[实用参考]初中圆题型总结
- 格式:doc
- 大小:156.50 KB
- 文档页数:22
关于圆的题型归纳和解题技巧
一、题型归纳
1、求圆的半径和面积:
有时会给出圆的弦或者其他部分的参数,通过这些参数可以求出圆的半径和面积;有时可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的半径和面积;有时候还可以使用极坐标系来求解;
2、求圆的直径和周长:
一般来说周长=直径×π,可以利用这个公式求圆的周长;有时可以利用圆的性质,如圆的内接三角形、外接三角形等,来求圆的直径;也可以利用极坐标系来求解;
3、求圆心角:
有时给出的是圆的扇形的面积或者弧长,可以通过求出这个面积或者弧长对应的角度来求出圆心角;有时也给出的是圆弧上一点与圆心的连线,可以利用此线段及其他线段的角度来求出圆心角;
4、求圆的外接矩形或者其他图形:
有时给出的是圆的面积和某种图形的面积,可以计算出圆外接图形的面积,从而求出圆的外接矩形;有时也可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的外接矩形或者其他图形。
二、解题技巧
1、多用圆的性质:
圆的性质是圆的重要组成部分,其中有很多性质都可以用来帮助
解答圆的问题,如圆的内接三角形、外接三角形等;
2、注意圆的关键参数:
在回答圆的问题时,要特别注意特殊参数,如半径、直径等,它们可以使用其他参数来求出;
3、利用极坐标系:
极坐标系是求解圆的一种重要方法,它可以帮助我们简化复杂的问题,使得计算更简单、更快捷;
4、利用其他图形的特殊参数:
有些圆的题目可以利用其他图形的特殊参数来求解,例如外接矩形的长和宽,或者外接三角形的边长等。
圆知识点一、圆的概念集合形式的概念: 1.圆可以看作是到定点的距离等于定长的点的集合;2.圆的外部: 可以看作是到定点的距离大于定长的点的集合;3.圆的内部: 可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1.圆:到定点的距离等于定长的点的轨迹就是以定点为圆心, 定长为半径的圆;(补充)2.垂直平分线: 到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3.角的平分线: 到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是: 平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是: 平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1.点在圆内点在圆内;2.点在圆上点在圆上;3.点在圆外点在圆外;三、直线与圆的位置关系1.直线与圆相离无交点;2.直线与圆相切有一个交点;3.直线与圆相交有两个交点;四、垂径定理垂径定理: 垂直于弦的直径平分弦且平分弦所对的弧。
推论1: (1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心, 并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径, 垂直平分弦, 并且平分弦所对的另一条弧以上共4个定理, 简称2推3定理:此定理中共5个结论中, 只要知道其中2个即可推出其它3个结论, 即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
推论2: 圆的两条平行弦所夹的弧相等。
即:在⊙中, ∵∥∴弧AC=弧BD五、圆心角定理圆心角定理: 同圆或等圆中, 相等的圆心角所对的弦相等, 所对的弧相等,弦心距相等。
此定理也称1推3定理, 即上述四个结论中,只要知道其中的1个相等, 则可以推出其它的3个结论,即: ①;②;③OC OF=;④弧BA=弧BD六、圆周角定理1.圆周角定理: 同弧所对的圆周角等于它所对的圆心的角的一半。
中考题中常考的圆的六种解题策略第一种场景:遇到弦。
轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.当圆的题目中出现弦的知识点的时候,我们需要迅速联想到弦相关的定理和一些性质,比如垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.当出现直径的条件时,我们也要快速联想圆心角、圆周角等性质,进而构造等腰三角形、直角三角形等图形,从而求解后面的问题。
例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.【分析】(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答.【解答】(1)∵由折叠可知:∠OBC=∠CBD,∵点D恰好与点O重合,∴∠COD=60°,∴∠ABC=∠OBC=12∠COD=30°;故答案为:30;(2)∠ABM=2∠ABC,理由如下:作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°-α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.切线的定义是:一直线若与一圆有且只有一个交点,那么这条直线就是圆的切线。
授课类型T 圆的基本位置关系 C 圆与直线相关性质综合 T 中考真题运用授课日期及时段教学内容一、同步知识梳理基本概念关系:1、点与圆的位置关系(1)点在圆内 ⇒ d r < ⇒ 点C 在圆内; (2)点在圆上 ⇒ d r = ⇒ 点B 在圆上; (3)点在圆外 ⇒ d r > ⇒ 点A 在圆外;2、直线与圆的位置关系(1)直线与圆相离 ⇒ d r > ⇒ 无交点; (2)直线与圆相切 ⇒ d r = ⇒ 有一个交点; (3)直线与圆相交 ⇒ d r < ⇒ 有两个交点;drd=rrd3、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+;rdd CBAO内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1rRd图3rRd二、同步题型分析题型1:点与圆例1:(★)⊙O 的半径r=10cm ,圆心到直线L 的距离OM=8cm ,在直线L 上有一点P ,PM=6cm ,则点P ( )A 在⊙O 内B 在⊙O 外C 在⊙O 上D 不能确定题型2:直线与圆(相交、相离、相切)例1:(★★★)(2013四川巴中,26,13分)若⊙O 1和⊙O 2的圆心距为4,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,求r 1、r 2的值,并判断两圆的位置关系.