第27章-相似复习教案
- 格式:docx
- 大小:701.46 KB
- 文档页数:3
第27章:相似一、基础知识(一)相似1.定义:形状相同的图形称为相似图形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.相似比:相似多边形对应边的比。
3.相似三角形的性质(1)对应边的比相等,对应角相等.(2)相似三角形的周长比等于相似比.(3)相似三角形的面积比等于相似比的平方.(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.4.相似三角形的判定(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等。
(3)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(4)(类似全等SSS)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
(5)(类似全等SAS)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
(6)(类似全等AAA)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(7)(类似全等HL):如果两个直角三角形的斜边及一条直角边分别对应成比例,那么这两个直角三角形相似。
5.三角形中位线定义(区别于中线):连接三角形两边中点的线段叫做三角形的中位线.三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半.7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式);2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
8.射影定理(补充知识,选讲):△ABC中,∠C=90°,AB边的高为CD,则有:CD²=AD*BD,AC=AD*AB,BC=BD*AB (二)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。
第27章《相似》全章教案27.1 图形的相似〔1〕教学目标:1、知识与技能:通过实例知道相似图形的意义. 通过对生活中的事物或图形的观察,得理性认识,从而加以识别相似的图形.2、过程与方法:通过观察、归纳等数学活动,与他人交流思维的过程和结果,能用所学的知识去解决问题.3、情感态度与价值观:在获得知识的过程中培养学习的自信心.教学重点:相似图形和相似多边形的意义.教学难点:探索相似多边形对应角相等,对应边的比相等.教学过程:一、创设情境,导入新课引导学生观察课本p24-图27.1—1每两个图形之间的相同之处与不同之处---这两个图形形状相同,大小不相同,它们叫什么图形?这两个图形只是形状相同,大小不相同,它们叫相似图形.也可以说,这两个图形相似.二、师生互动,探索新知:1、观察以下几组几何图形,你能发现它们之间有什么关系?从而得出:具有相同形状的图形叫相似形.〔出示课题——图形的相似〕2、对上面的3组图形,通过图形的缩小或放大,再利用图形的平移或旋转等变换,使它与另一个图形能够重合,从而加以验证它们是相似的图形。
归纳定义:相似图形----形状相同的两个图形叫做相似图形.3、你还见过哪些相似的图形,请举出一些例子与同学们交流.三、探究:1、思考教科书第25页的思考,哈哈镜里看到的不同镜像它们相似吗?2、观察以下图中的3组图形,它们是不是相似形?为什么?(激发学生的求知欲,为下一节课“相似图形的特征”做好准备)四、课堂练习完成课本第25页练习第1、2题。
五、课堂小结这节课你有哪些收获?六、课时作业1、根据今天所学的内容,请你收集或设计一些相似的图案.2、习题27.1第1、2题.27.1 图形的相似〔2〕教学目标:1、知识与技能:通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.2、过程与方法:经历对相似图形观察、分析、欣赏以及动手操作、画图、测量等过程,能用所学的知识去解决问题;回忆相似图形的性质、定义,得出相似三角形的定义及其基本性质。
第二十七章相似27.1 图形的相似《图形的相似》是继“轴对称、平移、旋转”之后集中研究图形形状的内容,从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系.本节课是学生在认识了全等形的基础上进行教学的,研究相似比研究全等更具一般性,相似图形、相似多边形的概念是后续学习相似三角形的基础,是空间与图形领域中的重要内容.本节课所涉及的内容来源于实际生活,为学生的数学建模能力搭建了一个平台,从中学到的不仅仅是知识、方法,还会将生活语言转化为数学语言,提高了学生的应用意识,有着承上启下、贯穿始终的作用.课题27.1 图形的相似授课人素养目标1.理解相似图形的特征,掌握相似图形的识别方法.2.了解成比例线段的含义,会判断四条线段是不是成比例线段.3.理解相似多边形的概念、性质及判定,会计算和相似多边形有关的角度和线段的长.教学重点1.理解并掌握相似图形、相似多边形的概念及特征.2.探索相似多边形的性质中的“对应”关系.教学难点能利用成比例线段的概念及相似多边形的性质进行有关计算.授课类型新授课课时教学步骤师生活动设计意图回顾1.什么是全等形?全等形的形状和大小有什么关系?2.下面两个图形是不是全等形?如何判断?通过复习全等形的概念和判定,为本节课相似形的学习做铺垫.同时,通过欣赏、识别生活中的全等图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.活动一:创设情境、导入新课【课堂引入】1.欣赏下面各组图片:(1)在空中不同高度飞行的两架型号相同的直升机;(2)大小不同的两个足球;(3)汽车和它的模型.2.你能看出上面各组图片的共同之处吗?把你的想法说给同学听听.通过对生活中形状相同的图形的观察和欣赏,从实际模型中抽象概括得出数学概念,自然地引出课题,使学生初步感受相似,同时进行美育渗透.活动二:实践探究、交流新知探究新知:1.探究相似图形的定义问题:(1)全等图形的形状和大小之间有什么关系?(2)观察上述图片,它们的形状和大小之间有什么关系?(3)你能给出相似图形的定义吗?(4)全等图形一定相似吗?相似图形一定全等吗?(5)你能归纳全等图形和相似图形之间的关系吗?(6)你能举出现实生活中一些相似图形的例子吗?师生活动:学生在教师设置的问题串下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.2.探究成比例线段的概念问题:(1)把九年级数学课本的两个邻边看作两条线段AB和CD,那么什么是这两条线段的比?1.让学生亲自观察实际生活中的图形,在教师提出的问题的引导下,进行分析、探究,根据图形特点归纳出相似图形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似图形概念的形成过程,体会数学与生活息息相关.2.学生在教师提转化,培养学生用符号语言表达数学知识的能力.活动三:开放训练、体现应用【典型例题】例(教材第25页练习第2题)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:图形(d)和图形(1)相似,图形(e)和图形(2)相似.通过经历对例题的探究过程,加深学生对相似图形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.课堂小结1.课堂小结:(1)通过本节课的学习,你有哪些收获?还有什么疑感?说给老师或同学听听.(2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第27~28页习题27.1第1,3,5,6题.学生在反思中整理知识、梳理思维,获得成功的体验,积累学习的经验,养成系统整理所学知识的习惯.板书设计27.1 图形的相似提纲挈领,重点突出.教学反思在思考中,学生总结出当求证的两个比例式的线段不在同一基本型的时候应该怎样解题,并且掌握中间比的找法.对于添加辅助线的证明比例式问题,需要“透析”题目中的条件和证明方法.从课堂练习和作业反馈上体现出学生对知识的接受还比较理想,这堂课还是比较成功的.反思教学过程和教师表现,进一步提升操作流程和自身素质.27.2 相似三角形27.2.1 相似三角形的判定第1课时平行线分线段成比例《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的,是本章的重点内容.本课时首先利用“如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.”引出两个三角形相似的定义(即三个角分别相等,三条边成比例的两个三角形相似),然后引导学生思考类比全等三角形的判定方法,对于相似三角形是否存在较为简便的方法.接下来教材编写者通过一个“探究”,由学生动手测量来探究得到平行线分线段成比例的基本事实(三条平行线截两条直线,所得的对应线段的比相等),继而将其应用于三角形中,得到“平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.”这一基本事实的推论,是进一步学习相似三角形判定的预备定理的基础.课题27.2.1 第1课时平行线分线段成比例授课人素养目标1.了解相似比的定义.2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似.3.会用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.4.