sin lim020-=→→不存在 D . x x e x 0lim →=11lim 0=→x x e(2) 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A . x x x sin lim 20→B . x x x tan 0)1(lim +→C . x x x x sin lim +∞→D . x nx e x +∞→lim3. 求下列极限(1)nn mm a x a x a x --→lim .解: n n m m a x a x a x --→lim =nm n m a x a nm nx mx ---→=11lim.(2)20222lim x x x x -+-→.解: 20222lim xx x x -+-→=x x x x 22ln 22ln 2lim 0-→-=2)2(ln 2)2(ln 2lim 220x x x -→+=2)2(ln .(3)30tan sin limxxx x -→ .解:30tan sin lim x x x x -→=32030)21(lim )1(cos tan lim x x x x x x x x -⋅=-→→=21-. (4) 20)(arcsin 1sin lim x x e x x --→.解:20)(arcsin 1sin lim x x e x x --→=201sin lim xx e x x --→=212sin lim 2cos lim 00=+=-→→x e x x e x x x x .(5)x x x x xx ln 1lim 1+--→.解: )ln 1()(x x x xx +=', x x x x xx ln 1lim1+--→=xx x xx 11)ln 1(1lim 1+-+-→=22111)ln 1(limx x x x x xx x --+-→2])ln 1([lim 1221=++=++→x x x x x x .(6) )111(lim 0--→x x e x . 解:2121lim )1(1lim )111(lim 22000==---=--→→→xx e x x e e x x x xx x x(7) xx xtan 0)1(lim +→ .解:1)1(lim 202000sin limcsc 1lim cot ln limln tan lim tan 0=====+→+→+→+→+----→x xx x xxxx x x x x x x eeeex.(8))31ln()21ln(lim xxx +++∞→.解: )31ln()21ln(lim x x x +++∞→=2ln 23ln(12)12lim ln(12)3lim 3lim1x x x x x x x x x →+∞→+∞→+∞+++== =xxx 212lim 2ln 3++∞→=2ln 3.(9) n n n ∞→l i m .解: 因为1lim1limln 1lim===∞→∞→∞→xxxxx x x eex ,所以nn n ∞→lim=1.§3.3 泰勒公式 1.按1-x 的幂展开多项式43)(24++=x x x f .解: 10)1(,64)(3='+='f x x x f ,同理得24)1(,24)1(,18)1()4(=='''=''f f f ,且0)()5(=x f .由泰勒公式得:43)(24++=x x x f =432)1()1(4)1(9)1(108-+-+-+-+x x x x .2. 求函数xe x xf 2)(=的带有佩亚诺型余项的n 阶麦克劳林公式.解:因为)(!!2!112n nxx o n x x x e +++++= ,所以xe x xf 2)(==2222[1()]1!2!(2)!n n x x x x o x n --+++++-=)()!2(!2!1432n n x o n x x x x +-++++ .3. 求一个二次多项式)(x p ,使得)()(22x x p x ο+=. 解:设xx f 2)(=,则2ln 2)(x x f =',2)2(ln 2)(x x f =''. 2)2(ln )0(,2ln )0(,1)0(=''='=f f f ,故 )(!2)2(ln !12ln 12222x x x xο+++=, 则 222)2(ln 2ln 1)(x x x p ++=为所求. 4.利用泰勒公式求极限)]11ln([lim 2xx x x +-∞→. 解:因为 ))1((3)1(2)1(1)11ln(332xo x x x x ++-=+,所以 )11ln(2x x x +-=)])1((3)1(2)1(1[3322x o x x x x x ++--=)1(3121x o x +-, 故 21)]1(3121[lim )]11ln([lim 2=+-=+-∞→∞→x o x x x x x x .5. 设)(x f 有三阶导数,且0)1(,0)(lim 2==→f x x f x ,证明在)1,0(内存在一点ξ,使0)(='''ξf . 证明: 因为 0)(lim20=→x x f x ,所以0)0(,0)0(,0)0(=''='=f f f .