余弦定理教学设计经典
- 格式:doc
- 大小:177.00 KB
- 文档页数:10
余弦定理教案设计教学内容:余弦定理一、教学目标1.了解余弦定理的概念和公式。
2.能够应用余弦定理解决三角形的边与角之间的关系问题。
3.提高学生的数学推理和解决问题的能力。
二、教学重点与难点:1.重点:理解余弦定理的概念和公式,应用余弦定理解决问题。
2.难点:灵活运用余弦定理解决各种实际问题。
三、教学准备:1.教材《数学》课本、教具:黑板、彩色粉笔、三角尺、直尺和练习题。
2.多媒体设备。
四、教学过程:1.导入引入:教师引导学生回顾正弦定理的概念和公式,并举例说明其应用。
然后介绍余弦定理的概念,并与正弦定理进行对比,引出余弦定理的公式。
2.理论讲解:教师通过多媒体展示余弦定理的公式:a² = b² + c² - 2bc cosA,其中a为三角形的一边,b、c为另外两边,A为夹角。
讲解余弦定理的推导过程,并注意解释其中的符号含义。
3.实例演示:教师通过具体的实例演示如何应用余弦定理解决问题,包括计算未知边长、未知角度等。
并让学生在黑板上模仿演示。
4.小组讨论:教师组织学生分成小组,每组完成几道余弦定理的练习题,要求学生相互讨论并解答问题。
教师巡视指导,及时纠正错误。
5.教师指导:教师在小组讨论的过程中,根据学生的理解情况和解答过程,及时给予指导和解释。
鼓励学生思考、提问和探讨。
6.全课总结:教师对余弦定理的应用进行总结,并强调余弦定理在解决实际问题中的重要性。
鼓励学生在学习中多加思考,灵活运用所学知识。
7.作业布置:布置相关的习题作业,并要求学生认真完成,巩固所学内容。
要求学生在实际生活中多加观察,发现并解决问题。
五、教学反思:本次教学中,我注意引导学生主动参与学习,提高他们的解决问题和表达能力。
在教学中,要注意理论与实践相结合,引导学生将所学知识应用到实际问题中去解决。
同时,要及时纠正错误,鼓励学生勇于提问和探索。
通过这样的教学方式,可以更好地帮助学生理解和掌握余弦定理的概念和运用。
余弦定理教学设计一等奖教学设计:使用余弦定理求解三角形边长和角度一、教学目标:1.了解余弦定理的概念和公式;2.掌握余弦定理求解三角形边长和角度的方法;3.能够运用余弦定理解决实际问题。
二、教学内容:1.余弦定理的概念和公式;2.求解三角形的边长和角度。
三、教学方法:1.板书法:结合图示,介绍余弦定理的公式及其应用方法;2.讲解法:通过实例演示,阐述余弦定理的求解过程;3.练习法:让学生进行相关练习,加深对余弦定理的理解和运用能力。
四、教学过程:1.引入余弦定理教师可以利用图示展示余弦定理的概念和公式,向学生介绍余弦定理的应用场景,例如计算三角形的边长和角度。
教师可以通过实例解释,让学生理解余弦定理的实际应用。
2.讲解求解过程教师利用具体实例演示余弦定理求解三角形边长和角度的具体过程。
首先,提取已知数值,例如已知两条边的长度和夹角的大小,然后根据余弦定理的公式计算第三边或第一个角度,最后运用三角函数求解另外两个角度或边长。
3.练习教师设计相关练习题,让学生应用余弦定理求解三角形的边长和角度。
教师可以根据学生的不同认知能力,选择不同难度的习题,帮助学生充分掌握余弦定理的应用方法。
五、教学评估:教师可以通过学生课堂表现、分组讲解或闭卷考试等方式来评估学生对余弦定理的掌握情况。
通过评估结果,教师可以调整教学设计,加强学生弱项的讲解和练习。
同时,也可以对学生进行及时的反馈和指导,帮助学生解决存在的问题,提高教学效果。
六、教学建议:在教学过程中,教师可以采用举例分析的方式,让学生通过具体实例来理解余弦定理的概念和应用方法。
同时,教师也应该充分调动学生的主动性和创造性,鼓励学生独立思考和解决问题的能力,培养学生的数学思维和创新能力。
余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。
三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
《余弦定理》教学设计1. 能够理解余弦定理的原理和应用;2. 能够正确运用余弦定理解决实际问题;3. 培养学生分析和解决问题的能力。
教学内容:余弦定理的原理和公式。
教学步骤:Step 1: 引入通过介绍一个真实生活中的问题,引发学生对余弦定理的兴趣。
例如,我们可以以一个钓鱼的故事开始,告诉学生一个人站在岸上想要和朋友相距一定的距离去钓鱼。
然后问学生有没有办法求得这个距离,引出余弦定理的概念。
