函数解析式的几种基本方法及例题
- 格式:doc
- 大小:140.00 KB
- 文档页数:3
求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。
本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。
1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。
通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。
例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。
2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。
通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。
例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。
3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。
例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。
根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。
4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。
通过观察差分序列之间的规律,可以尝试找到函数的解析式。
例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。
5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。
通过寻找函数性质和限制条件的推理,可以得到函数解析式。
例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。
因此,猜测函数解析式为f(x) = ax^2。
通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。
高中函数解析式的七种求法函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1设是一次函数,且,求解:设,则二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。
但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。
例2已知,求的解析式解:,三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3已知,求解:令,则,四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点则,解得:,点在上把代入得:整理得五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5设求解①显然将换成,得:②解①②联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解为偶函数,为奇函数,又①,用替换得:即②解①②联立的方程组,得,六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例7已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令得函数解析式为:七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。
例8设是定义在上的函数,满足,对任意的自然数都有,求解,不妨令,得:,又①分别令①式中的得:将上述各式相加得:,。
ʏ王 江函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式㊂求函数解析式的常用方法有:配凑法,换元法,待定系数法,解方程组法㊂一㊁配凑法例1 已知f 1+xx()=1+x 2x 2+1x ,则函数f (x )=㊂解:因为f 1+xx()=1+x 2+2x -2x x 2+1x =1+xx()2-1+x -x x =1+xx()2-1+xx+1,所以f (x )=x 2-x +1㊂又1+x x =1x+1ʂ1,所以函数f (x )=x 2-x +1(x ʂ1)㊂评析:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),可得f (x )的表达式㊂二㊁换元法例2 若f (2x +1)=4x 2+4x ,则f (x )的解析式为㊂解:令2x +1=t ,t ɪR ,则x =t -12,所以f (t )=4ˑt -12()2+4ˑt -12=t 2-1,t ɪR ㊂故函数f (x )=x 2-1㊂评析:已知复合函数f [g (x )]的解析式求f (x )的解析式,可用换元法㊂例3 若f 2x 2+1()=2020x 2+1,则f (x )的解析式为㊂解:由f 2x 2+1()=2020x 2+1,可令t =2x 2+1(t ʂ0),则x 2=2-tt ,所以f (t )=4040-2020t t +1=4040-2019tt (t ʂ0)㊂故函数f (x )=4040-2019xx(x ʂ0)㊂评析:由于x ɪR ,可知2x 2+1ʂ0,所以本题换元后t ʂ0㊂三㊁待定系数法例4 已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图像过点(0,3),求函数f (x )的解析式㊂解:设函数f (x )=a x 2+b x +c (a ʂ0)㊂由f (0)=f (4),可得4a +b =0㊂由图像过点(0,3),可得c =3㊂设f (x )=0的两根为x 1,x 2,则x 1+x 2=-b a ,x 1㊃x 2=c a,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=-b a()2-2㊃c a=10,即b 2-2a c =10a2㊂由上容易解得a =1,b =-4,c =3㊂故函数f (x )=x 2-4x +3㊂评析:已知函数的类型(如一次函数㊁二次函数)求函数的解析式,可用待定系数法㊂四㊁解方程组法例5 已知函数y =f (x )满足f (x )=2f1x ()+x ,则f (x )的解析式为㊂解:由f (x )=2f 1x()+x ,将x 换成1x ,可得f 1x()=2f (x )+1x (x ʂ0)㊂由上消去f 1x(),可得f (x )=-23x -x 3㊂故函数f (x )=-x 2+23x(x ʂ0)㊂评析:已知关于f (x )与f1x()或f (-x )的表达式,可根据已知条件再构造出另外一个等式,然后通过解方程组求出函数f (x )的解析式㊂作者单位:安徽省宣城市工业学校(责任编辑 郭正华)5数学部分㊃知识结构与拓展高一使用 2020年9月。
求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。
(注意定义域)例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f Θ, 21≥+x x2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。
应用此法解题时往往需要解恒等式。
例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
求函数解析式的方法和例题一、常见的函数解析式的求法。
1. 一次函数,一次函数的一般形式为y=ax+b,其中a和b为常数,通过两点法、斜率法、解方程法等可以求得一次函数的解析式。
2. 二次函数,二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
通过配方法、求顶点法、根的性质等方法可以求得二次函数的解析式。
3. 指数函数,指数函数的一般形式为y=a^x,其中a为常数且a>0且a≠1。
通过观察法、对数法、取对数法等方法可以求得指数函数的解析式。
4. 对数函数,对数函数的一般形式为y=loga(x),其中a为常数且a>0且a≠1。
通过观察法、指数法、换底公式等方法可以求得对数函数的解析式。
5. 三角函数,三角函数包括正弦函数、余弦函数、正切函数等,它们的解析式可以通过周期性、对称性、变换公式等方法求得。
二、函数解析式的例题。
1. 求一次函数y=2x+3的解析式。
解,由于一次函数的一般形式为y=ax+b,所以y=2x+3的解析式为y=2x+3。
2. 求二次函数y=x^2+3x-2的解析式。
解,通过配方法或求顶点法可以求得y=x^2+3x-2的解析式为y=(x+2)(x-1)。
3. 求指数函数y=2^x的解析式。
解,观察法可得y=2^x的解析式为y=2^x。
4. 求对数函数y=log2(x)的解析式。
解,换底公式可得y=log2(x)的解析式为y=log(x)/log(2)。
5. 求正弦函数y=sin(x)的解析式。
解,通过周期性和对称性可得y=sin(x)的解析式为y=sin(x)。
以上就是关于求函数解析式的方法和例题的介绍,希望对大家有所帮助。
在学习过程中,要灵活运用各种方法,多加练习,提高解析式求解的能力。
求函数解析式的方法和例题在数学中,我们经常会遇到需要求解函数解析式的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。
那么,如何求函数的解析式呢?接下来,我们将介绍一些常见的方法和例题,希望能帮助你更好地理解和掌握这一内容。
一、根据函数图像求解析式。
对于一些简单的函数,我们可以通过观察其图像来推导出函数的解析式。
例如,对于一次函数y=kx+b,我们可以根据函数图像上的两个点来确定k和b的值,进而得到函数的解析式。
同样地,对于二次函数、指数函数等,也可以通过观察函数图像来求解析式。
例题1,已知一次函数的图像经过点(1,3)和(2,5),求函数的解析式。
解:设函数为y=kx+b,代入已知的两个点得到方程组:3=k1+b。
5=k2+b。
解方程组得到k=2,b=1,因此函数的解析式为y=2x+1。
二、根据函数性质求解析式。
有些函数具有特定的性质,我们可以利用这些性质来求解析式。
例如,对于指数函数y=a^x,我们知道指数函数经过点(0,1),因此可以利用这一性质求解析式。
又如,对于对数函数y=loga(x),我们知道对数函数的定义域为正实数,可以利用这一性质来确定函数的解析式。
例题2,已知指数函数经过点(1,2),求函数的解析式。
解,设函数为y=a^x,代入已知的点(1,2)得到方程a^1=2,解得a=2,因此函数的解析式为y=2^x。
三、根据函数的变化规律求解析式。
有些函数的变化规律是已知的,我们可以根据这一规律来求解析式。
例如,对于等差数列an=a1+(n-1)d,我们知道等差数列的通项公式是已知的,可以直接利用这一公式求解析式。
同样地,对于等比数列、等差数列等,也可以根据其变化规律来求解析式。
例题3,已知等差数列的首项为3,公差为4,求第n项的表达式。
解,根据等差数列的通项公式an=a1+(n-1)d,代入已知的首项和公差得到an=3+(n-1)4,化简得到an=4n-1,因此第n项的表达式为4n-1。
求函数解析式的四种常用方法例题1. 引言嘿,朋友们,今天咱们来聊聊求函数解析式的那些事儿!很多人觉得这玩意儿可难了,心里老是七上八下的。
其实,求函数解析式就像做一道美味的菜,只要掌握了几种方法,咱们也能轻松搞定。
让我们一起来揭开这个神秘面纱,看看怎样能让这些函数变得活灵活现吧!2. 常用方法概述在求函数解析式的过程中,咱们通常会用到四种常用方法。