题型3:直线与圆(切线的证明).如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,求证:DE 是⊙O 的切线.图2rRd图4rRd 图5r Rd.如图,△ABC 为等腰三角形,AB=AC ,O 是底边BC 的中点,⊙O 与腰AB 相切于点D ,求证:AC 与⊙O 相切.变式练习1:已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC =CP =2,弦AB ⊥OC ,劣弧AB ︵的度数为120°,连接PB.(1)求BC 的长;(2)求证:PB 是⊙O 的切线.变式练习2.如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G . (1)直线FC 与⊙O 有何位置关系?并说明理由; (2)若OB=BG=2,求CD 的长.变式3:(★★★)已知:如图,射线ABC与⊙O相交于B,C两点,E是的中点,D是⊙O上一点,若∠EDA=∠AMD.求证:AD是⊙O的切线.变式4、如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.题型4:直线与圆(切线长定理)(★★★))例1:已知:如图,P A,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若P A=10cm,求△PCD的周长.O O B AM题型4:圆与圆例1:(★★★)(2013·泰安,18,3分)如图,AB ,CD 是⊙O 的两条互相垂直的直径,点O 1,O 2,O 3,O 4分别是OA 、OB 、OC 、OD 的中点,若⊙O 的半径为2,则阴影部分的面积为( )A .8B .4C .4π+4D .4π-4例2:(★★★)如图,点A ,B 在直线MN 上,AB =11cm ,⊙A ,⊙B 的半径均为1cm .⊙A 以每秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (s )之间的关系式为r =1+t (t ≥0).(1)试写出点A ,B 之间的距离d (cm)与时间t (s )之间的函数表达式; (2)问点A 出发多少秒时两圆相切?例3:(★★★)如图所示,半圆O 的直径AB=4,与半圆O 内切的动圆O 1与AB 切于点M ,•设⊙O 1的半径为y ,AM=x ,则y 关于x 的函数关系式是( ).A .y=14x 2+x B .y=-14x 2+x C .y=-14x 2-x D .y=14x 2-x三、课堂达标检测检测题1:(★★)已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF ⊥AC 于F .求证:EF 与⊙O 相切.检测题2:(★★)(2013•东营,7,3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程321x x =-的根,1O ⊙与2O ⊙的圆心距为1,那么两圆的位置关系为( ) A .内含B .内切C .相交D .外切检测题3:(★★)(2013江苏泰州,15,3分)如图,⊙O 的半径为4cm ,直线l 与⊙O 相交于A , B 两点,AB 43=cm, P 为直线l 上一动点,以l cm 为半径的⊙P 与⊙O 没有公共点.设PO=d cm ,则d 的范围___________________.检测题4:(★★)(2013•嘉兴5分)在同一平面内,已知线段AO=2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60°得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 .检测题5:(★★)(2013广东梅州,11,3分)如图,在△ABC 中,AB =2,AC =2,以点A 为圆心,1为半径的圆与边BC 相切于点D ,则∠BAC 的度数是 .检测题6:(★★)已知:如图,⊙O 1与⊙O 2外切于A 点,直线l 与⊙O 1、⊙O 2分别切于B ,C 点,若⊙O 1的半径r 1=2cm ,⊙O 2的半径r 2=3cm .求BC 的长.一、专题精讲题型一:圆的分类讨论例1:(★★)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )A .2b a +B .2b a -C .22ba b a -+或 D .b a b a -+或例2:(★★)(2013贵州省六盘水,16,4分)若⊙A 和⊙B 相切,它们的半径分别为8cm 和2cm ,则圆心距AB 为题型三:三角形与圆例2:(★★★)已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.二、专题过关检测题1:(★★★)(2013白银,17,4分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=.检测题2:(★★★)已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC 的长.一、能力培养(2011,十堰)如图,A B是半圆O的直径,点C为半径O B上一点,过点C作C D⊥A B 交半圆O于点D,将△A C D沿A D折叠得到△A E D,A E交半圆于点F,连接D F.(1)求证:D E是半圆的切线;(2)连接O D,当O C=B C时,判断四边形O D F A的形状,并证明你的结论.例.2.:.[2011..上,以...A E..为直径的⊙...A B.....O.与...].如图,已知点.....·湛江......E.在.R t..△.A B C...的斜边直角边...B C....D.....相切于点(1)...B A C...;...平分∠...求证:...A D(2).......O.的半径....若.B E..=.2.,.B D..=.4.,求⊙。