通过探索平行线分线段成比例这个基本事实的过程,进一步熟悉由特殊到一般的数学思想,能把一个稍复杂的图形分成几个基本图形,锻炼识图能力和推理论证能力.教学重点平行线分线段成比例的基本事实及其推论的理解.教学难点平行线分线段成比例的基本事实及其推论的灵活应用,平行线分线段成比例的基本事实的变形. 授课类型新授课课时教学步骤师生活动设计意图回顾问题1:根据所学相似多边形的知识,你能给出相似三角形的定义吗?问题2:如果相似比为1,那么这两个三角形有什么关系?问题3:判定三角形全等,我们并不是验证六个条件,而是利用了几个简便的判定定理,那么判定三角形相似我们又能找到哪些简便的方法呢?问题1引导学生回顾旧知得出相似三角形的定义及写法.问题2、3让学生理解全等是相似的特殊情况,类比三角形全等的判定方法为我们探索三角形相似的判定方法提供方向指导.活动一:创设情境、导入新课【课堂引入】问题:如图,一组等距离的平行线截直线a所得到的线段相等,那么在直线b上所截得的线段有什么关系呢?引导学生回答问题后,教师做如下总结:一组等距离的平行线在直线a上所截得的线段相等,那么在直线b上所截得的线段也相等.以上结论是平行线等分线段的基本事实,讨论的是平行线截得线段相等的情况,如果截得的线段不相等呢?通过展示问题,由浅入深,循序渐进,为学习新知做铺垫.活动二:实践探究、交流新知【探究新知】1.探究平行线分线段成比例的基本事实教师提出问题,学生讨论问题:图1如图1,三条平行直线l1,l2,l3在直线AE上截得的线段AC,CE的长度之间存在着什么关系呢?同样在直线BF上截得的线段BD,DF的长度之间存在着什么关系呢?教师指导学生利用刻度尺先测量线段的长度,然后寻找线段AC,CE,BD,DF之间是否存在比例关系,实际验证后可以得到如下结论:由l1∥l2∥l3,ACCE=23,BDDF=23,可得ACCE=BDDF=23.仿照上例分析,可得结论:由l1∥l2∥l3,可得ACAE=BDBF=23.教师引导学生初步总结出平行线分线段成比例的基本事实,然后师生共同进行1.本环节的主要任务是推理得出平行线分线段成比例的基本事实,其中运用了先猜想、再测量、最后论证的方法,用语言把平行线分线段成比例的基本事实进行总结,使结论的得出有一定的层次性,也使学生在认识问题、理解问题时确定了一种思想方法.推理论证.师生共同归纳得出基本事实,教师板书基本事实.平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.2.探究平行线分线段成比例基本事实的推论教师将图1中的某些直线进行平移变换,使其出现图2、图3所示的位置关系,对学生提出问题:图2 图3根据基本事实补全下列比例式: 由图2,得AC CE =BD DF ,AC AE =BD BF ,CE AE =DFBF ;由图3,得AC CE =BD DF ,AC AE =BD BF ,CE AE =DFBF.解答本题应关注线段之间的对应关系,列比例式时上与下的对应关系应展现在同一条直线上,同时教师应利用比例的基本性质,指导学生对比例式进行变形训练,进而总结出平行线分线段成比例的位置规律,如上下=上下,上全=上全,下全=下全等. 教师对于图形作进一步变化:对于以上两个练习,只保留如图4所示的部分,那么就可以得到两个三角形对应边成比例的式子,可以得到什么结论呢?图4教师在由一般到特殊的演化过程中,将平行线分线段成比例的基本事实延伸到三角形中,当三角形中出现平行线时,使三角形的各边之间存在比例关系. 教师指导学生总结平行线分线段成比例的基本事实的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 3.探究三角形相似的预备定理教师提出问题,学生组内讨论解答,教师适时指导:2.本环节是对平行线分线段成比例的基本事实的变式与延伸,这部分内容将在以后的学习和应用中起到重要的指导作用,所以在探究、总结、应用的过程中,一定要注意知识的重要性,要使每一个学生都有深刻的理解与记忆. 3.学生经历观察、猜想、动手实践、总结归纳、实践应用等环节,在学习知识的过程中循序渐进,符合学生的认知规律和思维模式.通过对相似三角形的基本图形的对比理解,更能加深印象.如图5,在△ABC中,D为AB上任意一点,过点D作DE∥BC交AC于点E.(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?图5(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?思考:当DE∥BC时,△ADE与△ABC相似,可以用什么语言来概括呢?你能进行证明吗?总结判定三角形相似的预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.思考:一条直线截三角形两边延长线所得三角形与原三角形相似吗?请对比图6、图7两个图形,分析其中的联系与区别.图6 图7活动三:开放训练、体现应用【典型例题】例(教材第31页练习第1题)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,求BCCE的值.解:∵AB∥CD∥EF,∴BCCE=ADDF.又AD=AG+GD=3,DF=5,∴BCCE=35.【变式训练】1.如图,若l1∥l2∥l3,则ABAC=(PG)PH=DE(DF).本环节所设置的例题和变式非常具有代表性,既考查了平行线分线段成比例基本事实的内容及其推论,又灵活地运用转化思想实现了运用“中间比”的性质,不仅发展了学生的思维能力,还拓宽了学生的思路和视野.2.如图,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F ,且AB =6,BC =8. (1)求DEDF的值;(2)当AD =5,CF =19时,求BE 的长.解:(1)∵AD ∥BE ∥CF ,∴DE DF =AB AC =66+8=37.(2)过D 点作DM ∥AC 交CF 于M ,交BE 于N ,求出MF =14. ∵NE ∥MF ,∴NE MF =DE DF =37,∴NE =37MF =37×14=6.∴BE =BN +NE =5+6=11. 活动四:课堂检测【课堂检测】1.如图,已知AB ∥CD ∥EF ,若AC =6,CE =2,BD =3,则BF 的长为(C) A .6 B .5.5 C .4 D .4.5第1题图2.如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.第2题图提示:根据DE ∥BC 得到AD AB =AE AC ,然后根据比例的性质可计算出AE 的长为107.通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.课堂小结1.课堂小结:(1)平行线分线段成比例的基本事实是什么?推论是什么?易错点是什么?注重课堂小结,激发学生参与的主(2)目前我们有什么方法判定两个三角形相似?(3)本课两个重要的结论在探索中主要运用了哪些数学思想方法?教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第42页习题27.2第4,5题.动性,为每一个学生的发展与表现创造机会.板书设计27.2.1 相似三角形的判定第1课时平行线分线段成比例1.相似三角形的定义及有关概念.2.平行线分线段成比例定理及推论.3.相似三角形判定的预备定理.提纲挈领,重点突出.教学反思在思考中,学生总结出当求证的两个比例式的线段不在同一基本型的时候应该怎样解题,并且掌握中间比的找法.对于添加辅助线的证明比例式问题,需要“透析”题目中的条件和证明方法.从课堂练习和作业反馈上体现出学生对知识的接受还比较理想,这堂课还是比较成功的.反思教学过程和教师表现,进一步提升操作流程和自身素质.第2课时相似三角形的判定定理1,2本节课是在学习了相似多边形的概念、比例线段的有关概念及性质,并具备了有关三角形中位线和平行四边形知识后,研究相似三角形的判定定理.本节课是判定三角形相似的起始课,是本章的重点之一.一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且通过本节课的学习,还可培养学生实验、猜想、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用.因此,这节课在本章中有着举足轻重的地位.课题27.2.1 第2课时相似三角形的判定定理1,2 授课人素养目标1.了解“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”判定定理的证明过程,能运用这两个判定定理证明两个三角形相似.2.结合全等三角形的SSS和SAS的证明方法,会用类比、转化的思想证明以上两个相似三角形的判定定理.3.通过对相似三角形两个判定定理的学习,会用已知条件证明三角形相似并解决一些简单的问题.教学重点掌握两个判定定理,学会运用两个判定定理判定两个三角形相似.教学难点1.探究三角形相似的条件.2.运用两个三角形相似的判定定理解决问题.授课类型新授课课时教学步骤师生活动设计意图回顾问题:1.我们学习过哪些判定三角形全等的方法?2.全等三角形与相似三角形有怎样的关系?3.两个三角形全等有哪些简单的判定方法?由三角形全等的知识,类比思考两个三角形相似的条件能否更简单?能有哪些简单的方法?复习旧知,承前启后,回顾三角形全等的条件,用类比的思想展开思维,按顺序展开探究.活动一:创设情境、导入新课【课堂引入】问题情境:1.相似三角形是如何定义的呢?除了定义,还有什么方法可以判定两个三角问题1是本课学习的知识基础,问题2是本课探究现应用 并说明理由:(1)AB =4 cm ,BC =6 cm ,AC =8 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm.(2)∠A =120°,AB =7 cm ,AC =14 cm ,∠A ′=120°,A ′B ′=3 cm ,A ′C ′=6 cm. 解:(1)∵AB A ′B ′=412=13,BC B ′C ′=618=13, AC A ′C ′=824=13,∴AB A ′B ′=BC B ′C ′=ACA ′C ′.∴△ABC ∽△A ′B ′C ′. (2)∵AB A ′B ′=73,AC A ′C ′=146=73,∴AB A ′B ′=ACA ′C ′.又∵∠A =∠A ′,∴△ABC ∽△A ′B ′C ′. 【变式训练】1.如图,在 △ABC 和 △ADE 中,AB AD =BC DE =ACAE ,∠BAD =20°,则∠CAE 的度数为20°.2.如图,D ,E 分别是 △ABC 的边 AC ,AB 上的点,AE =1.5,AC =2,BC =3,且AD AB =34,求 DE 的长.解:∵AE =1.5,AC =2, ∴AE AC =1.52=34=ADAB,且∠EAD =∠CAB. ∴△AED ∽△ACB. ∴DE BC =34,即DE 3=34, ∴DE =94.学生对两个三角形相似的判定定理的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.活动四:课堂检测【课堂检测】1.如图,D 是 △ABC 一边 BC 上一点,连接 AD ,使△ABC ∽ △DBA 的条件是 (D)通过课堂检测,进一步巩固所学新知,同时检测学习A.AC∶BC=AD∶BD B.AC∶BC=AB∶AD C.AB2=CD·BC D.AB2=BD·BC 效果,做到“堂堂清”.课堂小结1.课堂小结:(1)本节课主要学习了哪些新知识?(2)本节课你还有哪些疑惑?说一说!教师强调:1.证明两个三角形相似的方法.2.相似三角形的判定方法与全等三角形的判定方法的联系和区别.教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第42页习题27.2第1,3题.注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会.板书设计27.2.1 相似三角形的判定第2课时相似三角形的判定定理1,21.三角形相似的判定定理:(1)三边成比例的两个三角形相似.(2)两边成比例且夹角相等的两个三角形相似.2.利用相似三角形的判定解决问题.提纲挈领,重点突出.教学反思本节课主要是探究相似三角形的判定方法1,本课教学力求使探究途径多元化,把学生利用刻度尺、量角器等作图工具做静态探究与应用“几何画板”等计算机软件做动态探究有机结合起来,让学生充分感受探究的全面性,丰富探究的内涵.另外小组合作学习的开展不仅提高了数学实验的效率,而且培养了学生的合作能力.反思教学过程和教师表现,进一步提升操作流程和自身素质.第3课时相似三角形的判定定理3本节课是初中数学九年级第二十七章第二节的内容,是初中数学四大板块中空间与图形的一部分,是相似一章的重要内容之一.既是全等三角形研究的继续,也为后面测量、相似三角的应用和研究三角函数做铺垫,还是研究圆中比例线段的重要工具,同时也是相似三角形性质的研究基础,更为其它学科和今后高中的学习打下基础,重要的是它还是中考必考的知识点.因此必须熟练掌握三角形相似的判定,并能灵活运用,显得尤为重要,相似三角形的判定的地位可见一斑,起着承前启后的作用.课题27.2.1 第3课时相似三角形的判定定理3 授课人素养目标1.了解“两角分别相等的两个三角形相似”和直角三角形相似的特殊的判定方法的证明过程,理解两角判定法和直角边斜边判定法的含义并掌握它们的数学符号表述方法,能运用两角判定法和直角边斜边判定法判定三角形相似及解决简单的问题.2.会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等问题.3.经历类比→猜想→探索→总结→应用的活动过程,进一步领悟类比的思想方法.教学重点运用两角判定法和直角边斜边判定法判定三角形相似.教学难点相似三角形判定方法的推导及应用.授课类型新授课课时教学步骤师生活动设计意图回顾请回答下列问题:1.我们学习过相似三角形的哪些判定方法?2.类比全等三角形的判定方法,猜想还会有怎样的方法判定两个三角形相似.采用类比的方法思考问题,降低知识难度,鼓励学生猜想,为学新知做好铺垫.活动一:创设情境、导入新课【课堂引入】观察猜想:学生观察自己手中的三角尺,与教师的三角尺相对照,找形状相同的一组,判断两个直角三角形是否相似.通过身边的实际问题引导学生思考、猜想,为探究问题:两个三角形相似是由什么条件得到的呢?师生活动:学生将直观印象表达出来,再进行思考,得到三个角分别相等的两个三角形相似,从而可简化为两个角分别相等即可.新知指明了方向.活动二:实践探究、交流新知探究新知:1.探究三角形相似的判定方法展示问题:如图所示,在△ABC与△A′B′C′中,若∠A=∠A′,∠B=∠B′,试猜想△ABC与△A′B′C′是否相似,并证明你的结论.师生活动:教师引导学生思考讨论,根据图形的外观,绝大多数学生会猜想两个三角形相似.根据题设条件,需要构造出符合定理条件的图形:在△ABC中,作BC的平行线,且在△ABC中截得的三角形与△A′B′C′又有着非常紧密的联系(全等),共同分析,完成证明,学生书写证明过程.证明:如图,在△ABC 的边AB上截取AD=A′B′,过点D作DE∥BC,交AC于点E,则有△ADE∽△ABC.∵∠ADE=∠B, ∠B=∠B′,∴∠ADE=∠B′.又∵∠A=∠A′,AD=A′B′,∴△ADE≌△A′B′C′.∴△ABC∽△A′B′C′.得出结论:判定定理:两角分别相等的两个三角形相似.用数学符号表示这个定理:在△ABC与△A′B′C′中,∵∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′.2.探究直角三角形相似的判定方法问题:我们知道,两个直角三角形全等可以用“HL”来判定,那么满足斜边和一条直角边成比例的两个直角三角形相似吗?在证明相似三角形的判定定理时,方法十分特别,学生理解和应用均会产生困难,教师在引导中解析,在解析中总结,学生易于接受,易于理解,能够把握判定定理的证明过程.师生总结:斜边和一条直角边成比例的两个直角三角形相似.活动三:开放训练、体现应用【典型例题】例(教材第36页练习第2题)如图,在Rt△ABC中,CD是斜边AB上的高.求证:△ACD∽△ABC.证明:∵CD是斜边AB上的高,∴∠ADC=∠CDB=90°.∴∠ACB=∠ADC=∠CDB=90°.∵∠A=∠A,∴△ACD∽△ABC.【变式训练】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,DE⊥AC.(1)图中共有几对相似三角形?(2)请选择其中的一对给予证明.解:(1)∵在Rt△ABC中,∠ACB=90°,CD⊥AB,DE⊥AC,∴∠AED=∠ACB=90°.∵∠A是公共角,∴△ADE∽△ABC.同理:△CBD∽△ABC,△ACD∽△ABC,△DCE∽△ACD,∴△ADE∽△DCE∽△CBD∽△ACD∽△ABC.∴图中共有10对相似三角形.(2)选择△CBD∽△ABC.证明:在Rt△ABC中,∵∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°.又∵∠B是公共角,∴△CBD∽△ABC.通过经历对例题的探究过程,加深学生对三角形相似的判定定理的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.活动四:课堂检测【课堂检测】1.如图,已知AB∥DE,∠AFC=∠E,则图中共有相似三角形(C)A.1对 B.2对 C.3对 D.4对通过课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂。
第27章《相似》全章教案27.1 图形的相似第一课时一、教学目标(一) 知识目标通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.(二) 能力目标通过观察、归纳等数学活动,与他人交流思维的过程和结果,能用所学的知识去解决问题.(三) 情感目标在获得知识的过程中培养学习的自信心.二、教学重点引导学生观察图形,并从中获取信息,培养他们的观察、分析及归纳能力.三、教学难点应用获得的数学知识解决生活中的实际问题.四、教学过程一、创设情境,导入新课:观察教材第36页的两组图形,你能发现它们之间有什么关系?二、师生互动,探索新知:1、观察下列几组几何图形,你能发现它们之间有什么关系?从而得出:具有相同形状的图形叫相似形.(出示课题——图形的相似)2、对(2)中的3组图形,通过图形的缩小或放大,再利用图形的平移或旋转等变换,使它与另一个图形能够重合,从而加以验证它们是相似的图形。
3、你还见过哪些相似的图形,请举出一些例子与同学们交流.三、试一试:利用课本后面的网格或格点图纸设计出几组相似的图形,并利用幻灯片加以展示,使学生在学习中获得成功的喜悦.四、探究:1、思考教科书第37页观察中的问题,哈哈镜里看到的不同镜像它们相似吗?2、观察下图中的3组图形,它们是不是相似形?为什么?(激发学生的求知欲,为下一节课“相似图形的特征”做好准备)五、课堂练习完成课本第37页练习第1、2题。
六、课堂小结这节课你哪些收获?七、课时作业1、根据今天所学的内容,请你收集或设计一些相似的图案.2、习题27.1第1、2题.课后反思:27.1 图形的相似第二课时一、教学目标(一) 知识与技能通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.(二) 过程与方法1、经历对相似图形观察、分析、欣赏以及动手操作、画图、测量等过程,能用所学的知识去解决问题;2、回顾相似图形的性质、定义,得出相似三角形的定义及其基本性质。