你别看它们名字听起来挺复杂,其实用起来就是那么简单。
好啦,咱们一个个来捋捋。
2.1. 代入法首先,咱们说说代入法。
这个方法就像是给你一个拼图,里面有块儿缺失的,咱们把已知的先代进去。
比如说,假设你知道了一个点(2, 3),而且这个点在你求的函数上,那你可以把x=2代入到函数的表达式里,得出y=3。
只要这样一来,缺失的部分就能一点点填上去。
再比如说,给你个一元二次方程,你可以通过代入法,逐步求解出它的系数,嘿,这不是轻松解决问题的最佳捷径吗?2.2. 图像法接下来,我们聊聊图像法。
说白了,就是拿个画笔,给你的函数画个图。
这就像咱们做个草图,先把大概的轮廓给勾勒出来。
通过图像,可以很直观地看出函数的趋势,甚至能猜测出解析式。
如果你看到图像有个明显的拐点,嘿,那就说明你得考虑一下二次函数或者其他高阶函数的可能性了。
画画可不是小儿科,越细致,越能洞察真相。
3. 数据拟合法然后是数据拟合法。
这是个数据控的最爱,简直就是量化分析的金钥匙。
你拿到一堆数据,就像在河里捡了宝,接下来用拟合的办法,把它们转换成函数。
简单说,就是找个合适的函数,让它尽量贴合这些数据点。
比如,使用最小二乘法,这个名字听上去复杂,其实就是最小化偏差,让点儿和函数之间的距离最短。
想象一下,像一位细心的裁缝,量体裁衣,缝合出最完美的曲线,谁能不爱?3.1. 线性拟合这里再具体讲讲线性拟合。
线性拟合就像是在为你的数据找到一条直线,傻傻的认为这个直线能代表你所有的点。
虽然不是每次都能完美,但如果数据呈现出一条明显的趋势,线性拟合就能帮你找到一条合适的直线方程。
求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。
(注意定义域) 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f , 21≥+xx2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x xx x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则3、待定系数法:当已知函数的模式求解析式时适合此法。
应用此法解题时往往需要解恒等式。
例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
求函数解析式的方法和例题一、常见的求函数解析式的方法。
1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。
例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。
2. 图像法,通过观察函数的图像特征,推导出函数的解析式。
例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。
3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。
例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。
4. 反函数法,有些函数的解析式可以通过求解其反函数得到。
例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。
二、求函数解析式的例题。
1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。
解:根据已知条件,我们可以列出方程组:a1+b=3。
a2+b=5。
通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。
2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。
解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。
a(-1)^2+b(-1)+c=3。
通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。
3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。
解:根据已知条件,我们可以列出方程组:a^2=16。
a^3=64。
通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。
以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。
通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。
求函数解析式的几种方法求()f x 解析式方法多,难度大.只有正确求出函数解析式才能进一步研究函数性质,因此本文介绍几种求()f x 解析式的方法,供同学们参考.1.配凑法例1 已知2(1)2f x x -=+,求()f x .分析:函数的解析式y=f(x)是自变量x 确定y 值的关系式,其实质是对应法则f :x→y ,因此解决这类问题的关键是弄清对“x”而言,“y”是怎样的规律。
解:22(1)2(1)2(1)3f x x x x -=+=-+-+,即2()23f x x x =++.小结:此种解法为配凑法,通过观察、分析,将右端“x+2■”变为接受对象“■+1”的表达式,即变为含(■+1)的表达式,这种解法对变形能力、观察能力有一定的要求。
2.换元法例2 若2(1)21f x x +=+,求()f x .解:令1t x =+,则1x t =-,22()2(1)1243f t t t t ∴=-+=-+.2()243f x x x ∴=-+.小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。
注意:换元后要确定新元t 的取值范围。