圆知识点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O中,∵AB∥CD∴弧AC=弧BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE∠=∠;②AB DE=;③OC OF=;④弧BA=弧BD六、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
初中圆题型总结近几年的中考数学试题中,圆的相关概念和性质通常以填空题和选择题的形式出现,并占有10分至15分左右的分值。
综合性问题则以计算证明的形式考查,如垂径定理、圆周角、切线的判定与性质等。
此外,将圆的知识与其他知识点如代数函数、方程等相结合作为中考压轴题也很常见。
圆的实际应用题、阅读理解题和探索存在性问题仍然是热门考题,需要引起注意。
下面将就近年来圆的热点题型举例解析。
一、圆的性质及重要定理的考查基础知识链接:(1)垂径定理;(2)同圆或等圆中的圆心角、弦、弧之间的关系;(3)圆周角定理及推论;(4)圆内接四边形性质。
例1】(江苏镇江)如图,AB为⊙O直径,CD为弦,且CD⊥AB,垂足为H。
1)证明:E为弧ADB的中点,其中CE为OC的平分线,OE与⊙O相交于点E。
2)如果⊙O的半径为1,CD=3,求O到弦AC的距离,并填空:此时圆周上存在一个点到直线AC的距离为____。
解析】(1)根据垂径定理,OE∥CD。
又因为CD⊥AB,所以∠AOE=∠BOE=90°。
又因为OC=OE,所以∠E=∠OCE。
又因为∠OCE=∠DCE,所以∠E=∠DCE。
因此,OE∥CD且OE=CD/2,所以E为弧ADB的中点。
2)根据勾股定理,CH=CD=3,所以OH=√(1^2-(3/2)^2)=√(1/4)=1/2.由于∠COB=60°,所以∠BAC=30°。
作OP⊥AC于P,则OP=OA=1/2.因此,O到弦AC的距离为1/2.又因为∠BAC=30°,所以圆周上存在一个点到直线AC的距离为3.点评】此题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的能力。
在解题过程中,需要添加辅助线构造与定理相关的基本图形,如圆心到弦的距离。
在解有关弦心距半径有关问题时,常常添加的辅助线是连半径或作出弦心距,将垂径定理和勾股定理结合起来解题。
例2】(安徽芜湖)如图,已知点E是圆O上的点,B、C分别是劣弧AD的三等分点,且∠BOC=46°,求∠AED的度数。
圆知识点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O中,∵AB∥CD∴弧AC=弧BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE∠=∠;②AB DE=;③OC OF=;④弧BA=弧BDAD1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
圆的基本题型纵观近几年全国各地中考题,圆的相关看法以及性质等一般以填空题,选择题的形式观察并占有必然的分值;一般在 10 分- 15 分左右,圆的相关性质,如垂径定理,圆周角,切线的判断与性质等综合性问题的运用一般以计算证明的形式观察;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有特别重要的地位,别的与圆相关的本质应用题,阅读理解题,研究存在性问题仍是热门考题,应引起注意 . 下面究近来几年来圆的相关热门题型,举例解析以下。
一、圆的性质及重要定理的观察基础知识链接:( 1)垂径定理;( 2)同圆或等圆中的圆心角、弦、弧之间的关系 .(3) 圆周角定理及推论(4)圆内接四边形性质【例 1】(江苏镇江)如图, AB 为⊙ O直径, CD 为弦,且 CD AB ,垂足为 H .(1)OCD 的均分线 CE 交⊙ O于 E ,连接 OE .求证: E 为弧 ADB的中点;(2)若是⊙ O的半径为 1,CD 3 ,①求 O 到弦 AC 的距离;②填空:此时圆周上存在个点到直线 AC 的距离为1.2【解析】(1)Q OC OE ,E OCEC又OCE DCE ,E DCE .A BO HOE ∥ CD .E D 又 CD AB ,AOE BOE 90o.E 为弧 ADB的中点.(2)①Q CD AB , AB 为⊙ O的直径,CD 3 ,1CD 3.又 OC CH33 .CH 1 ,sin COB 22 2 OC 1 2 COB 60o,BAC 30o.作 OP AC 于 P ,则 OP 1OA 1 .2 2②3.【谈论】本题综合观察了利用垂径定理和勾股定理及锐角三角函数求解问题的能力 . 运用垂径定理时,需增加辅助线构造与定理相关的“基本图形”.几何上把圆心到弦的距离叫做弦心距, 本题的弦心距就是指线段OD的长 . 在圆中解相关弦心距半径相关问题时 , 常常增加的辅助线是连半径或作出弦心距, 把垂径定理和勾股定理结合起来解题. 如图 , ⊙O的半径为r , 弦心距为 d , 弦长 a 之间d 2a 2的关系为 r 2 . 依照此公式 , 在 a 、r、d 三个量中 , 知道任何两个量即可2以求出第三个量 . 平时在解题过程中要善于发现并运用这个基本图形 .【例】(安徽芜湖)如图,已知点 E 是圆 O上的点,2B、C分别是劣弧 AD 的三均分点,BOC 46o,则 AED 的度数为.【解析】由B、C 分别是劣弧AD 的三均分点知,圆心角∠∠∠AOB= BOC= COD,又 BOC 46o,因此∠AOD=138o.依照同弧所对的圆周角等于圆心角的一半。
