高炉炉体设计
- 格式:doc
- 大小:1014.00 KB
- 文档页数:18
内蒙古科技大学毕业设计说明书.内蒙古科技大学本科生毕业设计说明书题目:包头地区原料条件下1500m3高炉本体设计学生姓名:学号:专业:冶金工程班级:冶金09-1指导教师:摘要高炉炼铁是获得生铁的主要手段,高炉是炼铁的主要设备,高炉本体设计是炼铁厂设计的基础。
本着优质、高产、低耗和对环境污染小的方针,长寿与高效是高炉设计与生产所追求的目标。
本设计说明书进行的详细的设计及计算,同时结合国内外一些大型高炉的先进生产操作经验及相关的数据。
力求设计的高炉做到高度机械化、自动化和大型化。
以期达到最佳的生产效益。
本设计为1500m3高炉本体设计,所设计的炼铁高炉采用的高径比为2.78,高炉的有效利用系数为2.3t/(m3٠d)。
车间采用岛式布置,出铁场采用圆形出铁场。
其炉底和炉缸采用的先进的“陶瓷杯”技术来砌筑,从而达到了隔热保温、减少热损、保护炭砖的目的。
炉腹部位用耐火度较高的铝碳转,炉腰和炉身下部用抗渣和防震较好的碳化硅砖,而炉身上部和炉喉用抗刷和抗侵蚀较好的高铝砖。
高炉冷却方法采用了炉壳喷水冷却,和板壁结合的方式达到冷却效果,其中板壁结合中用到的冷却壁有光面冷却壁、第三代和第四代冷却壁。
合适的钢结构和高炉基础设计保证了高炉的正常冶炼。
关键词高炉;炉衬;冷却系统;钢结构AbstractBlast furnace iron making is the main means for pig iron, the main equipment of iron making is blast furnace, blast furnace design of ontology is the foundation of the iron mill design. In line with high quality, high yield, low consumption and pollution to the environment policy of small, long life and high efficiency is the goal of the design and production of the blast furnace. This design manual for detailed design and calculation, at the same time, combined with some large blast furnace at home and abroad advanced production operation experience and related data. Strive to design blast furnace of high mechanization, automation and large. In order to achieve the best production efficiency.This design for 1500 m3 blast furnace body design, The design of the blast furnace high aspect ratio of 2.78,the effective utilization of blast furnace coefficient of 2.3t/(m3٠d).Workshop uses the island type layout cast house using circular cast house Blast furnace bottom and hearth uses advanced technology to building "ceramic cup", so as to achieve the heat insulation heat preservation, reduce heat loss and protect the carbon brick. Furnace belly with high refractoriness of aluminum carbon, bosh and furnace body with good slag resistance and shock-proof carborundum brick, The furnace body and brush with resistance and erosion resistance furnace throat good high alumina brick.Blast