Step 2: 余弦定理的定义向学生介绍余弦定理的定义和公式:在一个三角形ABC中,设边AB=c,边BC=a,边CA=b,设∠C的对边为c,那么余弦定理可以表示为c²= a²+ b²- 2ab cosC。
通过解释公式中的各个部分,让学生理解其含义。
Step 3: 例题讲解选取一到两个实际问题进行例题讲解,通过实例让学生理解余弦定理的具体应用。
例如,可以以求解一个不规则三角形的边长为例,根据已知边和夹角,使用余弦定理计算第三边的长度。
Step 4: 学生练习让学生在小组内自主解决一些简单的余弦定理问题,例如求解一个直角三角形的斜边长度,或是求解一个具体角度的三角形的边长等。
然后让学生互相讨论解题思路,并展示解答过程给全班。
Step 5: 进一步拓展引导学生运用余弦定理解决一些更复杂的问题,例如求解一个不规则多边形的面积,或是求解一个高楼之间的夹角等。
让学生思考如何灵活运用余弦定理,并激发他们对数学问题的兴趣。
Step 6: 总结和归纳通过学生练习和讨论,总结余弦定理的应用范围和解题方法。
强调理解概念和原理的重要性,同时引导学生思考如何应用余弦定理来解决其他类型的问题。
Step 7: 拓展练习布置一些拓展练习题,要求学生独立解决。
这些问题可以涉及到其他几何概念的综合运用,如正弦定理、勾股定理等。
同时鼓励学生积极思考并尝试解决其他实际问题,培养他们的综合分析和解决问题的能力。
Step 8: 总结在课堂结束前,对学生做一次课堂总结,回顾和概括余弦定理的重点内容。
“余弦定理”教学设计作为一位不辞辛劳的人民教师,可能需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么应当如何写教学设计呢?下面是作者整理的“余弦定理”教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
“余弦定理”教学设计1教材分析这是高三一轮复习,内容是必修5第一章解三角形。
本章内容准备复习两课时。
本节课是第一课时。
标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。
通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形。
(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。
本章内容与三角函数、向量联系密切。
作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。
学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
教学目标知识目标:(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。
(2)学生学会分析问题,合理选用定理解决三角形综合问题。
能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。
情感目标:通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。
教学方法探究式教学、讲练结合重点难点1、正、余弦定理的对于解解三角形的合理选择;2、正、余弦定理与三角形的有关性质的综合运用。
余弦定理教案设计一、教学目标1. 知识与技能:(1)理解余弦定理的定义和表达式;(2)学会运用余弦定理解决三角形中的边角关系问题。
2. 过程与方法:(1)通过观察和分析,引导学生发现余弦定理的规律;(2)运用几何画板或实物模型,直观演示余弦定理的应用。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生合作交流、解决问题的能力。
二、教学重点与难点1. 教学重点:(1)余弦定理的定义和表达式;(2)运用余弦定理解决三角形中的边角关系问题。
2. 教学难点:(1)余弦定理在实际问题中的应用;(2)灵活运用余弦定理解决复杂问题。
三、教学准备1. 教师准备:(1)熟悉余弦定理的相关知识;(2)准备几何画板或实物模型。
2. 学生准备:(1)掌握三角形的性质;(2)了解勾股定理。
四、教学过程1. 导入新课(1)回顾三角形的性质和勾股定理;(2)提出问题:如何解决三角形中的边角关系问题?2. 探究新知(1)引导学生观察和分析三角形中的边角关系;(2)引导学生发现余弦定理的规律;(3)给出余弦定理的定义和表达式。
3. 动手实践(1)让学生利用几何画板或实物模型,验证余弦定理;(2)让学生尝试解决一些简单的三角形边角关系问题。