《圆》经典例题分析总结经典例题透析1.垂径定理及其应用在圆这一章中,涉及垂径定理的有关知识点很多,如弓形中的有关计算、切线的性质、判定定理等,也是在各地中考中经常出现的一个考点.应用垂径定理可以进行线段的垂直、平分以及弓形面积的计算等.1.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(2)若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.总结升华:在解答有关圆的问题时,常需要运用图中已知条件寻找线段之间、角之间、弧之间的关系,从中探索出如等腰三角形、直角三角形等信息,从而达到解决问题的目的,此题还可以进一步求出阴影部分的周长或面积等.举一反三:【变式1】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸B.13寸C.25寸D.26寸2.圆周角及其应用圆周角与圆心角是本章中最常用的角,在中考中经常出现,一般单独考查它的题目不多,都是隐含在其他题目中.2.如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°举一反三:【变式1】如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.【变式2】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,BC=4cm.(1)说明AC⊥OD;(2)求OD的长.3.切线的性质及判定涉及圆的切线的问题在各地中考中以各种题型出现,主要考查切线的识别方法、切线的特征以及对切线的应用能力,所以应认真理解有关切线的内容,并能用来解答实际问题.3.如图所示,直线MN是⊙O的切线,A为切点,过A的作弦交⊙O于B、C,连接BC,证明∠NAC=∠B.举一反三:【变式1】如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.【变式2】如图所示,AB是⊙O的直径,是⊙O的切线,C是切点,过A、B分别作的垂线,垂足分别为E、F,证明EC=CF.4.如图所示,EB、BC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.答案:99°.解析:由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.举一反三:【变式1】如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心、OB为半径的圆与AB交于点E,与AC切于点D.求证:DE∥OC;4.两圆位置的判定在各地中考试题中,单独考查点与圆、直线与圆、圆与圆的位置关系的题目一般多以选择题、填空题为主,在解答题、探究题中也经常作为主要考查目标,这部分内容不仅考查基础知识,而且考查综合运用能力.5.填空题(1)已知圆的直径为13 cm,圆心到直线的距离为6cm,那么直线和这个圆的公共点的个数是______.(2)两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.【变式2】已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.【变式3】在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线有( )A.1条B.2条C.3条D.4条5.弧长的计算及其应用6.如图所示,在正方形铁皮下剪下一个圆形和扇形,使之恰好围成图中所示的一个圆锥模型,设圆的半径为r,扇形半径为R,则圆的半径与扇形半径之问的关系为( )A. B. C. D.6.图形面积的计算及其应用与圆有关的图形面积计算问题有圆的面积、扇形面积、圆柱及圆锥的侧面积与全面积.考查题型以选择题、填空题、解答题为主,考查重点是对有关公式的灵活运用.其中是不规则图形面积的计算,应首先将其转化为规则图形,然后再进行.7.沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( )A. B.72 C.36 D.727.圆与其他知识的综合运用8.如图所示,已知灯塔A的周围7海里的范围内有暗礁,一艘渔船在B处测得灯塔A在北偏东60°的方向,向正东航行8海里到达C处后,又测得该灯塔在北偏东30°的方向,渔船如果不改变方向,继续向东航行,有没有触的礁危险?思路点拨:若渔船在向东航行的过程中的每一位置到A点的距离都大于7海里,则不会进入危险区域,所以只要计算航线上到A点最近的点与A点的距离.解:过点A作AD⊥BC交直线BC于D,设AD=x海里.∵∠ABD=90°-60°=30°,∠ACD=90°-30°=60°,∴AB=2x,AC=2CD.∴,,∴,.∵,∴,.即.这就是说当渔船航行到点D时,在以A为圆心、以7海里为半径的圆形暗礁内.所以,若不改变航向继续向正东航行,有触礁的危险.总结升华:解这类实际问题,只需求其最小值或最大值,与已知数据进行比较,从而得出正确的结论.9.小明要在半径为1 m、圆心角为60°的扇形铁皮中剪取一块面积尽可能大的正方形铁皮,小明在扇形铁皮上设计如图1和图2所示的甲、乙两种剪取方案,请你帮小明计算一下,按甲、乙两种方案剪取所得的正方形的面积,并估算哪个正方形的面积较大.(估算时取1.73,结果保留两个有效数字).思路点拨:要比较甲、乙两方案剪取的正方形的面积大小,关键在于求出边长.解:方案甲:如图,连接OH,设EF=x,则OE=2OF,,∴.在Rt△OGH中,OH2=GH2+OG2,即,解得.方案乙:如图所示,作于M,交于N,则M、N分别是和的中点,,连接.设,则,在中,,即,∴.若取,则,.∴x2>y2,即按甲方案剪得的正方形面积较大.总结升华:此类问题是生活中的一个实际问题,解决此类问题时,应先将实际问题转化为数学问题.10.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.思路点拨:如图所示,连接OD,因为DE是⊙O的切线,故∠ODE=90°,又OA=OD,故∠A=∠ODA,∠OAP+∠OPD=90°,∠ODA+∠ADC=90°,故∠OPD=∠ADC=∠EDP,△DEP是等腰三角形.解:(1)在BF上取点P,连AP交⊙O于点D,过D作⊙O切线,交OF于E,如图即为所求.(2)∠EDP=∠DPE,或ED=EP或△PDE是等腰三角形.(3)根据题意,得△PDE是等腰三角形,∴∠EDP=∠DPE,∴,在Rt△OAP中,,∴,自变量x的取值范围是且.。
九年级上册圆题型归纳一、圆的基本概念相关(5题)题1:已知圆的半径为5cm,求圆的周长和面积。
解析:圆的周长公式为C = 2π r,面积公式为S=π r^2,其中r = 5cm。
周长C=2π×5 = 10π cm≈ 10×3.14=31.4cm面积S=π×5^2=25π cm^2≈25× 3.14 = 78.5cm^2题2:在圆O中,弦AB的长为8,圆心O到弦AB的距离为3,求圆O的半径。
解析:设圆O的半径为r,圆心O到弦AB的距离为d = 3,弦长AB=8。
根据垂径定理,半弦长、圆心到弦的距离与圆的半径构成直角三角形。