②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。
常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。
3.解方程组法若已知()f x 满足某个等式,这个等式除()f x 是未知量外,还出现其他未知量(如()f x -,1f x ⎛⎫ ⎪⎝⎭等).可以利用相互代换得到方程组,消去()f x -或1f x ⎛⎫ ⎪⎝⎭,进而得到()f x 的解析式. 例3 若2()()1f x f x x --=+,求()f x . 解: 2()()1f x f x x --=+,用x -去替换式中的x ,得2()()1f x f x x --=-+,即有2()()12()()1f x f x x f x f x x --=+⎧⎨--=-+⎩,,解方程组消去()f x -,得 ()13x f x =+. 4.待定系数法当题设给出函数特征,求函数的解析式时,可用此种方法,如函数为一次函数,可设()(0)f x ax b a =+≠,再利用恒等原理确定其系数.例4 设方程210x x -+=的两根为αβ,,试求满足()f αβ=,()f βα=,(1)1f = 的二次函数()f x 的解析式.解:由已知条件,可得1αβ+=,1αβ= , 显然αβ≠,即0αβ-≠. 设二次函数2()(1)f x a x x bx c =-+++.αβ ,为方程210x x -+=的两根,210αα∴-+=且210ββ-+=.222()(1)()(1)(1)(111)1f a b c f a b c f a b c ααααβββββα⎧=-+++=⎪=-+++=⎨⎪=-+++=⎩,,, 可得1b c b c a b c αββα+=⎧⎪+=⎨⎪++=⎩,,, 故111a b c =⎧⎪=-⎨⎪=⎩,,, 22()(1)122f x x x x x x ∴=-+-+=-+.小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。
求函数解析式的几种基本方法及例题:
1、凑配法:
已知复合函数[()]f g x 的表达式,求()f x 的解析式。
(注意定义域) 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).
(2) 已知221)1
(x
x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3.
(2) 2)1()1(2-+=+x x x x f , 21≥+x
x
2)(2-=∴x x f )2(≥x 2、换元法:
已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
(注意所换元的定义域的变化)
例2 (1) 已知x x x f 2)1(+=+,求)1(+x f
(2)如果).(,,)(x f x x
x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2
)1(-=t x x x x f 2)1(+=+
∴,1)1(2)1()(22-=-+-=t t t t f
1)(2-=∴x x f )1(≥x
x x x x f 21)1()1(22+=-+=+∴ )0(≥x
(2)设.)(,,,1111111
11-=∴-=-===x x f t t
t f t x t x t )(代入已知得则
3、待定系数法:
当已知函数的模式求解析式时适合此法。
应用此法解题时往往需要解恒等式。
例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,
则应有.)(1212102242222--=∴⎪⎩
⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a
四、构造方程组法:
已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例4 设,)1(2)()(x x f x f x f =-满足求)(x f
解 x x f x f =-)1(2)( ①
显然,0≠x 将x 换成x
1,得: x
x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:
x
x x f 323)(--=
五、赋值法:
当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例5 已知:1)0(=f ,对于任意实数x 、y ,等式
)12()()(+--=-y x y x f y x f 恒成立,求)(x f 解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,
不妨令0x =,则有1)1(1)1()0()(2
+-=-+=+--=-y y y y y y f y f
再令 x y =- 得函数解析式为:1)(2++=x x x f 课堂练习:
1、已知f(x+1)=x 2-2x,求f(x)及f(x-2).
2、已知f (x +1)=x+2x +1,求f(x)的解析式。
3、已知f(x)为二次函数,f(x+1)+f(x-1)=2x 2-2x+4.求f(x)的解析式。
4、已知f(x)=2x+a,ϕ(x)=
4
1(x 2+3),且ϕ[f(x)]=x 2+x+1,则a= .
5、如果函数f(x)满足方程,0,)1()(≠∈=+x R x ax x f x af 且a 为常数,且a ≠±1,求f(x)的解析式。
解:∵af(x)+f(x 1)=ax ① 将x 换成x 1,x
1换成x 得, af(x 1)+f(x)=x a
② 由①、②得f(x)=).()()(01112222≠∈--=--
x R x x a ax a a x a
ax 且 6、已知函数f(x)对任意正数m,n 均有f(mn)=f(m)+f(n)成立,且f(8)=3,试求f(2)的值。