furnace cooling method USES a furnace shell water spray cooling, cooling effect and partition way, combined with the wooden partition used in cooling stave cooling wall has smooth surface, the third and fourth generation of cooling stave.Appropriate steel structure and foundation design guarantees the normal of the blast furnace smelting blast furnace.Key word: blast furnace body;the lining;of blast furnace cooling system;steel structure目录摘要 (I)Abstract (II)目录 (III)第一章文献综述 (1)1.1高炉炉型概述 (1)1.1.1高炉炉型的发展 (1)1.1.2高炉炉龄及其影响因素 (2)1.2高炉炉衬的发展 (2)1.2.1高炉各部分耐火材料的选择 (2)1.2.2我国最新对耐火材料的选择 (4)1.3高炉的冷却设备 (4)1.3.1高炉冷却的必要性 (4)1.3.2高炉冷却的目的 (5)1.3.3高炉冷却的方式 (5)1.3.4高炉各个冷却方式的发展以及优缺点 (6)1.4高炉钢结构以及高炉基础的概述 (10)1.4.1高炉的钢结构以及影响因素 (10)1.4.2我国高炉钢结构设计的基本现状 (11)1.4.3我国在高炉钢结构设计上的差距 (12)1.4.4高炉基础的概述 (13)1.5高炉设计方案 (15)第二章炼铁工艺计算 (17)2.1原料成分及参数选择 (17)2.1.1原料成分 (17)2.1.2参数选择 (18)2.2原料成分的整理计算 (19)2.2.1矿石成分补齐计算 (19)2.2.2矿石成分的平衡计算 (20)2.2.3燃料成分的整理计算 (22)2.3配料计算 (23)2.3.1吨铁矿石用量 (23)2.3.2生铁成分计算 (23)2.3.3熔剂用量计算 (24)2.3.4炉料及炉渣成分计算 (24)2.4物料平衡计算 (25)2.5热平衡计算 (29)2.5.1热收入 (29)2.5.2热支出 (30)2.6高温区热平衡计算 (34)2.6.1高温区热收入 (34)2.6.2高温区热支出 (34)2.7炼铁焦比的计算 (36)第三章高炉炉型设计 (38)3.1炉型的计算 (38)3.1.1铁口 (38)3.1.2渣口 (39)3.1.3风口 (39)3.1.4日产铁量的计算 (40)3.1.5炉缸尺寸计算 (40)3.1.6死铁层厚度 (41)3.1.7炉腰直径、炉腹角、炉腹高度的计算 (41)3.1.8炉喉直径、炉喉高度、炉身高度、炉腰高度 (41)3.2炉容的校核 (42)3.3出铁场布置 (42)第四章高炉炉衬设计 (44)4.1各部位砖衬的选择 (44)4.1.1炉底、炉缸部位的选择 (44)4.1.2炉腹部位的选择 (44)4.1.3炉身中下部及炉腰部位的选择 (44)4.1.4炉身上部及炉喉部位的选择 (45)4.2各部位砖量计算 (45)4.2.1炉底、炉缸的砌筑 (46)4.2.2炉腹的砌筑 (46)4.2.3炉腰的砌筑 (47)4.2.4炉身部位的砌筑 (48)第五章高炉冷却系统设计 (52)5.1高炉冷却设备 (52)5.1.1高炉冷却目的及方法 (52)5.1.2冷却设备 (52)5.2冷却器的工作机制 (53)5.3合理的冷却结构 (54)5.4高炉冷却系统的维护 (57)第六章高炉钢结构及基础 (60)6.1高炉钢结构 (60)6.1.1高炉本体钢结构 (60)6.1.2炉壳 (61)6.1.3炉体平台 (61)6.1.4炉体框架 (61)6.1.5热风围管 (62)6.2高炉基础 (62)参考文献 (63)致谢 (65)第一章文献综述1.1高炉炉型概述1.1.1高炉炉型的发展高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。
编制说明:因设计图纸与相关资料均未到,本方案中的有关数据摘自于银丰380m3高炉的相关资料,仅供参考,待详图到达后,施工单位要根据详图进行检查核对,并对各分项工程编写相应的作业设计。
1. 工程概况:1.1 工程内容:380m3高炉本体、高炉框架、冷却壁、热风围管、斜桥、上升管及下降管、出铁场、热风炉等全部钢结构及非标制作及安装。