半弦长为(AB)/(2)=(8)/(2) = 4由勾股定理r^2=d^2+<=ft((AB)/(2))^2r=√(3^2)+4^{2}=√(9 + 16)=√(25)=5题3:已知圆O的直径为10,点A在圆O上,求∠ AOB的度数(其中O为圆心,B为圆上另一点且AB为圆的弦)。
解析:因为圆O的直径为10,则半径r = 5。
当AB为直径时,∠ AOB=180^∘;当AB为非直径的弦时,0^∘<∠AOB<180^∘。
由于题目没有更多关于AB弦的信息,所以仅能得出∠ AOB的取值范围是0^∘<∠ AOB≤slant180^∘题4:圆O中,弧AB所对的圆心角为60^∘,半径为6,求弧AB的长。
解析:弧长公式l=(nπ r)/(180)(n为圆心角度数,r为半径)已知n = 60^∘,r=6弧AB的长l=(60π×6)/(180)= 2π题5:判断:相等的圆心角所对的弧相等。
()解析:错误。
在同圆或等圆中,相等的圆心角所对的弧相等。
如果没有同圆或等圆这个前提条件,即使圆心角相等,所对的弧长也不一定相等。
二、与圆的切线相关(5题)题1:直线l与圆O相切于点A,圆O的半径为3,若OA与直线l的夹角为30^∘,求圆心O到直线l的距离。
中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。
二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。
2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。
3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。
4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。
三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。
相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。
2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。
3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。
四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。
外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。
2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。
3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。
五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。
圆的幂是该点的极坐标系中的ρ值。
2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。
在极坐标系中,圆的幂可以通过ρ值来计算。
3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。
篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
专题12圆综合知识回顾1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
4.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。
圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
8.切线的性质:①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
9.切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
中考数学圆题型大归纳
中考数学中关于圆的题型涵盖了很多内容,主要涉及圆的性质、圆的面积与周长、相交定理等方面。
下面对中考数学中常见的圆题型进行大归纳:
一、圆的性质题型:
1. 圆的基本概念:圆的半径、直径、周长、面积等概念的理解和计算;
2. 圆心角与弧度的关系:圆心角的大小和对应弧的关系,以及圆心角的计算;
3. 圆内接四边形:正方形、矩形、菱形等图形的性质及相关计算;
4. 圆的切线与切点:切线的性质、切线与半径的关系,以及切点的判定方法。
二、圆的面积与周长题型:
1. 圆的面积计算:根据圆的半径或直径计算圆的面积;
2. 圆的周长计算:根据圆的半径或直径计算圆的周长;
3. 圆与多边形的面积比较:圆与正方形、正三角形等图形的面积比较和计算;
4. 圆的面积与周长的关系:圆的面积与周长的计算及应用。
三、圆的相交定理题型:
1. 同弧的圆周角:同弧的圆周角的性质和计算方法;
2. 圆的相交性质:相交弧的关系、相交角的计算等;
3. 圆的切线定理:圆的切线与切点的性质、切线长度的计算方法;
4. 圆的交点的计算:两个圆的交点的计算和判定方法。
以上是中考数学中关于圆的题型的大致分类和内容归纳,希望对你的学习有所帮助。
在备考中考数学的过程中,重点理解圆的基本性质和计算方法,灵活运用各种定理和公式,多做相关的练习题目,扎实掌握圆的相关知识,相信你一定能在考试中取得优异的成绩。
祝你学业有成,考试顺利!。
