第7章 稳态热传导问题的有限元法
- 格式:ppt
- 大小:862.00 KB
- 文档页数:48
有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。
它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。
有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。
1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。
1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。
通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。
此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。
2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。
它将求解域划分为许多小单元,每个小单元称为有限元。
在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。
2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。
这是通过将原始方程乘以一个测试函数并进行积分得到的。
这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。
2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。
2.6 二维稳态热传导问题一、稳态热传导有限元的一般格式 具有内热源的二维稳态热传导问题的基本方程为ðððððð�aa xx ððððððxx �+ðððððð�aa ðððððððððð�+QQ cccc=00 按照有限元法公式推导的标准步骤,首先将求解区域A 离散为有限个单元体,在每个单元体内用伽辽金法选择权函数,得到:∬NN ii �ððððxx �aa xx ððððððxx �+ðððððð�aa ðððððððððð�+QQcccc �dddd dd ee=00 ii =11,⋯,nn (2.6.1) 上式中:dd ee 为单元面积,nn 为每个单元的节点个数,NN ii �xx ,ðð�为插值函数,它同样具有以下性质:NN ii �xx jj ,ððjj �=�00当jj ≠ii 时11当jj =ii 时和 ∑NN ii =11每个单元内各点的温度TT 可以近似地用单元节点温度ððii 插值得到:TT =�NN ii �xx ,ðð�ððii nnii =11=[NN ]{ðð}ee式中:[NN ]=[NN 11NN 22⋯NN nn ],{ðð}ee 为单元节点温度列阵。
基于有限元方法的热传导分析及其工程应用热传导是热力学中的一个重要现象,它描述了热量在物体中的传递过程。
在许多工程领域中,对热传导进行准确的分析和预测至关重要。
有限元方法是一种常用的数值模拟方法,可以有效地用于热传导分析,并在工程实践中得到了广泛的应用。
1. 有限元方法简介有限元方法是一种将复杂问题离散化为简单问题的数值方法。
它将需要求解的区域划分为有限数量的子区域,称为单元。
通过在每个单元上建立适当的数学模型,并考虑其边界条件,可以得到整个区域的近似解。
有限元方法可以应用于不同的物理场问题,例如结构力学、热传导、流体力学等。
2. 热传导的数学模型热传导过程可以用热传导方程表达。
对于三维空间中的热传导问题,热传导方程可以写作:∇·(k∇T) + q = ρCp∂T/∂t其中,T是温度分布,k是热导率,q是体积源项,ρ是密度,Cp是比热容。
这是一个偏微分方程,可通过有限元方法进行离散化求解。
3. 有限元离散化过程为了使用有限元方法解决热传导问题,首先需要将待求解区域划分为有限数量的单元。
常见的单元形状有三角形、四边形单元等。
然后,在每个单元内选择适当的插值函数来近似温度场的分布。
通过在每个单元上建立局部方程,并将它们组装成一个整体方程,可以得到一个线性方程组。
通过求解这个方程组,可以得到整个区域的温度分布。
4. 边界条件的处理在热传导问题中,边界条件起着重要的作用。
边界条件可以分为温度边界条件和热通量边界条件。