4. 拓展应用(1)让学生运用余弦定理解决复杂问题;(2)引导学生发现余弦定理在实际生活中的应用。
五、课堂小结1. 回顾本节课所学内容,总结余弦定理的定义和表达式;2. 强调余弦定理在解决三角形边角关系问题中的应用;3. 鼓励学生课后思考和探索余弦定理在其他领域的应用。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组合作交流的表现,评价学生的学习态度和合作能力。
2. 作业评价:通过学生提交的作业,评价学生对余弦定理的理解和运用情况,以及解题的准确性。
3. 课后反馈评价:通过与学生的交流或家长反馈,了解学生对余弦定理的掌握程度和在学习过程中遇到的问题。
余弦定理教案【余弦定理教案】一、教学目标1. 理解余弦定理的概念和原理。
2. 学会运用余弦定理解决实际问题。
3. 培养学生的逻辑思维和问题解决能力。
二、教学准备1. 教材《数学》2. 教学课件3. 黑板和粉笔4. 教学实例和练习题三、教学过程【引入】1. 使用生活中的实例引入余弦定理的概念,例如:树木倾斜、建筑物斜倚等。
2. 引发学生思考,概括出三角形中的边与角之间的关系。
【讲解】1. 介绍余弦定理的定义和公式:c² = a² + b² - 2abcosC。
2. 解读余弦定理中的各个变量及其意义:c为第三边,a和b为两边,C为夹角。
3. 通过示例演示如何运用余弦定理计算三角形的边长和角度。
4. 引导学生发现余弦定理的应用范围和特点。
【示范】1. 给出几道实际问题,如建筑物斜坡的高度计算、航海中船舶航线的计算等。
2. 详细演示解决实际问题的步骤和计算方法。
3. 注重解题思路的讲解,培养学生的问题解决思维能力。
【练习】1. 分发练习题,让学生独立完成。
2. 审阅学生练习题,及时纠正错误,解答疑惑。
3. 批评与表扬结合,激发学生的学习兴趣和主动性。
【拓展】1. 引导学生思考余弦定理与正弦定理的关系和区别。
2. 鼓励学生自主学习与探究,拓展应用。
四、课堂总结1. 通过本节课的学习,希望学生能够熟练掌握余弦定理的应用方法。
2. 提醒学生在实际问题中合理选择使用余弦定理还是其他方法。
五、课后作业1. 完成课后练习题。
2. 总结复习余弦定理的要点和注意事项。
六、教学反思本节课通过引入实际问题,结合示范和练习,使学生理解和掌握了余弦定理的原理和应用方法。
教材和课件的使用,以及实践演示的方式,能够有效地提高学生的学习兴趣和主动性。
需要注意的是,在讲解过程中要注重与学生的互动,引导他们思考,并及时纠正误区,保证学习效果的最大化。
高中数学余弦定理教案范例
一、教学目标:
1. 了解余弦定理的概念和原理。
2. 掌握余弦定理的公式及应用。
3. 能够运用余弦定理解决相关问题。
二、教学重点:
1. 余弦定理的概念和公式。
2. 余弦定理在解决实际问题中的应用。
三、教学难点:
1. 如何灵活运用余弦定理解决实际问题。
四、教学内容:
1. 余弦定理的引入:介绍余弦定理的概念和原理。
2. 余弦定理的公式推导:通过几何推导,得出余弦定理的公式。
3. 余弦定理的应用:通过一些实际问题示例,让学生掌握余弦定理的应用技巧。
五、教学方法:
1. 讲解与演示相结合,提高学生的理解力。
2. 引导学生思考,激发学生学习的积极性。
3. 练习与实践相结合,巩固知识点。
六、教学步骤:
1. 引入:通过一个实际问题引入余弦定理的概念。
2. 理论讲解:介绍余弦定理的公式及推导过程。
3. 实例讲解:通过几个例题,演示如何运用余弦定理解决问题。
4. 练习与讨论:让学生进行练习,并讨论解题思路。
5. 总结与反思:总结本节课的重点内容,引导学生思考。
6. 作业布置:布置相关作业,巩固所学知识。
七、教学资源:
1. 课本、习题册等相关教材。
2. 多媒体设备。
八、教学反馈:
1. 学生课堂表现情况。
2. 学生作业完成情况。
九、教学评价:
1. 教学效果评价。
2. 学生学习情况评价。
以上是余弦定理的教案范例,希望对您有所帮助。
祝教学顺利!。
《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
.2余弦定理教学设计一、教学目标认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形;能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。
二、教学重难点重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。