教学内容圆的题型分类教学目标巩固圆的相关题型重点垂径定理、切线性质的运用难点垂径定理、切线性质的运用教学过程圆中辅助线1、有关弦的问题,常做其弦心距,构造直角三角形2、有关直径问题,常做直径所对的圆周角3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系【类型1】:圆的基本性质的综合应用1.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=【变式练习】2.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC 的长为【类型2】:圆的相切和圆中位置关系的问题题型一:连半径,证垂直例1、如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD 的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.例2、如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【课堂练习】1、如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE 交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;3、如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,CT=,求AD的长.4、如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.5、如图,四边形ABCD是菱形,对角线BD上有一点O,以O为圆心,OD长为半径的圆记为⊙O。
中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。
二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。
2. 切线性质:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。
4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。
圆锥椭圆的两焦点是圆锥的底面圆心和顶点。
双曲线类似。
三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。
如圆形广场、圆形剧场等。
2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。
这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。
3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。
这些元件的形状和布局对于电子设备的功能和性能有着重要影响。
4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。
对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。
四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。
我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。
2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。
3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。
初三圆的练习题典型总结初三数学学习中,圆是一个重要的概念,涉及到的内容包括圆的周长、面积、弧长、扇形面积等。
在备考中,经常会遇到涉及圆的练习题,做好这部分题目的典型总结,可以帮助我们更好地掌握圆的相关知识,提高解题的能力。
一、圆的基本概念在开始总结练习题之前,我们首先回顾一下圆的基本概念。
圆是一个平面内到定点距离都相等的点的集合,这个定点叫做圆心,到圆心的距离叫做半径。
圆内半径相等的弧互相对应,称为圆周角。
圆内距离圆心相等的弧互相对应,称为等弧。
掌握了这些基本概念,我们才能更好地理解和解答练习题。
二、圆的周长和面积1. 计算圆的周长圆的周长公式为C = 2πr,其中r为半径。
当给出半径时,只需将其代入公式中计算即可。
在做题时,需要注意单位的转换,并保留合适的精度。
2. 计算圆的面积圆的面积公式为A = πr²,通过将半径代入公式中计算即可。
同样需要注意单位的转换和精度的控制。
三、弧长和扇形面积1. 计算圆弧的长度当给出圆心角的度数或弧度时,可以通过计算圆的周长与圆心角的比例关系,得到弧长的计算公式。
具体的计算方法要根据题目中给出的信息来确定。
2. 计算扇形的面积扇形是由圆心角和圆的弧长组成的一部分圆。
扇形的面积计算公式为A = 1/2r²θ,其中θ为圆心角的度数或弧度。
在计算时,需要注意单位的转换和精度的控制。
四、综合运用与解答技巧在练习解答圆的题目时,以下几点是需要注意的:1. 仔细阅读题目,理解题意。
2. 画图、标注,帮助更好地理解和解题。
3. 利用已知条件,分析问题。
4. 灵活运用相应的公式和定理。
5. 注意精度控制,保留合适的小数位数或计算结果。
6. 检查答案,确保解题过程正确并得到准确的结果。
通过练习题的总结,我们可以发现圆的相关知识是有一定规律可循的,熟练掌握其中的计算方法和解题思路,可以帮助我们在考试中更加得心应手。
因此,我们在学习中应该注重对圆的练习题进行分类总结,积极总结解题思路和技巧,并多加练习,在实践中不断提高自己的解题能力。
中考圆的常见题型总结中考圆的常见题型总结圆是中考数学中的一个重要概念,掌握圆的性质和相关题型能有效提高数学成绩。
下面将对中考圆的常见题型进行总结。
常见题型一:圆的基本性质题1. 求圆的面积和周长:圆的面积公式为:S = πr²圆的周长公式为:C = 2πr2. 求圆心角的度数:圆心角所对的弧与圆周所对的角相等,所以可以用圆心角的度数去表示弧的度数。
常见题型二:圆的位置关系题1. 判断关系:a. 外切圆和内切圆的位置关系:两个相切的圆,内切圆的圆心在外切圆的圆心的同一直线上。
b. 相交关系:两个相交的圆在两个交点的位置关系,可以根据边长和半径等关系进行求解。
c. 同圆关系:两个同圆的圆是重合的,即它们的半径相等。
d. 不交相离:两个完全不相交的圆,它们的位置关系为不交相离。
2. 判断位置:判断一个点在圆的内部、外部还是圆上,可以通过求这个点到圆心的距离是否等于圆的半径来判断。
常见题型三:弧和扇形的性质题1. 弧段公式:已知圆的半径和弧长,可以用弧长公式计算圆心角的度数。
2. 扇形面积公式:已知扇形中心角的度数和半径,可以用扇形面积公式计算扇形的面积:S = (θ/360°)πr²常见题型四:切线和切点的性质题1. 切线的定义:切线是与圆只有一个交点的直线。
2. 切点的性质:切点与切线垂直,切点到圆心的距离等于半径。