1.2结构主要尺寸及安装高度1.2.1高炉炉壳炉底直径: 8.300m炉顶直径: 2.261m基础上表面标高: 4.723m炉顶标高: 30.230m炉皮厚度: 22-36mm铁口中心标高: 8.200m渣口中心标高: 9.700m风口中心标高: 10.900m炉壳总重: 174t1.2.2 炉身框架平台:▽14.600m、▽17.650m、▽20.900m、▽24.000m、▽28.600m、▽34.500m及炉顶钢架平台。
1.2.3冷却壁:冷却壁共19带408块,最重块单重2.833t。
冷却板224块,最重块单重0.361t。
1.2.4斜桥:斜桥全长:53.620m斜桥水平夹角:54°斜桥重:49t斜桥断面:3.5m×4.184m1.2.5出铁场:出铁场跨度:24m,砼柱子,钢屋架出铁场全长:27m柱顶标高: 16.00m出铁场砼柱子最重:23t屋面结构总重:45.513t2.施工部署及工期:2.1 本次工程大部分结构制作在制造厂制作,现场拼装安装。
2.2 施工平面布臵:与高炉中心线及第二座热风炉中心均相距16m斜向设臵300tm塔吊(详见施工平面图),负责炉壳、框架、平台、热风围管、上升管以及部分热风炉构件吊装任务,另临配1台150t履带吊负责下降管、斜桥的吊装。
1台50t液压吊负责出铁场及热风炉的吊装。
炉壳的地面组装和构件的卸车用25t液压吊完成。
2.3 搭设两个10000×10000炉壳拼装平台,详见施工平面图。
2.4 施工用电计划:500KVA。
学校代码: 10128学号: 2课程设计说明书题目:年产炼钢生铁550万吨的高炉车间的高炉炉体设计学生姓名:王卫卫学院:材料科学与工程班级:冶金11—2指导教师:代书华2014年12 月29日内蒙古工业大学课程设计(论文)任务书课程名称:冶金工程课程设计学院:材料科学与工程班级:冶金11-2 学生姓名:王卫卫学号: 2 指导教师:代书华摘要本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。
高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。
高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。
同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。
在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。
对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。
目录第一章文献综述 (1)1.1国内外高炉发展现状 (1)1.2我国高炉发展现状 (1)1.3 高炉发展史 (2)1.4五段式高炉炉型 (4)第二章高炉炉衬耐火材料 (5)2.1高炉耐火材料性能评价方法的进步 (5)2.2高炉炉衬用耐火材料质量水平分析 (5)2.3陶瓷杯用砖 (7)2.4炉腹、炉身和炉腰用砖 (7)第三章高炉炉衬 (8)3.1炉衬破坏机理 (8)3.2高炉炉底和各段炉衬的耐火材料选择和设计 (9)第四章高炉各部位冷却设备的选择 (11)4.1冷却设备的作用 (11)4.2炉缸和炉底部位冷却设备选择 (11)4.3炉腹、炉腰和炉身冷却设备选择 (11)第五章高炉炉型设计 (13)5.1炉型设计要求 (13)5.2炉型设计方法 (13)5.3主要技术经济指标 (14)5.4设计与计算 (14)5.5校核炉容 (16)参考文献 (17)第一章文献综述1.1国内外高炉发展现状在近年来钢铁产业竞争日益加剧的形势下,《京都议定书》和《哥本哈根协议》将引领钢铁行业未来走向绿色环保的低碳型产业。
学校代码:10128学号:201120411032课程设计说明书题目:年产炼钢生铁550万吨的高炉车间的高炉炉体设计学生姓名:王卫卫学院:材料科学与工程班级:冶金11— 2指导教师:代书华2014 年12 月29 日内蒙古工业大学课程设计(论文)任务书课程名称: 冶金工程课程设计学院: 材料科学与工程 班级: 冶金11-2 学生姓名: 王卫卫 学号: 201120411032 指导教师: 代书华一、题目年产铁水量 550万吨的高炉炉体设计二、目的与意义1. 通过课程设计,巩固、加深和扩大在冶金工程专业课程及相关课程教育中所学到的知识, 训练学生综合运用这些知识去分析和解决工程实际问题的能力。
2. 学习冶金炉设计的一般方法,了解和掌握常用冶金设备或简单冶金设备的设计方法、设计 步骤,为今后从事相关的专业课程设计、毕业设计及实际的工程设计打好必要的基础。