《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。
2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。
本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。
3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。
本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。
要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。
通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。
4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。
(3)了解两个三角形相似的概念,探索两个三角形相似的条件。
(4)了解图形的位似,能够利用位似将一个图形放大或缩小。
(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。
(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。
4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。
第二十七章相似第11 课时单元复习【教学目标】1.疏通本章知识脉络,形成知识结构.2.熟练掌握相似三角形的判定和性质并灵活运用相应的判定和性质解决实际问题.3.提升对知识的归纳整理能力,领会分类思想、方程思想方法的应用.【教学重难点】教学重点是:相似三角形的性质与判定及其应用.教学难点是:相似三角形的性质与判定及其应用.【教学过程】1.已知四边形EFGH相似于四边形KLMN,各边长如图所示,求∠E,∠G,∠N 的度数以及x,y, z 的值.解:∵四边形HGFE∽四边形LMNK,∴∠E=∠K=67°,∠G=∠M=107°,∠H=∠L=143°,∠N=360°﹣∠K﹣∠L﹣∠M=360°﹣67°﹣143°﹣107°=43°.EF=FG=GH=HE,KN NM ML KLx = 10=6=4,∴35 z y 10解得x=14,y=15,z=25.思考:如果两个多边形仅有对应角相等或者对应边成比例它们相似吗?2.如图,直线AB∥CD∥EF,若BD:DF=3:4,AC=3.6,则AE 的长为( D )(A) 4.8 (B) 6.6 (C) 7.6 (D) 8.43.6 34思考:AC=3.6 改成AB=3.6,能否求出CD 的长?请描述平行线分线段成比例的基本事实.两条直线被一组平行线所截,所得的对应线段成比例.3.利用直线MN 和△ABC 作出另一个三角形与△ABC 相似.DAEB C相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.思考:三种画法都使得△ADE 与△ABC 相似吗?还有其他作法吗?AD AE若添加:=两边成比例且夹角相等的两个三角形相AC AB似.AD AE DE若添加:==三边成比例的两个三角形相似.AC AB CB若添加:∠ADE=∠ACB 或∠AED=∠ABC 两角分别相等的两个三角形相似.4.如图,在▱ABCD 中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F.如果DE :EC=2 :3,那么△DEF与△CEB的相似比为2:3,FG和BH分别为△DEF 与△CEB 的高,FG : BH= 2 :3,对应线段关系.通过第3 题的回顾,利用一道题目帮助学生回顾相似三角形的判定.HG通过第 4 题的复习,帮助同学们回忆起相似三角形性质的主要内容.S △DEF :S △ABF = 4 :9相似三角形的性质:相似三角形对应线段的比,对应高的比, 对应中线的比,对应角平分线的比,周长比都等于相似比.5.如图,在平面直角坐标系中,点 A 在第一象限内,点 B 在x 轴正半轴上,△OCD 是以点 O 为位似中心,在第三象限内与△OAB 的相似比为 1:3 的位似图形.若点 C 的坐标为(-3,-2) 则点 A 的坐标为 (9,6) .通过第 5 题的复习,帮助同学明晰位似在平面直角坐标系中,位似中心为原点时点的坐标特征关系.一般地,在平面直角坐标系中,如果以原点为位似中心,画 出一个与原图形相似的图形,使它与原图形的相似比为 k , 那么与原图形上的点(x ,y )对应的位似图形上的点的坐标 为(kx ,ky )或(-kx ,-ky ).二、整理结构梳理本章知识结构,重点理清所学知识及它们之间的关系.例题 1 为相似三角形的判定 和相似三角形的性质的综合三典型例题例题 1.如图,CD 是⊙O 的弦,AB 是直径,且 CD ⊥AB ,垂足为 P(1)求证:PC 2 = PA · PB ;(2)若 BC =6,AC =8,求 AP 的长.应用,并考查了圆的直径和圆周角的关系,综合性较强又比较简单的题目,意在让学生对相似三角形判定和性质能灵活运用.解:(1)∵AB 是直径,∴∠ACB =90°,∴ ∠A + ∠B = 90°.又 ∵CD ⊥AB ,∴∠CPB =90°, ∴∠PCB +∠B =90°. ∴∠A =∠PCB ,又∵∠APC=∠CPB =90°, ∴ △APC ∽△CPB.AP CP 即 PC = PB ,∴ PC 2 = AP · PB .(2)在 Rt △ABC 中, AB =62 + 82 = 10 ,∵∠A =∠A ,∠APC =∠ACB =90°, ∴ △APC ∽△ACB. AC AP ∴=ABAC .∴ AC 2 = AB · PA ∴AP=6.4.例题 2 如图,小明为了测量高楼 MN 的高度,在离点 N 18 米的点 A 处放了一个平面镜,小明沿 NA 方向后退 1.5 米到点 C ,此时从镜子中恰好看到楼顶的点 M ,已知小明的眼睛 (点 B )到地面的高度 BC 是 1.6 米,则高楼 MN 的高度是多少?.解:∵BC ⊥CA ,MN ⊥AN ,∴∠C =∠MNA =90°, ∵∠BAC =∠MAN , ∴△BCA ∽△MNA.∴ BC = ACMNAN .1.6 1.5 即 = MN 18,∴ MN =19.2.∴高楼 MN 的高度是 19.2 米.例题 2.相似三角形的判定和性质在实际问题中的应用, 本单元这是一个重点.。
《相似三角形》复习课教案知识与技能:1.掌握平行线分线段成比例定理及推论,会用平行线判定三角形相似.2.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.3.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.4.了解图形的位似,能够利用位似将一个图形放大或缩小.5.会利用图形的相似解决一些简单实际问题.过程与方法:1.结合相似图形性质和判定方法的探索和证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的能力.2.进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力.3.通过坐标系下位似图形的画法,进一步体会数形结合思想在数学中的应用.4.通过探究相似三角形在实际问题中的应用,体会建模思想,提高分析问题、解决问题的能力,培养数学应用意识.情感态度价值观:1.通过建立与三角形相似有关的数学模型解决实际问题,培养学生数学建模思想,提高学生运用数学知识解决实际问题的能力.2.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.3.在类比、猜想、证明的探索过程中,让学生体验成功的快乐,同时培养学生严谨的求学精神.4.通过建立数学模型解决实际问题,培养学生积极进取的精神,增强学习数学的自信心.【重点】1.理解并掌握相似三角形的判定和性质,并能应用相似三角形的判定定理和性质进行有关计算.2.能够利用位似将一个图形放大或缩小.3.会利用图形的相似解决一些简单实际问题.【难点】1.相似三角形的判定和性质的综合运用.2.建立数学模型,利用相似三角形解决实际问题.教学过程:一、知识总结:1、相似图形形状相同的图形叫做相似图形.两个图形相似,其中一个图形可以看成是由另一个图形放大或缩小得到的.当两个图形的形状相同,大小也相同时,这两个图形也是相似图形,它们是特殊的相似图形:全等图形.2、成比例线段对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a b =c d(即ad =bc ),我们就说这四条线段成比例,或者说这四条线段是成比例线段,简称比例线段.3、相似多边形的概念与性质两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形,相似多边形的对应边的比叫做相似比.相似多边形的性质:相似多边形的对应角相等,对应边成比例. 4、相似三角形的定义若两个三角形的三个角分别相等,三条边成比例,则这两个三角形相似.相似三角形的定义是由相似多边形的定义迁移得到的. 相似三角形的表示:如果△ABC 与△A'B'C'相似,就记作△ABC ∽△A'B'C',符号“∽”读作“相似于”,利用“∽”表示两个图形相似时,对应顶点要写在对应的位置上,主要目的是为了指明对应角、对应边.