常见题型五:菱形和正方形的圆内接问题1. 菱形的性质:菱形的四个角都是直角,因此可以通过对角线的性质判断是否为菱形。
2. 正方形的性质:正方形是一种特殊的菱形,它的四条边相等且四个角都是直角。
常见题型六:圆锥、圆台和球的性质题1. 圆锥的性质:圆锥是一个底面是圆而侧面是圆锥曲线的立体。
求圆锥的体积公式为:V = (1/3)πr²h求圆锥的侧面积公式为:S = πrl2. 圆台的性质:圆台是一个底面是圆而顶面平行于底面的立体。
求圆台的体积公式为:V = (1/3)π(R² + r² + Rr)h求圆台的侧面积公式为:S = π(R + r)l3. 球的性质:求球的体积公式为:V = (4/3)πr³求球的表面积公式为:S = 4πr²以上是中考圆的常见题型总结,通过对这些题目的分析和解答,可以有效提高对圆的理解和掌握,并且能够在中考数学中灵活运用。
圆的基本题型纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;一般在10分-15分左右,圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有非常重要的地位,另外与圆有关的实际应用题,阅读理解题,探索存在性问题仍是热门考题,应引起注意.下面究近年来圆的有关热点题型,举例解析如下。
一、圆的性质及重要定理的考查基础知识链接:(1)垂径定理;(2)同圆或等圆中的圆心角、弦、弧之间的关系.(3)圆周角定理及推论(4)圆内接四边形性质【例1】(江苏镇江)如图,为⊙O直径,为弦,且,垂足为.(1)的平分线交⊙O于,连结.求证:为弧ADB的中点;(2)如果⊙O的半径为,,①求到弦的距离;②填空:此时圆周上存在个点到直线的距离为.【解析】(1),又,..又,.为弧ADB的中点.(2)①,为⊙O的直径,,.又,.,.作于,则.②3.【点评】本题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的能力.运用垂径定理时,需添加辅助线构造与定理相关的“基本图形”.几何上把圆心到弦的距离叫做弦心距,本题的弦心距就是指线段OD的长.在圆中解有关弦心距半径有关问题时,常常添加的辅助线是连半径或作出弦心距,把垂径定理和勾股定理结合起来解题.如图,⊙O的半径为,弦心距为,弦长之间的关系为.根据此公式,在、、三个量中,知道任何两个量就可以求出第三个量.平时在解题过程中要善于发现并运用这个基本图形.【例2】(安徽芜湖)如图,已知点E是圆O上的点,B、C分别是劣弧的三等分点,,则的度数为.【解析】由B、C分别是劣弧的三等分点知,圆心角∠AOB=∠BOC=∠COD, 又,所以∠AOD=138º.根据同弧所对的圆周角等于圆心角的一半。
从而有=69º.点评本题根据同圆或等圆中的圆心角、圆周角的关系。
【强化练习】【1】.如图,⊙O是ABC的外接圆,,AD,CE分别是BC,AB上的高,且AD,CE交于点H,求证:AH=AO(1)如图,在⊙O中,弦AC⊥BD,OE⊥AB,垂足为E,求证:OE=12 CD(2)如图,AC,BD是⊙O的两条弦,且ACBD,⊙O的半径为12,求AB2+CD2的值。
【2】(第25题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.二、直线与圆的位置关系基础知识链接:1、直线与圆的位置关系有三种:⑴如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离.⑵如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,此时这条直线叫做圆的切线,这个公共点叫做切点.⑶如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,此时这条直线叫做圆的割线,这两个公共点叫做交点.2、直线与圆的位置关系的判定;3、弦切角定理弦切角等于它所夹的弧对的圆周角;4.和圆有关的比例线段(1)相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等;(2)推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项;(3)切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(4)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
5.三角形的内切圆(1)有关概念:三角形的内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形;6、圆的切线的性质与判定。
【例1】(甘肃兰州)如图,四边形内接于⊙O,是⊙O的直径,,垂足为,平分.(1)求证:是⊙O的切线;(2)若,求的长.【解析】(1)证明:连接,平分,....,.(2)是直径,.,.平分,..在中,.在中,.的长是1cm,的长是4cm.【点评】证明圆的切线,过切点的这条半径为必作辅助线.即经过半径的外端且垂直于这条半径的直线是圆的切线.【例2】(广东茂名)如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3)当AB=5,BC=6时,求⊙O的半径.(4分)【解析】(1)在△ABC中,∵AB=AC,∴∠ABC=∠C.∵DE∥BC,∴∠ABC=∠E,∴∠E=∠C.又∵∠ADB=∠C,∴∠ADB=∠E.(2)当点D是弧BC的中点时,DE是⊙O的切线.理由是:当点D是弧BC的中点时,则有AD⊥BC,且AD过圆心O.又∵DE∥BC,∴AD⊥ED.∴DE是⊙O的切线.(3)连结BO、AO,并延长AO交BC于点F,则AF⊥BC,且BF=BC=3.又∵AB=5,∴AF=4.设⊙O的半径为,在Rt△OBF中,OF=4-,OB=,BF=3,∴=3+(4-)解得=,∴⊙O的半径是.【点评】本题综合运用了等腰三角形的性质,圆的切线判定,解题最关键是抓住题中所给的已知条件,构造直角三角形,探索出不同的结论.【例4】已知:如图7,点P是半圆O的直径BA延长线上的点,PC切半圆于C点,CD⊥AB于D点,若PA:PC=1:2,DB=4,求tan∠PCA及PC的长。