由麦克劳林公式得:332!3)(!3)(!2)0()0()0()(x f x f x f x f f x f ξξ'''='''+''+'+= (ξ介于0与x 之间),因此 !3)()1(ξf f '''=,由于0)1(=f ,故0)(='''ξf .§3.4函数的单调性与曲线的凹凸性1. 填空题(1) 函数)ln(422x x y -=的单调增加区间是),21()0,21(+∞-,单调减少区间)21,0()21,( --∞.(2)若函数)(x f 二阶导数存在,且0)0(,0)(=>''f x f ,则xx f x F )()(=在+∞<<x 0上是单调 增加 .(3)函数12+=ax y 在),0(∞+内单调增加,则a 0>.(4)若点(1,3)为曲线23bx ax y +=的拐点,则=a 23-,=b 29,曲线的凹区间为)1,(-∞,凸区间为),1(∞.2. 单项选择题(1)下列函数中,( A )在指定区间内是单调减少的函数. A . xy -=2),(∞+-∞ B . xy e = )0,(-∞C . x y ln = ),0(∞+D . x y sin = ),0(π(2)设)12)(1()(+-='x x x f ,则在区间)1,21(内( B ). A . )(x f y =单调增加,曲线)(x f y =为凹的 B. )(x f y = 单调减少,曲线)(x f y =为凹的 C. )(x f y =单调减少,曲线)(x f y =为凸的 D.)(x f y =单调增加,曲线)(x f y =为凸的(3))(x f 在),(+∞-∞内可导, 且21,x x ∀,当 21x x >时, )()(21x f x f >,则( D ) A. 任意0)(,>'x f x B. 任意0)(,≤-'x f x C. )(x f -单调增 D. )(x f --单调增(4)设函数)(x f 在]1,0[上二阶导数大于0, 则下列关系式成立的是( B ) A. )0()1()0()1(f f f f ->'>' B. )0()0()1()1(f f f f '>->' C. )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->' 2. 求下列函数的单调区间 (1)1--=x e y x.解:1-='x e y ,当0>x 时,0>'y ,所以函数在区间),0[+∞为单调增加; 当0<x 时,0<'y ,所以函数在区间]0,(-∞为单调减少.(2)(2y x =-解:)1(31031-='-x x y , 当1>x ,或0<x 时,0>'y ,所以函数在区间),1[]0,(+∞-∞ 为单调增加; 当01x <<时,0<'y ,所以函数在区间]1,0[为单调减少.(3))1ln(2x x y ++=解: 011111222>+=++++='xxx x x y ,故函数在),(+∞-∞单调增加.3. 证明下列不等式(1)证明: 对任意实数a 和b , 成立不等式||1||||1||||1||b b a a b a b a +++≤+++.证明:令xxx f +=1)(,则0)1(1)(2>+='x x f , )(x f 在) , 0 [∞+内单调增加. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++(2)当1>x 时, 1)1(2ln +->x x x . 证明:设)1(2ln )1()(--+=x x x x f , 11ln )('-+=xx x f ,由于当1x >时,211()0f x x x''=->, 因此)(x f '在),1[+∞单调递增, 当 1x >时, 0)1()(='>'f x f , 故)(x f 在),1[+∞单调递增, 当 1>x 时, 有0)1()(=>f x f .故当1>x 时,0)1(2ln )1()(>--+=x x x x f ,因此1)1(2ln +->x x x .(3)当 0>x 时,6sin 3x x x ->.证明:设6sin )(3x x x x f +-=, 021cos )(2=+-='x x x f ,当0>x ,()sin 0f x x x ''=->,所以)(x f '在),0[+∞单调递增, 当 0>x 时, 0)0()(='>'f x f , 故)(x f 在),0[+∞单调递增, 从而当 0>x 时, 有0)0()(=>f x f . 因此当 0>x 时,6sin 3x x x ->.4. 讨论方程k x x =-sin 2π(其中k 为常数)在)2,0(π内有几个实根. 解:设()sin ,2x x x k πϕ=-- 则()x ϕ在]2,0[π连续, 且k k -=-=)2(,)0(πϕϕ, 由()1cos 02x x πϕ'=-=,得2arccos x π=为)2,0(π内的唯一驻点.()x ϕ在2[0,arccos ]π上单调减少,在2[arccos ,]2ππ上单调增加.