3. 使学生在计算、制图、运用设计资料,熟练有关国家标准、规范、使用经验数据、进行经 验估算等方面受全面的基础训练。
三、要求 (包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 3 1、设计年产炼钢生铁 550 万吨的高炉车间的高炉炉型, 高炉 2 座,高炉工作日 347d ,冶炼强度 I=0.9~1.2t/(m·d),高炉有效利用系数 η=2.0t/(m 3·d),燃烧强度 i=1.1t/m 3·d2、高炉炉容校核误差< 1%3、完成高炉的纵向剖面图、俯视图、风口布置图和风口结构剖面图,要求完成图纸二张。
4、图纸要求整洁、干净,图形线条准确,清晰四、工作内容、进度安排课程设计可分为以下几个阶段进行。
2014.12.22 — 2014.12.28查阅相关资料。
2014.12.29 — 2015.1.11计算、画图、设计说明书的完成。
2015.1.12 — 2015.1.16 图纸,设计说明书的完善。
五、主要参考文献[1] 郝素菊等编 . 高炉炼铁设计原理 . 北京:冶金工业出版社, 1992.[2] 周传典等编 . 高炉炼铁生产技术手册 . 北京:冶金工业出版社, 2002.[3] 朱苗勇主编 . 现代冶金学 . 北京:冶金工业出版社, 2005.[4] 刘麟瑞等编 . 冶金炉料手册 ( 第 2 版). 北京:冶金工业出版社, 2005.审核意见系(教研室)主任(签字)指导教师下达时间 年 月 日指导教师签字: _______________摘要本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。
学校代码: 10128学号: 2课程设计说明书题目:年产炼钢生铁550万吨的高炉车间的高炉炉体设计学生姓名:王卫卫学院:材料科学与工程班级:冶金11—2指导教师:代书华2014年12 月29日内蒙古工业大学课程设计(论文)任务书课程名称:冶金工程课程设计学院:材料科学与工程班级:冶金11-2 学生姓名:王卫卫学号: 2 指导教师:代书华摘要本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。
高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。
高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。
同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。
在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。
对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。
目录第一章文献综述 (1)1.1国内外高炉发展现状 (1)1.2我国高炉发展现状 (1)1.3 高炉发展史 (2)1.4五段式高炉炉型 (4)第二章高炉炉衬耐火材料 (5)2.1高炉耐火材料性能评价方法的进步 (5)2.2高炉炉衬用耐火材料质量水平分析 (5)2.3陶瓷杯用砖 (7)2.4炉腹、炉身和炉腰用砖 (7)第三章高炉炉衬 (8)3.1炉衬破坏机理 (8)3.2高炉炉底和各段炉衬的耐火材料选择和设计 (9)第四章高炉各部位冷却设备的选择 (11)4.1冷却设备的作用 (11)4.2炉缸和炉底部位冷却设备选择 (11)4.3炉腹、炉腰和炉身冷却设备选择 (11)第五章高炉炉型设计 (13)5.1炉型设计要求 (13)5.2炉型设计方法 (13)5.3主要技术经济指标 (14)5.4设计与计算 (14)5.5校核炉容 (16)参考文献 (17)第一章文献综述1.1国内外高炉发展现状在近年来钢铁产业竞争日益加剧的形势下,《京都议定书》和《哥本哈根协议》将引领钢铁行业未来走向绿色环保的低碳型产业。
高炉设计说明书1. 引言本文档旨在对高炉的设计进行详细说明,介绍高炉的结构、工作原理及相关参数等内容。
高炉作为冶金工业中广泛应用的设备,对于钢铁生产具有重要的作用。
设计合理的高炉能够提高产能、降低能耗,并保证生产质量和环境友好。
2. 结构概述高炉主要由以下部分组成:2.1 炉体炉体是高炉的主要部分,是炉料冶炼和反应的场所。
炉体一般分为上部、中部和下部三个部分。
上部主要是煤气的燃烧区,中部是高炉的主反应区,下部是铁水和渣的收集区。
2.2 炉缸炉缸是高炉的外包装,承受高炉的重力荷载,并起到保温和防腐蚀的作用。
炉缸一般采用耐火材料制作,能够承受高温的侵蚀。
2.3 冷却设备冷却设备主要用于冷却高炉的炉体和炉缸,防止温度过高导致设备损坏。