图7证明:连结CB∵PC切半圆O于C点,∴∠PCA=∠B∵∠P=∠P,∴△PAC∽△PCB∴AC:BC=PA:PC∴∵AB是半圆O的直径,∴∠ACB=90°又∵CD⊥AB∴∴AB=AD+DB=5∵∴【例5】已知:如图8,在Rt△ABC中,∠B=90°,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D。
求证:(1)AC是⊙D的切线;(2)AB+EB=AC分析:(1)欲证AC与⊙D相切,只要证圆心D到AC的距离等于⊙D的半径BD。
因此要作DF⊥AC于F(2)只要证AC=AF+FC=AB+EB,证明的关键是证BE=FC,这又转化为证△EBD≌△CFD。
证明:(1)如图8,过D作DF⊥AC,F为垂足∵AD是∠BAC的平分线,DB⊥AB,∴DB=DF∴点D到AC的距离等于圆D的半径∴AC是⊙D的切线(2)∵AB⊥BD,⊙D的半径等于BD,∴AB是⊙D的切线,∴AB=AF∵在Rt△BED和Rt△FCD中,ED=CD,BD=FD∴△BED≌△FCD,∴BE=FC∴AB+BE=AF+FC=AC小结:有关切线的判定,主要有两个类型,若要判定的直线与已知圆有公共点,可采用“连半径证垂直”的方法;若要判定的直线与已知圆的公共点没有给出,可采用“过圆心作垂线,证垂线段等于半径”的方法。
此例题属于后一类【例6】已知:如图9,AB为⊙O的弦,P为BA延长线上一点,PE与⊙O相切于点E,C为中点,连CE交AB于点F。
求证:分析:由已知可得PE2=PA·PB,因此要证PF2=PA·PB,只要证PE=PF。
即证∠PFE=∠PEF。
证明一:如图9,作直径CD,交AB于点G,连结ED,∴∠CED=90°∵点C为的中点,∴CD⊥AB,∴∠CFG=∠D∵PE为⊙O切线,E为切点∴∠PEF=∠D,∴∠PEF=∠CFG∵∠CFG=∠PFE,∴∠PFE=∠PEF,∴PE=PF∵PE2=PA·PB,∴PF2=PA·PB证明二:如图9-1,连结AC、AE图9-1∵点C是的中点,∴,∴∠CAB=∠AEC∵PE切⊙O于点E,∴∠PEA=∠C∵∠PFE=∠CAB+∠C,∠PEF=∠PEA+∠AEC∴∠PFE=∠PEF,∴PE=PF∵PE2=PA·PB,∴PF2=PA·PB【例7】(1)如图10,已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F(不与B重合),直线l交⊙O于C、D,交BA延长线于E,且与AF 垂直,垂足为G,连结AC、AD图10图10-1求证:①∠BAD=∠CAG;②AC·AD=AE·AF(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其它条件不变。
①请你在图10-1中画出变化后的图形,并对照图10标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由。
证明:(1)①连结BD∵AB是⊙O的直径,∴∠ADB=90°∴∠AGC=∠ADB=90°又∵ACDB是⊙O内接四边形∴∠ACG=∠B,∴∠BAD=∠CAG②连结CF∵∠BAD=∠CAG,∠EAG=∠FAB∴∠DAE=∠FAC又∵∠ADC=∠F,∴△ADE∽△AFC∴,∴AC·AD=AE·AF(2)①见图10-1②两个结论都成立,证明如下:①连结BC,∵AB是直径,∴∠ACB=90°∴∠ACB=∠AGC=90°∵GC切⊙O于C,∴∠GCA=∠ABC∴∠BAC=∠CAG(即∠BAD=∠CAG)②连结CF∵∠CAG=∠BAC,∠GCF=∠GAC,∴∠GCF=∠CAE,∠ACF=∠ACG-∠GFC,∠E=∠ACG-∠CAE∴∠ACF=∠E,∴△ACF∽△AEC,∴∴AC2=AE·AF(即AC·AD=AE·AF)说明:本题通过变化图形的位置,考查了学生动手画图的能力,并通过探究式的提问加强了对学生证明题的考查,这是当前热点的考题,希望引起大家的关注。
【强化练习】【1】(第22题)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【2】(第23题)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.【3】(第25题)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.【4】(第24题)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.【5】(第27题)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.三、圆与圆的位置关系的考查基础知识链接:如果两个圆没有公共点,那么就说这两个圆相离,如图(1)、(2)、(3)所示.其中(1)又叫做外离,(2)、(3)又叫做内含.(3)中两圆的圆心相同,这两个圆还可以叫做同心圆.如果两个圆只有一个公共点,那么就说这两个圆相切,如图(4)、(5)所示.其中(4)又叫做外切,(5)又叫做内切.如果两个圆只有两个公共点,那么就说这两个圆相交,如图(6)所示.【例1】(甘肃兰州).如图是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A.内含B.相交C.相切D.外离【解析】图中的两圆没有公共点,且一个圆上的所有点都在另一个圆的外部,故两圆外离,选D.【点评】圆与圆的位置关系有五种:外离、外切、相交、内切、内含.其关系可以用圆与圆公共点的个数及点与圆的位置关系来判定,也可以用数量关系来表示圆与圆的位置关系:如果设两圆的半径为、,两圆的圆心距为d,则圆与圆的位置关系与数量关系如下表【例2】(赤峰市)如图(1),两半径为的等圆⊙O1和⊙O2相交于两点,且⊙O2过点.过点作直线垂直于,分别交⊙O1和⊙O2于两点,连结.(1)猜想点与⊙O1有什么位置关系,并给出证明;(2)猜想的形状,并给出证明;(3)如图(2),若过的点所在的直线不垂直于,且点在点的两侧,那么(2)中的结论是否成立,若成立请给出证明.【解析】解:(1)在上证明:∵⊙O2过点,.又⊙O1的半径也是,点在⊙O1上.(2)是等边三角形证明:,.是⊙O2的直径,是⊙O1的直径,即,在上,在上.连结,则是的中位线..,则是等边三角形.(3)仍然成立.证明:由(2)得在⊙O1中弧MN所对的圆周角为.在⊙O2中弧MN所对的圆周角为.当点在点的两侧时,在⊙O1中弧MN所对的圆周角,在⊙O2中弧MN所对的圆周角,是等边三角形.注:(2),(3)是中学生猜想为等腰三角形证明正确给一半分.。