统计学第六章抽样和抽样分布
- 格式:ppt
- 大小:3.49 MB
- 文档页数:84
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
统计学简答题总结第六章抽样与抽样分布6、1 解释总体分布、样本分布与抽样分布得含义(或三种不同性质得分布)总体分布:总体中各元素得观测值所形成得相对频数分布,称为总体分布。
样本分布:从总体中抽取一个容量为n得样本,由这n个观测值形成得相对频数分布,称为样本分布。
抽样分布:在重复选取样本量为n得样本时,由该样本统计量得所有可能取值形成得相对频数分布。
6、2 解释中心极限定理得含义从均值为μ、方差为σ 2 得总体中,抽取容量为n得随机样本,当n充分大时(通常要求n ≧30),样本均值得抽样分布近似服从均值为μ、方差为σ 2 /n 得正态分布。
6.3重复抽样与不重复抽样相比,抽样均值抽样分布得标准差有何不同?重复抽样:从总体中抽取一个元素后,把这个元素放回到总体中再抽取第二个元素,直至抽取个元素为止。
不重复抽样:一个元素被抽中后不再放回总体,而就是从所剩元素中抽取第二个元素,直到抽取个元素为止。
样本均值得方差:重复抽样不重复抽样6.4样本均值得分布与总体分布得关系就是什么?样本均值与总体分布得关系:a无论就是重复还就是不重复抽样,样本均值得数学期望始终等于总体均值;b在重复抽样条件下,样本均值得方差为总体方差得1/n;在不重复抽样条件下,样本均值得方差为6.5样本方差与两个样本得方差比各服从什么分布?对于来自正态总体得简单随机样本,则比值得抽样分布服从自由度为得分布,即两个样本方差比得抽样分布,服从分子自由度为(),分母自由度为() 得F分布,即6、6 分布与F分布得图形各有什么特点?分布得性质特点:1.分布得变量值始终为正2.分布得形状取决于其自由度n得大小,通常为不对称得正偏分布,但随着自由度得增大逐渐趋于对称3.期望为E()=n,方差为D()=2n(n为自由度)4.可加性:若U与V为两个独立得服从χ2分布得随机变量,U~ (),V~ (),则U+V这一随机变量服从自由度为+得分布F分布图形得特点:1、它就是一种非对称分布;2、它有两个自由度,即n -1与m-1,相应得分布记为F( n –1, m-1), n –1通常称为分子自由度, m-1通常称为分母自由度;3、F分布就是一个以自由度n –1与m-1为参数得分布族,不同得自由度决定了F 分布得形状。