两个三角形相似,对应边的比叫做相似比,相似比是有顺序的,若△ABC 与△A'B'C'的相似比为k ,则△A'B'C'与△ABC 的相似比为1k. 5、平行线分线段成比例的基本事实两条直线被一组平行线所截,所得的对应线段成比例.把这个基本事实应用到三角形中,可以得到:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 6、相似三角形的判定1.利用平行线判定三角形相似: 平行于三角形一边的直线截其他两边(或两边的延长线),所构成的三角形与原三角形相似. 符合这一特征的图形有两种:“A ”型和“X ”型.2.判定定理1:三边成比例的两个三角形相似.3.判定定理2:两边成比例且夹角相等的两个三角形相似.4.判定定理3:两角分别相等的两个三角形相似.5.直角三角形相似的判定:斜边和直角边对应成比例的两个直角三角形相似. 7、相似三角形的性质1.相似三角形的对应边成比例、对应角相等.2.相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比.3.相似三角形的周长比等于相似比.4.相似三角形的面积比等于相似比的平方. 8、应用相似三角形解决实际问题相似三角形的知识在实际生产和生活中有着广泛的应用,这一应用建立在数学建模思想和数形结合思想的基础上,把实际问题转化为数学问题,通过求解数学问题达到解决实际问题的目的. 9、位似图形1.定义: 两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这点叫做位似中心.2.作位似图形的一般步骤:(1)确定位似中心,画位似图形时,位似中心可能在图形的内部,也可能在图形的外部,还可能在图形的边上.(2)找出关键点(多边形常取顶点):根据相似比,确定能代表所作的位似图形的关键点. (3)顺次连接所得的关键点,得到新的图形. (4)写出作图的结论.3.位似图形的坐标变化规律:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k ,那么原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(-kx ,-ky ). 二、典型例题:1.如图所示,当满足下列条件之一时,都可判定 △ADC ∽△ACB .(1) ; (2) ;(3)2、 △ABC 的三边长分别为 5,12,13,与它相似的 △DEF 的最小边长为 15,则 △DEF 的其他两条 边长为 .3、如图,△ABC 中,AB=9,AC=6,点 E 在 AB 上 且 AE=3,点 F 在 AC 上,连接 EF ,若 △AEF 与 △ABC 相似,则 AF = .4. 如图,在 □ABCD 中,点 E 在边 BC 上,BE : EC =1 : 2,连接 AE 交 BD 于点 F ,则 △BFE 的面积与 △DFA 的面积之比为ADE C BBCAE5. 如图,CD 是 ⊙O 的弦,AB 是直径,CD⊥AB,垂 足为 P ,求证:PC2 = PA · PB.应用:例1 如图,△ABC 是一块锐角三角形材料,边 BC =120 mm ,高 AD =80 mm ,要把它加工成正方形零件,使正方形的一边在 BC 上,其余两个顶点分别在 AB 、AC 上,这个正方形零件的边长是多少?例2 如图,△ABC 是等边三角形,CE 是外角平分线,点 D 在 AC 上,连接 BD 并延长与 CE 交于点 E.·ACDOP DMEGHABCFA(1) 求证:△ABD ∽△CED;(2) 若 AB = 6,AD = 2CD ,求 BE 的长例3 已知:在 △ABC 中,以 AC 边为直径的 ⊙O 交BC 于点 D ,在劣弧上取一点 E 使 ∠EBC =∠DEC,延长 BE 依次交 AC 于点 G ,交 ⊙O 于 H . (1) 求证:AC⊥BH;例1 如图,某一时刻一根 2 m 长的竹竿 EF 的影长 GE 为 1.2 m ,此时,小红测得一棵被风吹斜的柏树与地面成 30°角,树顶端 B 在地面上的影子点 D与 B 到垂直地面的落点 C 的距离是 3.6 m ,求树 AB 的长.ABCD GE OH2m1.23.6三、课题小结:四、作业布置:练习题小试卷五、板书设计:1、知识点2、专题1:相似三角形的概念、判定、性质3、专题2、应用4、位似。
第27章相似教案篇一:第27章相似全章教案初三数学九(下)第二十七章:相似第1课时图形的相似(1)教学目标:1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念. 2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题. 3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 认识图形的相似.教学难点: 理解相似图形概念.一. 创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图)( 课本图)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动: 学生观察思考,小组讨论回答;二. 通过练习巩固相似图形的概念活动3 练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三. 小结巩固活动3(1) 谈谈本节课你有哪些收获. (2) 课外作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的. 2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。
课后反思:第2课时图形的相似(2)教学目标:1、知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理。
第27章相似小结【教学任务分析】教学目标知识技能1.加深理解比例的基本性质、线段的比、成比例线段,理解图形的相似、位似等概念和性质;2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.过程方法1.经历知识探究的过程,使学生将实际问题转化为相似三角形这个数学模型,达到熟练、灵活使用;在解决实际问题的过程中,提升学生建立数学模型的水平.2.经历对图形的观察、探究、交流、归纳的的过程,提升同学们的画图水平和对图形的感知意识.情感态度在教学活动中发展学生的转化意识和探究合作交流的习惯;更进一步地体会相似三角形的实际应用价值;让学生深刻地体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受;提升学生对图形的感知水平,发展学生的审美意识.重点利用相似三角形的知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点如何把实际问题抽象为相似三角形、位似形这个数学模型.【教学环节安排】环节教学问题设计教学活动设计知识回顾1、相似三角形定义:_________________________.2、判定方法:__________________________3、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于;(对应线段包括哪几种主要线段?)(3)周长之比等于;(4)面积之比等于.4、相似三角形中的基本图形.(1)平行型(X型,A型):(2)交错型;(3)旋转型;(4)母子三角形.5、位似形的性质:.8、将一个图形按一定的比例放大或缩小的步骤为:.教师引入课题后出示问题组;学生自主完成,教师深入学生中查看完成的情况.记录下所出现的问题,以便集中处理.教师要求学生在做题的同时总结解决每个问题所使用的知识点、方法及规律.找学生展示学习成果.教师给与点评和分析,同时就刚刚检查过程中发现的问题处理好,就本单元所用知识一并总结.本环节的知识总结:1.相似三角形的性质:(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的周长等于相似比;(4)相似三角形的面积等于相似比的平方;(5)相似三角形的对应边上的高线、对应边上的中线、对应角的平分线的比等于相似比.3.相似三角形的判定;4.位似的定义与性质.综合应用例1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.例2如图,在等腰三角形△ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形,S,R分别在AB,AC上,SR与AD相交于点E.(1)△ASR与△ABC相似吗?为什么?(2)你能得到哪些比例线段?(3)求正方形PQRS的边长.教师提出问题;学生积极的思考、讨论整理出解决此题的思路.教师应注意学生对相似三角形判定的思路,方法.教师即时地鼓励和点评并最后总结此题的答案.【分析】(1)欲证△ADF∽△DEC,因为∠AFE=∠B,所以结合四边形ABCD为平行四边形,可得∠C=∠AFD,易得∠ADF=∠CED,故得证;(2)由△ADF∽△DEC,可得CDAFDEAD=欲求AF,只要求得DE即可,在Rt△ADE中DE=63)33(2222=+=+AEAD从而求得AF=32.教师出例如2学生尝试独立完成;教师展示个别同学的成果.矫正补偿如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;教师提出问题,学生开始解答.对于问题2,学习小组可展开讨论,最后小组推举出代表表达解答此题的思路.教师听取后,即时地补充、完善、鼓励,最后给出题目的详细讲解.教师出示,点拨解决思路,学生书写解题的过程,并总结解决此题所用到的知识点有哪些.完善整合1.小结与反思请大家总结一下,你们本节课的收获?(通过本节课的学习,你都能够解决日常生活中的哪些问题了?)2.作业布置:必做题:课本复习题27第10,11题.教师提出问题;学生积极发言,教师即时鼓励,并作补充和完善.学生认真完成作业,进一步巩固知识.。