冷却设备一般采用循环水冷却的方式,通过冷却水循环流动来带走炉体和炉缸的热量。
2.4 其他设备除了上述主要部分外,高炉还包括一系列辅助设备,如鼓风机、煤气净化设备、渣铁分离系统等。
这些设备可以为高炉的运行提供必要的条件和支持。
3. 工作原理高炉的工作原理是将炼铁原料(一般为铁矿石、燃料和烧结矿等)投入到高炉中,经过高温下的还原、冶炼和分离等反应,最终得到铁水和炉渣。
具体工作原理可概括如下:1.鼓风机向高炉提供一定的氧气,使煤气得以充分燃烧,提供能量给高炉的反应。
2.燃料在高炉内燃烧产生煤气,煤气中的一氧化碳与铁矿石反应生成还原铁,并释放出大量的热量。
3.负责转移炉料和炉渣的料斗和渣口使物料进出炉体。
4.铁水和炉渣分别从高炉的不同出口流出,炉渣用于炼铁过程中的冶炼反应,而铁水则作为最终产物。
4. 参数说明高炉设计中需要考虑的参数包括但不限于以下内容:4.1 炉容量炉容量是指高炉能够承载的炉料数量。
炉容量的大小直接影响到高炉的产能。
4.2 炉料比例炉料比例是指高炉中铁矿石、燃料和烧结矿等炼铁原料的配比情况。
不同的炉料比例对产出铁水的质量和数量都有影响。
4.3 空气分配空气分配是指高炉燃烧区域空气的供给量,包括鼓风量、风口的开启情况等。
1 原燃料条件(1)原料成分表 1原料Fe Mn P S Fe2O3FeO MnO2MnO CaO烧结矿天然矿混合矿55.6358.7256.090.090.170.10.050.020.040.0330.1340.04870.367.9469.958.1814.29.083—0.260.0390.12—0.10210.51.59.15续上表原料MgO SiO2Al2O3P2O5FeS2FeS SO2烧损CO2合计烧结矿天然矿混合矿2.610.652.3165.811.76.6851.132.321.310.110.050.101—0.250.0380.09—0.0765———1.161.131.16100.00100.00100.00备注:烧结矿:原矿=85:15(2)焦炭成分表 2固定碳灰分12.17 挥发分0.91SiO2Al2O3CaO MgO FeO FeS P2O5CO2CO CH4H2N285.63 5.7 4.8 0.8 0.1 0.8 0.1 0.01 0.33 0.33 0.04 0.05 0.16有机物,1.30合计全S 游离水H2N2S0.40 0.40 0.50 100.00 0.52 4.80 (3)煤粉成分表 3品种 C H2O2H2O N2S灰分,12.27合计SiO2Al2O3CaO MgO FeO煤粉77.5 4.35 4.05 0.79 0.42 0.66 7.48 3.42 0.6 0.3 0.45 100.00主要技术经济指标:矿石配比,烧结矿:原矿=85:15;焦比: 350kg/t;煤比:150kg/t;鼓风湿度: 1.5% ;热风温度:1200℃;炉顶温度:200℃;rd=0.42。
(4)预定铁水成分表 4成分Si Mn S P C Fe 合计% 0.35 0.09 0.03 0.08 4.45 95.00 100.00(5)元素分配表 5元素Fe Mn P S生铁炉渣煤气0.9970.0030.50.51.00 0.062 配料计算2.1铁矿石的用量单位: Kg铁平衡:Fe铁+ Fe渣+Fe尘= Fe矿+ Fe熔+ Fe焦+ Fe煤焦炭带入Fe量 =560.0075560.0005350() 2.1()7288kg ⨯⨯⨯+=煤粉带入Fe量560.0045150)0.53()72kg⨯=⨯=进入渣中Fe0.003950) 2.86()0.997kg =⨯=需要混合矿量950 2.10.53 2.86)1694.1()0.5609kg --+==每吨生铁的实际用量:混合矿:1694.1 1.0031699.2()(0.003)kg⨯=其中为机械为机械损失350 1.051=367.85()kg⨯焦炭:(其中机械损失:0.003;水分:0.048)煤粉:150kg;所以,每顿生铁实际用量为:1699.2+367.85+150=2217.05kg2.2生铁成分的校对[P]:36210(1694.10.000443500.0001)0.076%142-⨯⨯+⨯⨯=[S]:0.03%;[Si]:0.35%[Mn]:原料带入的锰有50%进入生铁,炉渣中含量为1.1kg ,故[Mn]=1.1×55/71×1/1000=0.09%[C] :(100-95-0.35-0.09-0.03-0.076)/100=4.454%校核后的生铁成分:表 6Fe Si Mn S P C 合计95.00 0.35 0.09 0.03 