故k ---=242arccos )2(arccos 2πππϕ为极小值,因此)(x ϕ在]2,0[π的最大值是k -,最小值是k ---242arccos 2ππ.(1) 当,0≥k 或242arccos 2--<ππk 时,方程在)2,0(π内无实根;(2) 当0242arccos2<<--k ππ时,有两个实根;(3) 当242arccos2--=ππk 时,有唯一实根.5. 试确定曲线d cx bx ax y +++=23中的a 、b 、c 、d ,使得2-=x 处曲线有水平切线,)10,1(-为拐点,且点)44,2(-在曲线上.解: c bx ax y ++='232,b ax y 26+='',所以2323(2)2(2)062010(2)(2)(2)44a b c a b a b c d a b c d ⎧-+-+=⎪+=⎪⎨+++=-⎪⎪-+-+-+=⎩ 解得: 16,24,3,1=-=-==d c b a .6.求下列函数图形的拐点及凹或凸的区间(1)12-+=x xx y 解: 222)1(11-+-='x x y , 323)1(62-+=''x xx y ,令0=''y ,得0=x ,当1x =±时y ''不存在.当01<<-x 或1>x 时, 0>''y ,当1-<x 或10<<x 时, 0<''y .故曲线12-+=x xx y 在)1,0()1,( --∞上是凸的, 在区间和),1()0,1(+∞- 上是凹的,曲线的拐点为)0,0(.(2)32)52(x x y -=拐点及凹或凸的区间解:y '=,y ''=.当0=x 时,y y ''',不存在;当21-=x 时,0=''y .故曲线在)21,(--∞上是凸的, 在),21(+∞-上是凹的,)23,21(3--是曲线的拐点,7.利用凹凸性证明: 当π<<x 0时, πxx >2sin 证明:令πx x x f -=2sin )(, 则π12cos 21)(-='x x f , 2sin 41)(xx f -=''.当π<<x 0时, 0)(<''x f , 故函数πxx x f -=2sin )(的图形在),0(π上是凸的, 从而曲线)(x f y =在线段AB (其中)(,()),0(,0(ππf B f A )的上方,又0)()0(==πf f , 因此0)(>x f ,即πx x >2sin .§3.5 函数的极值与最大值最小值1. 填空题(1)函数xx y 2=取极小值的点是1ln 2x =-. (2) 函数31232)1()(--=x x x f 在区间]2,0[上的最大值为322)21(=f ,最小值为(0)1f =- .2.选择题(1) 设)(x f 在),(+∞-∞内有二阶导数,0)(0='x f ,问)(x f 还要满足以下哪个条件,则)(0x f 必是)(x f 的最大值?( C )A . 0x x =是)(x f 的唯一驻点B . 0x x =是)(x f 的极大值点C . )(x f ''在),(+∞-∞内恒为负D . )(x f ''不为零(2) 已知)(x f 对任意)(x f y =满足xex f x x f x --='+''1)]([3)(2,若00()0 (0)f x x '=≠,则( B )A. )(0x f 为)(x f 的极大值B. )(0x f 为)(x f 的极小值C. ))(,00x f x (为拐点D. )(0x f 不是极值点, ))(,00x f x (不是拐点(3)若)(x f 在0x 至少二阶可导, 且1)()()(lim 2000-=--→x x x f x f x x ,则函数)(x f 在0x 处( A )A . 取得极大值B . 取得极小值C . 无极值D . 不一定有极值3. 求下列函数的极值 (1) ()3/223x x x f -=. 解:由13()10f x x-'=-=,得1=x .4''31(),(1)03f x x f -''=>,所以函数在1=x 点取得极小值.(2)xx x f 1)(=.解:定义域为),0(+∞,11ln 21, (1ln )x xxy ey xx x '==-, 令0y '=得驻点x e =,当(0,)x e ∈时,0y '>,当(,)x e ∈+∞时,0y '<.因此ee e y 1)(=为极大值.4. 求14123223+-+=x x x y 的在]4,3[-上的最大值与最小值.解:(3)23, (4)132y y -==.由266120y x x '=+-=,得1=x , 2-=x .而34)2(,7)1(=-=y y , 所以最大值为132,最小值为7.5. 在半径为R 的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积V 最大. 解:设圆锥体的高为h , 底半径为r ,故圆锥体的体积为h r V 2 31π=, 由于222)(R r R h =+-,因此)2( 31)(2h Rh h h V -=π )20(R h <<, 由0)34( 31)(2=-='h Rh h V π,得34R h =,此时R r 322=. 由于内接锥体体积的最大值一定存在,且在)2,0(R 的内部取得. 