《第27章相似三角形》复习(教学设计)《第27章相似》复习一、诱导复习1.导入课题通过对本章的学习,你学习了哪些知识?它们之间有何关联?重点是什么?如何运用这些知识解决问题呢?(板书课题)2.复习目标(1)疏通本章知识,弄清知识脉络.(2)进一步熟悉相似三角形的判定及其性质,并能运用这些判定和性质解决一些相应的问题.(3)知道什么是位似,能利用位似将一个图形放大或缩小,知道位似变换的点的坐标变化规律.3.学习重、难点重点:相似三角形的判定和性质、位似图形的性质.难点:相似三角形的判定和性质的应用.二、分层复习1.复习指导(1)复习内容:教材P24~P59.(2)复习时间:10分钟.(3)复习方法:阅读课本,运用图表梳理本章知识.(4)复习参考提纲:①形状相同的两个图形,叫做相似图形, 当相似比等于1时,这两个图形全等 .相似多边形的对应角相等,对应边成比例 .②相似三角形有哪些判定方法?又有哪些性质?......abc⎧⎪⎨⎪⎩三边成比例的两个三角形相似判定方法两边成比例且夹角相等的两个三角形相似两角分别相等的两个三角形相似....ab⎧⎨⎩相似三角形对应线段的比等于相似比性质相似三角形面积的比等于相似比的平方③什么叫位似?位似与相似有何关系?位似变换的点的坐标有何规律?两个图形相似且对应顶点的连线交于一点,对应边互相平行,像这样的两个图形叫做位似图形.位似图形一定是相似图形,相似图形不一定是位似图形.在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标是(kx,ky)或(-kx,-ky).④试画本章知识结构框图.2.自主复习:学生参考复习指导进行复习.3.互助复习(1)师助生:①明了学情:明了学生对本章知识的掌握情况.②差异指导:指导学生画知识结构框图,理顺知识脉络.(2)生助生:小组交流、研讨.4.强化复习:师生互动梳理知识,画知识结构框图.1.复习指导(1)复习内容:典例剖析、考点跟踪.(2)复习时间:12分钟.(3)复习方法:小组交流协作.(4)复习参考提纲:①如图,已知AB∥CD∥EF,AF交BE于点H,下列结论错误的是(C)A.BH AHHC HD= B.AD BCDF CE= C.HC HDHE DF= D.AF BEDF CE=第①题图第②题图第③题图②如图,AC⊥BC,∠ADC=90°,∠1=∠B,若AC=5,AB=6,求AD的长. ∵AC⊥BC,∴∠ADC=∠ACB=90°,又∵∠1=∠B,∴△ADC∽△ACB.∴AD AC AC AB=,即556AD=,解得 AD=256.③如图,四边形ABCD是平行四边形,则图中与△DEF相似的三角形共有(B)A.1个B.2个C.3个D.4个④如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,求证:AD·AE=AB·AC.∵AE是直径,AD⊥BC,∴∠ABE=∠ADC=90°,又∵∠E=∠C,∴△ADC∽△ABE.∴AD ABAC AE=,即AD·AE=AB·AC.⑤如图,小明为测量学校操场上小树CD的高,他站在教室里的A点处,从教室的窗口望出去,恰好能看见小树的整个树冠HD.经测量,窗口高EF=1.2 m,树干高CH=0.9 m,A点距墙根G 1.5 m,C点距墙根G 4.5 m,且A、G、C三点在同一直线上.请根据上面的信息,帮小明计算出小树CD的高.∵FG∥DC,∴△BFE∽△BDH.∴FE AG DH AC=.即12151545....DH=+,解得 DH=4.8(m).∴CD=CH+HD=0.9+4.8=5.7(m).即小树CD的高为5.7 m.2.自主复习:学生参考复习指导进行复习.3.互助复习(1)师助生:①明了学情:明了学生复习参考提纲的解题情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:同桌之间交流、研讨.4.强化复习:相似三角形的判定和性质的应用.三、评价1.学生学习的自我评价:在这节课的学习中,你有哪些新的认识和收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度,积极主动性,小组交流协作情况及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时是全章的复习课,教学时先由师生共同回顾本章的知识,建立全章的知识框架图,然后由学生提出有关疑问,教师予以解答.本章的核心是相似三角形的判定以及相似三角形的有关性质.在相似三角形的判定定理证明中,因为涉及了构造全等三角形作为中介,学生不太习惯,所以在进行本章复习时应注意引导学生进行针对性训练,并分析证明思路,引导学生进行转化,帮助学生克服学习困难.一、基础巩固(70分)1.(10分)如图,在大小为4×4的正方形网格中,是相似三角形的是(C )A.①和②B.②和③C.①和③D.②和④2.(10分)如图, 小李打网球时, 球恰好打过网, 且落在离网4 m 的位置上, 则球拍击球的高度h 为(D)A.0.6 mB.1.2 mC.1.3 mD.1.4 m3.(10分)在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形△A′B′C′,使△ABC 与△A′B′C′的相似比等于12,则点A′的坐标为331122,⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或,. 4.(20分)李华要在报纸上刊登广告,一块10 cm×5 cm 的长方形版面要支付180元的广告费,如果她要把版面的边长扩大为原来的3倍,要支付多少广告费?(假设单位面积广告费相同)解:将边长扩大3倍后,面积扩大为原来的9倍.所以要支付广告费:180×9=1620(元).5.(20分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F.求证:(1)△ACB ∽△DCE ;(2)EF ⊥AB.证明:(1)∵32AC BC DC EC ==,∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠B=∠E,又∵∠E+∠CDE=90°,∠BDF=∠CDE,∴∠B+∠BDF=90°,∴∠BFD=90°,即EF⊥AB.二、综合应用(20分)6.(20分)如图, △ABC是一张锐角三角形的硬纸片, AD是边BC上的高, BC=40 cm, AD=30 cm, 从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上, 顶点G,H分别在AC,AB上,AD与HG 的交点为M.求这个矩形EFGH的周长.解:设HE为x,则HG为2x.∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴HG AMBC AD=,即2304030x x-=,解得x=12.∴矩形EFGH的周长为(12+2×12)×2=72(cm).三、拓展延伸(10分)7.(10分)如图所示,四边形ABCD是以O为圆心,AB为直径的半圆的内接四边形,对角线AC、BD相交于点E.(1)求证:△DEC∽△AEB;(2)当∠AED=60°时,求△DEC与△AEB的面积比.(1)证明∵∠BDC=∠BAC,∠DEC=∠AEB,∴△DEC∽△AEB.(2)解:∵AB是直径,∴∠ADB=90°,又∵∠AED=60°,∴∠DAC=30°,∴12 DEAE=,∴14DECAEBSS∆∆=.。
第 课时 27.1图形的相似(一)一、教学目标1. 理解并掌握两个图形相似的概念.2. 了解成比例线段的概念,会确定线段的比.二、重点、难点1. 重点:相似图形的概念与成比例线段的概念.2. 难点:成比例线段概念.3. 难点的突破方法(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是...相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d 成比例,记作d c b a =或a:b=c:d ;⑤若四条线段满足dc b a =,则有ad=bc (为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc ,则有d c b a =,或其它七种表达形式). 三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m 、cm 、mm 三种不同的长度单位,求得的ba 的值相等,使学生明确:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求线段的比的题,要使学生对比例尺有进一步的认识:比例尺=实距图距实际距离图上距离=,而求图上距离与实际距离的比就是求两条线段的比. 四、课堂引入1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P36引入.(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和CD ,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.3.成比例线段:对于四条线段a,b,c,d ,如果其中两条线段的比与另两条线段的比相等,如d c b a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作d c b a =或a:b=c:d ; (4)若四条线段满足dc b a =,则有ad=bc .