0.076 4.454 100.00 2.3渣量和炉渣成分的计算(1)S含量计算原料,燃料带入的硫总量:1694.10.00053500.00521500.0066 3.66()kg⨯+⨯+⨯=进入生铁的S : kg3.0进入煤气的S :kg183.0%666.3=⨯炉渣中的S kg 177.3183.03.066.3=--(2)FeO :kg 68.35672997.0003.0950=⨯⨯(3)MnO :711694.10.0010.5 1.09()55kg ⨯⨯⨯=(4)2SiO :601694.10.06693500.05651500.0748 3.5136.83()28kg ⨯+⨯+⨯-⨯= (5)CaO :1694.10.09153500.000761500.006=156.18()kg ⨯+⨯+⨯ (6)MgO :kg 17.400012.0350003.0150%32.21.1694=⨯+⨯+⨯ (7)Al 2O 3:kg 23.440483.03500342.0150%31.11.1694=⨯+⨯+⨯总渣量:kg 347.38523.4417.4018.15683.13609.168.3177.3=++++++。
高炉炉体系统设计(blast furnace proper system design)高炉炉体系统的范围是从基础至炉顶圈(也叫炉顶法兰盘)(图1)。
设计内容包括高炉内型、高炉内衬、高炉钢结构型式、炉体设备和长寿技术等。
高炉内型高炉内部工作空间的形状和主要尺寸必须适合炉料和煤气在炉内运动的规律。
合理的内型有利于高炉操作顺行,高产低耗。
高炉内型(图2)从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五部分。
各国对高炉容积的表示方法不尽相同。
在中国,对于钟式炉顶高炉,有效容积通常是指从铁口中心线至大钟全开位置下沿所包括的容积;对于无钟炉顶高炉,有效容积是指从铁口中心线至炉喉上沿之间的容积。
欧美诸国把从风口中心线至料线之间的容积称为工作容积。
日本把从铁口底端至料线之间的容积称为内容积。
料线位置,日本定在大钟全开位置底面以下一米的水平面上,美国一般定在炉喉高度的一半处。
对于高炉内型各部尺寸的合理比例及算法,是雷得布尔(A.jejeyp)在他1878年出版的著作里首次提出的。
巴甫洛夫(M.A.ПaBJoB)提出用下式表示全高(H)与有效容积(V u)的关系:H= n (V u )1/3。
式中n是大于2.85的数字,并且H:D的比值愈高,n的数值愈大。
有效容积按要求的生铁日产量和利用系数求出后,用上式可求出全高H。
炉腰直径D可按公式D =(V u/0.54H) 1/2求出,然后再决定内型其它尺寸。
巴氏建议选择炉缸直径应以燃烧强度(每小时每m2炉缸面积燃烧的焦炭量,用kg表示)为出发点。
美国莱斯(Owen Rice)在计算燃烧强度时所指的炉缸面积是从风口前端起6f t 环状带的面积。
拉姆(A.H.Pamm)内型每个尺寸都是与有效容积成一定方次的函数,建议用经验公式x=cV n u 计算内型各部分尺寸x,式中n和c对内型各部分尺寸是固定的系数。
高炉内型主要与原、燃料条件和操作制度有关。
合适的内型来源于生产实践,实际上高炉内型的设计大都是根据冶炼条件类似的同级高炉的生产实践进行分析和比较确定。
课程设计说明书题 目:年产炼钢生铁220万吨的高 炉车间的高炉炉体设计学生姓名:王志刚学 院:材料科学与工程班 级:冶金08—2指导教师:代书华、李艳芬2011年 12 月 25日内蒙古工业大学课程设计(论文)任务书课程名称:冶金工艺课程设计学院:材料科学与工程班级:冶金08- 2 班学生姓名:王志刚学号:200820411043 指导教师:代书华李艳芬本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁场的设计。
高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。
高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。
同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。
在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。
对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁场进行合理的设计。