温度边界条件指定了边界上的温度值,而热通量边界条件指定了热量在边界上的传递速率。
在有限元方法中,通过在网格节点处施加相应的边界条件,可以得到方程组的边界条件部分。
5. 工程应用基于有限元方法的热传导分析在工程中有着广泛的应用。
以热导率为例,对于材料的选取和设计,了解其热导率的分布是非常重要的。
有限元方法可以对材料的热导率进行模拟和预测,从而指导工程设计和优化。
同时,在导热设备的设计中,有限元方法也可以用来评估材料的热传导性能,确定热传导路径,优化传热效果。
有限元线法在热传导问题中的发展现状有限元线法在热传导问题中的发展现状一、介绍1、有限元线法(FEM),是一种将力学系统的几何性质和材料属性结合在一起的解析方法,是解决力学问题的主要方法之一。
2、其在热传导问题中,可以用来计算温度场、热流和热量传递过程。
二、发展历程1、 1960年,R. Kosloff 等人首次将有限元法用于热传导问题,他们使用有限元积分方法,解决了半空间热传导问题。
2、 1970 年,R. S. Averill 和G. Y. Yu在其著作"Finite Element Analysis Of Thermal Transport Problems"中,系统地论述了有限元法用于热传导的数学模型,使此方法在热学领域应用得到突飞猛进。
3、 1980 年, J. J. Roques 和J. Legais 提出了原子键链分子动力学(AMBER) 模型新方法,解决了边界和凝聚态体中由热传导和热扩散引起的温度变化问题。
4、 2000 年,Y. S. Li、R. S. Elliott以及R. K. Marcus等人在《Wiley Periodicals Inc. Applied Numerical Mathematics》${2004}$年出版的一篇文章中,深入研究了FEM在热传导中的理论与方法,能够有效地解决非线性热传导问题。
三、近年发展1、朝着更容易使用、节约时间的方向发展,有限元线法的发展方向有:(1) 自动生成程序:自动生成识别器系统,用于自动生成、确定和交互使用有限元法程序。
(2) 基于网格优化的程序:改进网格,自动优化有限元法下的固有源状态精度。
(3) 热传导分析器:可用于热传导问题中复杂场景的几何建模,以及对复杂热源场特性的分析。
2、先进的微网格热传导分析:采用微网格技术为基础,基于微结构的理论和方法,进行高精度热传导分析。
3、柔性的多物理场分析:分析热源交互作用的特性,提供热传导源中温度场的分析。
6. 穩態熱傳導問題的有限元法本章的內容如下:6.1熱傳導方程與換熱邊界6.2穩態溫度場分析的一般有限元列式 6.3三角形單元的有限元列式 6.4溫度場分析舉例6.1熱傳導方程與換熱邊界在分析工程問題時,經常要瞭解工件內部的溫度分佈情況,例如發動機的工作溫度、金屬工件在熱處理過程中的溫度變化、流體溫度分佈等。
物體內部的溫度分佈取決於物體內部的熱量交換,以及物體與外部介質之間的熱量交換,一般認為是與時間相關的。
物體內部的熱交換採用以下的熱傳導方程(Fourier 方程)來描述,Q z T z y T y x T x tT c+⎪⎭⎫⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂z y x λλλρ (6-1)式中ρ為密度,kg/m 3; c 為比熱容,K)J/(kg ⋅;z y x λλλ,,為導熱係數,)k m w ⋅;T 為溫度,℃;t 為時間,s ;Q 為內熱源密度,w/m 3。
對於各向同性材料,不同方向上的導熱係數相同,熱傳導方程可寫為以下形式,Q zT yT xT tT c222222+∂∂+∂∂+∂∂=∂∂λλλρ (6-2)除了熱傳導方程,計算物體內部的溫度分佈,還需要指定初始條件和邊界條件。
初始條件是指物體最初的溫度分佈情況,() z y,x,T T00t ==(6-3)邊界條件是指物體外表面與周圍環境的熱交換情況。
在傳熱學中一般把邊界條件分為三類。
1)給定物體邊界上的溫度,稱為第一類邊界條件。
物體表面上的溫度或溫度函數為已知,s sT T=或 ),,,(t z y x T Ts s=(6-4)2)給定物體邊界上的熱量輸入或輸出,稱為第二類邊界條件。
已知物體表面上熱流密度,s sz zy yx xq n zT n yT n xT =∂∂+∂∂+∂∂)(λλλ或),,,()(t z y x q n zT n yT n xT s sz zy yx x=∂∂+∂∂+∂∂λλλ(6-5)3)給定對流換熱條件,稱為第三類邊界條件。