五、例题讲解例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )分析:因为图A 是把图拉长了,而图D 是把图压扁了,因此它们与左图都不相似;图B 是正六边形,与左图的正五边形的边数不同,故图B 与左图也不相似;而图C 是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C 与左图相似,故此题应选C.例2(补充)一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是多少?(1)如果a=125cm ,b=75cm ,那么长与宽的比是多少?(2)如果a=1250mm ,b=750mm ,那么长与宽的比是多少?解:略.(35b a =) 小结:上面分别采用m 、cm 、mm 三种不同的长度单位,求得的b a 的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm ,求北京到上海的实际距离大约是多少km ?分析:根据比例尺=实际距离图上距离,可求出北京到上海的实际距离. 解: 略答:北京到上海的实际距离大约是1120 km .六、课堂练习1.教材P37的观察.2.下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的.3.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm ,宽是_______cm ; (大)长是_______cm ,宽是_______cm ;(2)(小)=长宽 ;(大)=长宽 . (3)你由上述的计算,能得到什么结论吗?(答:相似的长方形的宽与长之比相等)4.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是多少?5.AB 两地的实际距离为2500m ,在一张平面图上的距离是5cm ,那么这张平面地图的比例尺是多少?七、课后练习1.观察下列图形,指出哪些是相似图形:(答:相似图形分别是:(1)和(8);(2)和(6);(3)和(7) )2.教材P37练习1、2.3.教材P40 练习1与习题1 .教学反思第 课时 27.1 图形的相似(二)一、教学目标1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、重点、难点1.重点:相似多边形的主要特征与识别.2.难点:运用相似多边形的特征进行相关的计算.3.难点的突破方法(1)判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似(见例1),也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识.(2)由相似多边形的特征可知,如果已知两个多边形相似,就等于知道它们的对应角相等,对应边的比相等(对应边成比例),在计算时要能灵活运用.(3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数).三、例题的意图本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2是教材P39的例题,它主要考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用(使用方程思想)的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以巩固相似多边形的性质.四、课堂引入1.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.2.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.3.【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.五、例题讲解例1(补充)(选择题)下列说法正确的是()A.所有的平行四边形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.例2(教材P39例题).分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.解:略例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:∵ 四边形ABCD 与四边形A 1B 1C 1D 1相似,∴ AB :BC :CD :DA= A 1B 1:B 1C 1:C 1D 1:D 1A 1.∵ A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,∴ AB :BC :CD :DA= 7:8:11:14.设AB=7m ,则BC=8m ,CD=11m ,DA=14m .∵ 四边形ABCD 的周长为40,∴ 7m+8m+11m+14m=40.∴ m=1.∴ AB=7,则BC=8,CD=11,DA=14.六、课堂练习1.教材P40练习2、3.2.教材P41习题4.3.(选择题)△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ). A .32 B .23 C .52 D .94 4.(选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个5.已知四边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形A 1B 1C 1D 1的最短边的长是6cm ,那么四边形A 1B 1C 1D 1中最长的边长是多少?七、课后练习1. 教材P41习题3、5、6.2.如图,AB ∥EF ∥CD ,CD=4,AB=9,若梯形CDEF 与梯形EFAB相似,求EF 的长.※3.如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a :b 的值. (2:1)教学反思第 课时 27.2.1 相似三角形的判定(一)一、教学目标1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.二、重点、难点1.重点:相似三角形的定义与三角形相似的预备定理.2.难点:三角形相似的预备定理的应用.3.难点的突破方法(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,A C CA C B BC B A AB ''=''=''每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):如△ABC ∽△A ′B ′C ′的相似比k A C CA C B BC B A AB =''=''='',那么△A ′B ′C ′∽△ABC 的相似比就是k1CA A C BC C B AB B A =''=''='',它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解; (5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.三、例题的意图本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.四、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中,如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且k A C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比.反之如果△ABC ∽△A ′B ′C ′,则有∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且A C CA C B BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P42的思考,并引导学生探索与证明.3.【归纳】三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.五、例题讲解例1(补充)如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD 、DC 的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD 与DC 的长.解:略(AD=3,DC=5)例2(补充)如图,在△ABC 中,DE ∥BC ,AD=EC ,DB=1cm ,AE=4cm ,BC=5cm ,求DE 的长.分析:由DE ∥BC ,可得△ADE ∽△ABC ,再由相似三角形的性质,有AC AE AB AD =,又由AD=EC 可求出AD 的长,再根据ABAD BC DE =求出DE 的长. 解:略(310DE =). 六、课堂练习1.(选择)下列各组三角形一定相似的是( )A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形2.(选择)如图,DE ∥BC ,EF ∥AB ,则图中相似三角形一共有( )A .1对B .2对C .3对D .4对3.如图,在□ABCD 中,EF ∥AB ,DE :EA=2:3,EF=4,求CD的长. (CD= 10)七、课后练习1.如图,△ABC ∽△AED, 其中DE ∥BC ,写出对应边的比例式.2.如图,△ABC ∽△AED ,其中∠ADE=∠B ,写出对应边的比例式.3.