现在0)(='h V 在)2,0(R 内只有一个根,故当34Rh =, R r 322=时, 内接锥体体积的最大.6. 工厂C 与铁路线的垂直距离AC 为20km , A 点到火车站B 的距离为100km . 欲修一条从工厂到铁路的公路CD , 已知铁路与公路每公里运费之比为3:5,为了使火车站B 与工厂C 间的运费最省, 问D 点应选在何处?解: 设AD x =, B 与C 间的运费为y , 则 )100(340052x k x k y -++= (1000≤≤x ), 其中k 是某一正数. 由 0)34005(2=-+='xx k y , 得15=x .由于k y x 400|0==, k y x 380|15==, 2100511500|+==x y , 其中以k y x 380|15==为最小, 因此当AD =15=x km 时, 总运费为最省.7. 宽为b 的运河垂直地流向宽为a 的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少?解: 问题转化为求过点C 的线段AB 的最大值. 设木料的长度为l , y CB x AC ==,,木料与河岸的夹角为t ,则l y x =+,且t by t a x sin ,cos ==, t b t a l sin cos += )2,0(π∈t .则ttb t t a l 22sin cos cos sin -=', 由0='l 得3tan abt =, 此时233232)(b a l +=, 故木料最长为233232)(b a l +=.§3.6 函数图形的描绘1.求23)1(+=x x y 的渐近线.解:由 -∞=+-→231)1(limx x x ,所以1x =为曲线)(x f y =的铅直渐近线. 因为 2)1(lim )(lim ,1)1(limlim 2322-=-+=-=+=∞→∞→∞→∞→x x x x y x x x y x x x x 所以2-=x y 为曲线)(x f y =的斜渐近线.2.作函数23)1(22--=x x y 的图形。
第三章 中值定理与导数的应用 例4 设n a a a a 321,,为满足
01
2)1(3121=-=-++-
-n a a a n n 的实数,试证明方程 ,0)12cos(3cos cos 21=-+++x n a x a x a n 在)2/,0(π内至少存在一个实根.
证 作辅助函数
,)12sin(1
213sin 31sin )(21x n a n x a x a x f n --+++= 显然,0)2/()0(==πf f )(x f 在]2/,0[π上连续,在)2/,0(π内可导,故由罗尔定理知, 至少存在一点),2/,0(πξ∈使
,0)(='ξf
即 0)12c o s (3c o s c o s )(21=-+++='ξξξ
ξn a a a f n 从而题设方程在)2/,0(π内至少有一个实根. 例5 设)(x f 在],[b a 上连续,在),(b a 内可导, 且
.0)()(==b f a f
证明: 存在),(b a ∈ξ,使)()(ξξf f ='成立.
证 从结论倒退分析知, 可引进辅助函数
,)()(x e x f x -=ϕ
由于,0)()(==b a ϕϕ 易知)(x ϕ在],[b a 上满足罗尔定理条件,且 ,)()()(x x e x f e x f x ---'='ϕ 因此, 在),(b a 内至少存在一点),,(b a ∈ξ使
,0)(='ξϕ
即 ,0)()(=-'--ξξξξe f e f
因,0≠-ξe 所以
).()(ξξf f ='
例9(E04) 证明当0>x 时,.)1ln(1x x x
x <+<+ 证 设),1ln()(x x f +=则)(x f 在],0[x 上满足拉格朗日定理的条件. 故
)0)(()0()(-'=-x f f x f ξ ),0(x <<ξ ,0)0(=f ,11)(x x f +=
' 从而ξ
+=+1)1ln(x x ),0(x <<ξ
又由x +<+<111ξ⇒,11111<+<+ξ
x ∴
,11x x x x <+<+ξ 即 .)1l n (1x x x
x <+<+ 例2 用切线法求方程04.19.01.123=-++x x x 的实根的近似值,使误差不超过.103- 解 令,4.19.01.1)(23-++=x x x x f 因,0)0(<f .0)1(>f 故]1,0[是一个隔离区间. 在]1,0[上,,09.02.23)(2>++='x x x f ,02.26)(>+=''x x f
)(x f '' 与)(x f 同号,∴令.10=x 用切线法计算得: 1x ;738.0)
1()1(1≈'-=f f 2x )
738.0()738.0(738.0f f '-=;674.0≈ 3x )674.0()674.0(674.0f f '-
=;671.0≈ 4x )
671.0()671.0(671.0f f '-=;671.0≈计算停止. 所得根的近似值为0.671,其误差都小于.103-。