第一章文献综述 (1)1.1国内外高炉发展现状 (1)1.2我国高炉发展现状 (1)第二章高炉炉衬耐火材料 (3)2.1高炉耐火材料性能评价方法的进步 (3)2.2高炉炉衬用耐火材料质量水平分析 (3)2.3陶瓷杯用砖 (5)2.4炉腹、炉身和炉腰用砖 (5)第三章高炉炉衬 (6)3.1炉衬破坏机理 (6)3.2高炉炉底和各段炉衬的耐火材料选择和设计 (7)第四章高炉各部位冷却设备的选择 (9)4.1冷却设备的作用 (9)4.2炉缸和炉底部位冷却设备选择 (9)4.3炉腹、炉腰和炉身冷却设备选择 (9)第五章高炉炉型设计 (11)5.1主要技术经济指标 (11)5.2设计与计算 (11)5.3校核炉容 (13)参考文献 (14)第一章文献综述1.1国内外高炉发展现状在近年来钢铁产业竞争日益加剧的形势下,《京都议定书》和《哥本哈根协议》将引领钢铁行业未来走向绿色环保的低碳型产业。
我国近年推出的《钢铁产业发展政策》中规定高炉炉容在300 m3以下归并为淘汰落后产能项目,且仍存在扩大小高炉容积的淘汰范围的趋势。
同时国内钢铁产业的快速发展均加速了世界和我国高炉大型化的发展进程。
由于大型化高炉具备的单位投资省、效能高和成本低等特点,从而有效地增强了其竞争力。
最近二十年来,日本和欧盟区的在役高炉座数由1990年的65座和92座下降到28座和58座,下降幅度分别为56.9%和37%,但是高炉的平均容积却分别由1 558 m3和1 690 m3上升到4 157 m3和2 063 m3,上升幅度为166.8%和22%,这基本代表了国外高炉大型化的发展状况。
在国内,伴随国内市场与国际市场的接轨和环保标准的不断提高,国内小高炉的竞争力明显弱化,相反具备相对占地小、污染物排放少和生产成本低的大型高炉优势日益突出,受到国内钢铁企业的高度关注和青睐。
1.2我国高炉发展现状我国高炉大型化的发展模式与国外基本相近,主要是采取新建大型高炉、以多座旧小高炉合并成大型高炉和高炉大修扩容等形式来推动着高炉的大型化发展。
据不完全统计,我国自2004年以来相继建成投产的3 200 m3级15座,4 000 m3级8座,5000 m3级3座,且有越来越大的趋势。
万方目前,河北迁钢和山东济钢等企业也正在建设4000 m3级高炉,近来宝钢湛江和武钢防城港项目也在规划筹建5500 m3级超大型高炉。
我国高炉大型化的标准主要是依据高炉容积的大小来划分的,且衡量标准也由过去的1000 m3提高到2000 m3,甚至更大。
虽然大型化高炉相对于小高炉存在着生产率高、生产稳定、指标先进和成本低等显著的优点,但是对于我国高炉大型化的发展状况,我们仍然需要科学客观地看待。
高冶炼强度、高富氧喷煤比和长寿命化作为大型高炉操作的主要优势受到大家越来越高的热情关注和青睐,但是高炉大型化作为一项系统工程,它在立足自身条件的基础上仍需要匹配的炼钢、烧结和炼焦等工序平衡能力的综合系统,因此,我国钢铁企业在走高炉大型化发展的道路上,需要依据自身所具备的技术、设备、资源条件和钢铁流程的综合平衡状况进行选择性定位。
只有建成符合企业自身条件的大型化高炉,才能真正实现“优质、高效、稳定和长寿”的大型高炉预期目标。
第二章高炉炉衬耐火材料2.1高炉耐火材料性能评价方法的进步过去炼铁工作者对高炉耐火材料性能的要求仅限于一些常规性能,如对炭砖仅要求灰份、耐压强度、体积密度、气孔率等指标,对陶瓷耐火材料仅要求化学成分、耐火度、荷重软化温度、显气孔率、体积密度、耐压强度、重烧线变化率等指标。
我们在研究炭砖时发现,我国上世纪60年代生产的普通炭砖,如果只看其常规性能,如气孔率、体积密度、强度、灰份等指标,比国外的优质炭砖并不差。
如果进一步对导热系数、抗碱性、微气孔指标进行对比,就发现国产炭砖的差距很大。
这使我们认识到这些特殊性能应作为评价高炉耐火材料优劣的重要标准。
对于高炉耐火材料使用性能的检测方法,武钢已进行了近20年的长期研究。
我们在研究高炉砖衬破损和侵蚀机理的基础上,对高炉耐火材料提出了多项特殊使用性能要求,并研究出了相应的试验方法,通过原冶金部制定了检验方法标准。
主要的检验方法标准有以下8种:①导热系数;②抗碱性;③抗铁水熔蚀性;④抗炉渣侵蚀性;⑤平均孔径;⑥小于1μm孔容积率;⑦透气度;⑧抗氧化性。
武钢应用这些检验方法选用高炉耐火材料已有十多年历史,对武钢高炉寿命的提高发挥了重要的作用。
这些检验方法目前已在国内得到广泛应用,很多新型优质高炉耐火材料不断地开发出来,有的综合性能已赶上国际先进水平,有些指标甚至超过了国际先进水平。
2.2 高炉炉衬用耐火材料质量水平分析高炉炭砖有半石墨炭砖、微孔炭砖、超微孔炭砖、石墨砖和模压小炭砖等。
我们曾对国内外同类炭砖产品进行了使用性能的对比试验,下面是各种炭砖的对比试验结果。