如图,DE ∥BC ,(1)如果AD=2,DB=3,求DE :BC 的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE 和BC 的长.教学反思第 课时 27.2.1 相似三角形的判定(二)一、教学目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1. 重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法(1)关于三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解.(2)判定方法1的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法.(3)讲判定方法1时,要扣住“对应”二字,一般最短边与最短边,最长边与最长边是对应边.(4)判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA 条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.(5)要让学生明确,两个判定方法说明:只要分别具备边或角的两个独立条件——“两边对应成比例,夹角相等”或“三边对应成比例”就能证明两个三角形相似.(6)要让学生学会自觉总结如何正确的选择三角形相似的判定方法:这两种方法无论哪一个,首先必需要有两边对应成比例的条件,然后又有目标的去探求另一组条件,若能找到一组角相等,而这组对应角又是两组对应边的“夹角”时,则选用判定方法2,若不是“夹角”,则不能去判定两个三角形相似;若能找到第三边也成比例,则选用判定方法1.(7)两对应边成比例中的比例式既可以写成如C A AC B A AB ''=''的形式,也可以写成C A B A AC AB ''''=的形式. (8)由比例的基本性质,“两边对应成比例”的条件也可以由等积式提供.三、例题的意图本节课安排的两个例题,其中例1是教材P46的例1,此例题是为了巩固刚刚学习过的两种三角形相似的判定方法,(1)是复习巩固“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法;(2)是复习巩固“三组对应边的比相等的两个三角形相似” 的判定方法.通过此例题要让学生掌握如何正确的选择三角形相似的判定方法.例2是补充的题目,它既运用了三角形相似的判定方法2,又运用了相似三角形的性质,有一点综合性,由于学生刚开始接触相似三角形的题目,而本节课的内容有较多,故此例题可以选讲.四、课堂引入1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC 与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系? 2.(1)提出问题:首先,由三角形全等的SSS 判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领学生画图探究;(3)【归纳】三角形相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似.3.(1)提出问题:怎样证明这个命题是正确的呢?(2)教师带领学生探求证明方法.4.用上面同样的方法进一步探究三角形相似的条件:(1)提出问题:由三角形全等的SAS 判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?(2)让学生画图,自主展开探究活动.(3)【归纳】三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似.五、例题讲解例1(教材P46例1)分析:判定两个三角形是否相似,可以根据已知条件,看是不是符合相似三角形的定义或三角形相似的判定方法,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边.解:略※例2 (补充)已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长. 分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出ACCD CD AB =,结合∠B=∠ACD ,证明△ABC ∽△DCA ,再利用相似三角形的定义得出关于AD 的比例式ADAC AC CD =,从而求出AD 的长. 解:略(AD=425). 六、课堂练习1.教材P47.2.2.如果在△ABC 中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看?3.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△DEF .七、课后练习1.教材P47.1、3.2.如图,AB•AC=AD•AE ,且∠1=∠2,求证:△ABC ∽△AED .※3.已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD •AD ,求证:△ADC ∽△CDP .教学反思第 课时 27.2.1 相似三角形的判定(三)一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法3的运用.3.难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.(3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似.三、例题的意图本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程.并让学生掌握遇到等积式,应先将其化为比例式的方法.例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础.四、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC 中,点D 在AB 上,如果AC 2=AD •AB ,那么△ACD 与△ABC 相似吗?说说你的理由.(3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD=∠B ,那么△ACD 与△ABC 相似吗?——引出课题.(4)教材P48的探究3 .五、例题讲解例1(教材P48例2).分析:要证PA •PB=PC •PD ,需要证PBPC PD PA =,则需要证明这四条线段所在的两个三角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似.证明:略(见教材P48例2).例2 (补充)已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=310). 六、课堂练习1.教材P49的练习1、2.2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .3.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.七、课后练习1. 已知:如图,△ABC 的高AD 、BE 交于点F . 求证:FDEF BF AF =.2.已知:如图,BE 是△ABC 的外接圆O 的直径,CD 是△ABC 的高.(1)求证:AC •BC=BE •CD ;(2)若CD=6,AD=3,BD=8,求⊙O 的直径BE 的长.教学反思。
第27章相似教案篇一:第27章相似全章初三数学九(下)第二十七章:相似第1课时图形的相似(1)教学目标: 1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念. 2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题. 3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 认识图形的相似.教学难点: 理解相似图形概念.一. 创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2) 师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形? 学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书) 形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2 思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动: 学生观察思考,小组讨论回答;二. 通过练习巩固相似图形的概念活动3 练习问题: 1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗? 2.如图,图形a~f 中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题. 教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三. 小结巩固活动3 (1) 谈谈本节课你有哪些收获. (2) 课外作业 1、下列说法正确的是() A.小明上幼儿园时的照片和初中毕业时的照片相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的. 2、填空题 1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。