难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。
探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。
学生已经具备了勾股定理的知识,即当∠C=900时,有c2=a2+b2。
作为一般的情况,当∠C≠900时,三角形的三边满足什么关系呢学生一时很难找到思路。
最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。
因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。
在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。
三、学情分析和教学内容分析本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。
余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。
教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。
在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。
在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。
在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。
在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。
四、教学过程环节一 【创设情境】1、复习引入让学生回答正弦定理的内容和能用这个定理解决哪些类型的问题。
2、情景引入如图1,某隧道施工队为了开凿一条山地隧道,需要测算隧道通过这座山的长度。
工程技术人员先在地面上选一适当的位置A ,量出A 到山脚B 、C 的距离,再利用经纬仪测出A 对山脚BC (即线段BC )的张角,最后通过计算求出山脚的长度BC 。
学生不难将这个实际问题转化到数学问题: 已知三角形的两边和一个夹角,去求三角形的另外一边。
这个问题是不能使用正弦定理来求解的。
学生急切的希望应用新知识来解决这个问题。
环节二 【导入新课】问题:在△ABC 中,当∠C=90°时,有c 2=a 2+b 2.若a ,b 边的长短不变,变换∠C 的大小时,c 2与a 2+b 2有什么大小关系呢请同学们思考。
教师鼓励学生积极思考,大胆发言,启发学生解决问题,学生回答,借助于多媒体动画演示结果。
如图2,若∠C <90°时,由于AC 与BC 的长度不变,所以AB 的长度变短,即c 2<a 2+b 2.如图3,若∠C >90°时,由于AC 与BC 的长度不变,所以AB 的长度变长,即c 2>a 2+b 2.经过议论学生已得到当∠C≠90°时,c 2≠a 2+b 2。
环节三 【新课探究】探究1、在上一个问题中,我们已经知道,当∠C≠90°时,c 2≠a 2+b 2。
那么c 2与a 2+b 2到底有什么等量关系呢请同学们继续探究。
教师引导学生分组合作学习,可让几个小组的学生研究当∠C 为锐角时的结论,另外的小组研究当∠C 为钝角时的结论。
最后交流探索,展示成果。
如图4,当∠C 为锐角时,作BD ⊥AC 于D ,BD 把△ABC 分成两个直角三角形:AB C 图1 C B A B ’ 图2 A C B ’B 图3在Rt △ABD 中,AB 2=AD 2+BD 2; 在Rt △BDC 中,BD=BC·sinC=asinC,DC=BC·cosC=acosC. 所以,AB 2=AD 2+BD 2化为c 2=(b -acosC)2+(asinC)2,c 2=b 2-2abcosC+a 2cos 2C+a 2sin 2C ,c 2=a 2+b 2-2abcosC .可以看出∠C 为锐角时,△ABC 的三边a ,b ,c 具有c 2=a 2+b 2-2abcosC 的关系。
如图5,当∠C 为钝角时,作BD ⊥AC ,交AC 的延长线于D 。
△ACB 是两个直角三角形之差。
在Rt △ABD 中,AB 2=AD 2+BD 2.在Rt △BCD 中,∠BCD=π-C .BD=BC·sin(π-C),CD=BC· cos(π-C).所以AB 2=AD 2+BD 2化为c 2=(AC+CD)2+BD 2=[b+acos(π-C)]2+[asin(π-C)]2=b 2+2abcos(π-C)+a 2cos 2(π-C)+a 2sin 2(π-C)=b 2+2abcos(π-C)+a 2.因为cos(π-C)=-cosC ,所以也可以得到c 2=b 2+a 2-2abcosC 。