2.2.1半石墨炭砖国产半石墨炭砖和日本BC-5型半石墨炭砖相比,其导热系数、抗碱性、铁水熔蚀等性能相当。
德国半石墨炭砖的600℃导热系数达到18.04 W/m.k,优于一般的国产半石墨炭砖,其它性能则相当。
但是,兰州新研制的半石墨炭砖的导热系数、微气孔指标则已经优于德国同类产品。
2.2.2微孔炭砖国产的普通微孔石墨,包括兰州炭素厂、武彭公司、鲁山炭素厂、科瑞公司等厂家的产品,其主要性能指标和日本BC-7S碳砖、法国AM-102碳砖已很接近,国内很多高炉的使用效果较好。
例如武钢4号高炉就是使用国内某厂的普通微孔碳砖,寿命已达到了10年。
2.2.3超微孔碳砖要使高炉寿命进一步提高到15-20年,对炭砖应有更高的要求,主要是导热系数和微气孔指标应该更高。
满足以上要求的国外碳砖以日本的BC-8SR和德国的7RDN为代表,我们称之为超微孔碳砖。
其主要特点是导热系数较高,600℃达到18-20 W/m.k,平均孔径达到0.1μm,小于1μm孔容积率大于85%,其他性能也保持优良。
兰州炭素厂和武钢技术中心合作,经过6年的研究,现已研制成功这种超微孔炭砖,其性能达到了日本BC-8SR和德国7RDN炭砖的实物质量水平。
现已首次用于武钢在建的7号高炉(3200 m3)。
2.2.4模压小碳砖以美国NMA、NMD热模压小碳砖为代表的国际名牌产品在我国应用也比较多,使用效果较好。
近年国内已有多家炭素厂生产模压小炭砖,但一般只达到普通微孔碳砖的水平。
如600℃的导热系数仅12W/m.k左右,低于美国的热模压小碳砖。
武钢技术中心和巩义市第五耐火材料厂合作进行了模压小炭砖的研制,以电煅无烟煤为原料,以酚醛树脂为结合剂,用磨擦压砖机成型,经高温烧成,生产模压小炭砖,其产品性能已优于美国热压小碳砖。
美国的热模压小碳砖的主要优点是导热系数较高,优于国产的普通微孔炭砖和普通模压小碳砖。
另一优点是抗碱性优良,而这一性能国内产品也已能够达到。
其缺点是不属于微气孔炭砖、平均孔径大于1μm、小于1μm孔容积率仅53.4%。
巩义五耐开发的模压小炭砖主要性能已明显优于美国NMA热模压小炭砖:600℃的导热系数大于20W/m.k;平均孔径0.237μm,小于1μm孔容积率76.12%,是较好的微孔炭砖,铁水熔蚀指数仅14.22%。
该研制产品已经首次用于武钢新建的7号高炉炉缸部位。
美国的NMD是一种石墨碳砖,导热系数很高,有的高炉将它用作炉身冷却板之间的砖衬使用。
顺便指出,石墨砖一般用于炉底最下层,是利用其高导热性强化炉底冷却,在高炉炉役后期减缓铁水的侵蚀。
但是如果炭捣料的导热系数很低,石墨砖也无法发挥高导热系数的作用。
这种情况下还不如使用微孔碳砖,因为石墨砖的孔隙大、强度低,抗铁水熔蚀性能也差。
综上所述,我国的炭砖生产技术和产品性能、质量水平,经过近十年来的努力,有了明显的进步,已逐渐赶上世界先进水平,可以满足长寿高炉的需要。
2.3 陶瓷杯用砖目前国内高炉陶瓷杯用砖有复合棕刚玉砖、刚玉莫来石砖、塑性相结合棕刚玉砖、微孔刚玉砖、法国陶瓷杯砖(浇注块)等5种。
陶瓷杯炉缸结构是法国首先开发的,是一种不经高温烧成的浇注块,我国有不少高炉采用,使用效果较好。
其主要优点抗碱性优良,抗炉渣侵蚀性较好,抗铁水熔蚀性很好,是微气孔砖,适用于炉缸砖衬。
近年国内相继开发出多种陶瓷杯用砖,则都是高温烧成的。
国产微孔刚玉砖的各项性能均已达到或优于法国陶瓷杯砖,其中抗炉渣侵蚀性和耐压强度更好。
复合棕刚玉砖的抗碱性较差。
塑性相刚玉砖除微气孔指标较差外,其他性能都较好,是目前应用最多的一种。
刚玉莫来石砖由于抗碱性和抗炉渣侵蚀性很差,不适合用于炉缸部位,但用于陶瓷杯底仍是适用的。
2.4炉腹、炉身和炉腰用砖炉腹、炉腰和炉身中下部,炉衬的工作条件相近,主要侵蚀原因是炉渣侵蚀、碱金属侵蚀、炉料和渣铁的冲刷、磨损等。
这些部位的炉衬发展趋势是,主要靠强化冷却形成渣壁保持正常生产,砖衬仅留有很薄的镶砖,耐火材料的用量很小。
比较典型的设计如武钢1号高炉的铜冷却壁薄炉衬结构。
这一区域选用耐火砖的原则是,抗炉渣侵蚀性能好,抗碱性较好,导热系数较高,强度要高。
在成渣带以下可选用Si3N4结合SiC砖、赛隆结合刚玉砖或赛隆结合SiC砖。
炉身中部无渣区可选用烧成微孔铝炭砖。
炉身上部可用磷酸浸渍粘土砖。
这几种砖的强度很高,抗碱侵蚀性和抗炉渣侵蚀性很好,导热系数也高,适用于砌筑炉身到炉腹区域。
上述几种耐火材料国内都已能生产,一般不需要用进口产品。
第三章高炉炉衬3.1炉衬破坏机理高炉炉衬一般是以陶瓷质材料(包括粘土质和高铝质等)和碳质材料(炭砖、碳捣石墨等)砌筑。
炉衬的侵蚀和破坏与冶炼条件密切相关,各部位侵蚀破坏机理并不相同,研究炉衬的破损机理与合理选择耐火材料及设计炉衬结构有重要关系。