教师点拨:以上两种情况,我们可以考察向量在向量方向上的正射影的数量:当 ∠C 分别是锐角和钝角的时候,得到两个数量符号相反;当∠C 是直角的时候,其向量在直角边上的正射影的数量为零。
因此,无论是∠C 是锐角、直角还是钝角,都有C b a BD C b DC C b AD cos ,cos ,sin -===,在Rt △ADB 中,运用勾股定理,得c 2=a 2+b 2-2abcosC ,我们轮换∠A ,∠B ,∠C 的位置可以得到a 2=b 2+c 2-2bccosA .b 2=c 2+a 2-2accosB . BA DC 图5 ACBD 图4于是,我们得到三角形中边角关系的又一重要定理:(多媒体投影余弦定理的内容)余弦定理 三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍,即从以上的公式中解出C B A cos ,cos ,cos ,则可以得到余弦定理的另外一种形式:从以上分析过程,我们对∠C 不是直角的情况有了清楚认识。
我们不仅要认识到,∠C 为锐角和钝角时都有c 2=a 2+b 2-2abcosC ,还要体会出怎样把一个斜三角形转化成两个直角三角形的。
这种由未知向已知转化的思想在数学中经常用到。
探究2、你还能用向量的方法证明余弦定理吗参看教材例1左上方的思路提示。
教师点拨学生的思路,可以让学生分组讨论、探究,最后教师用多媒体展示证明的思路及过程。
如图6,在△ABC 中,设a b c ϖρρ===,,,()A bc c b a AAB AC BC cos 22,22222222-+=-+=•-+=∴-=∴-=即:Θ教师点评:对于探究1,我们分∠C 是锐角和钝角的情况对余弦定理的形式给出了证明,过程比较复杂;对于探究2,我们应用向量的数量积可以很简单的证明余弦定理,这就可以看出向量作为一种工具在证明一些数学问题中的作用,在今后的学习中,我们应该加强对所学知识的应用。
探究3、余弦定理在解三角形中的应用图6教师启发学生:根据余弦定理的两种形式,可以看出它能够解决解三角形的哪些类型(学生并不难发现,余弦定理可以用来解决两种解三角形的类型:⑴已知三角形的两边及其夹角,求第三边;⑵已知三角形的三边,求三个内角。
)下面,请同学们根据余弦定理的这两种应用,来解决以下三个例题。
(用多媒体展示例题)例1、在△ABC 中,已知a=5,b=4,∠C=120O ,求c.例2、在△ABC 中,已知a=3,b=2,c=19,求此三角形三个内角的大小及其面积(精确到). 例3、△ABC 的定点为A(6,5),B(-2,8),和C(4,1),求∠A(精确到.双边活动:师生可以共同完成例题,进一步的加深学生对余弦定理的应用。
环节四 【练习与巩固】1、在△ABC 中,a=1,b=1,∠C=120O ,则c= 。
2、在△ABC 中,若三边a,b,c 满足bc c b a ++=222,则A= 。
3、在△ABC 中,已知5:4:3sin :sin :sin =C B A ,这个三角形是 (填锐角、直角、钝角三角形)。
4、在△ABC 中,BC=3,AC=2,AB 上的中线长为2,求AB 。
双边活动:学生限时训练,让学生回答结果,对于出错题目加以讲解,可以用多媒体展示第4题的解题过程。
环节五 【课堂反思总结】通过以上的研究过程,同学们主要学到了那些知识和方法你对此有何体会(先由学生回答总结,教师适时的补充完善)1、余弦定理的发现从直角入手,分别讨论了锐角和钝角的情况,体现了由特殊到一般的认识过程,运用了分类讨论的数学思想;2、用向量证明了余弦定理,体现了数学知识的应用以及数形结合数学思想的应用;3、余弦定理表述了三角形的边与对角的关系,勾股定理是它的一种特例。
用这个定理可以解决已知三角形的两边及夹角求第三边和已知三角形的三边求内角的两类问题。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。
我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。
在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。
)环节六 【布置课后作业】1、若三角形ABC 的三条边长分别为2=a ,3=b ,4=c ,则=++C ab B ca A bc cos 2cos 2cos 2 。