引言
微地震采集-裂缝监测的结果
Plan View 平面图 Well
Well 压裂井
Passive Monitor Well
观测井
原来的,绝对确定的 在采用了主波组,相对成
震源位置
像技术后得到的震源位置
由美国Los Alamos国家实验 室和联合太平洋资源公司在 美国COTTON 山谷所作的压裂 裂缝检测试验
引言
微震观测设备的关键部分是井下观测仪器。由于 诱生微震能量非常弱,频率很高(约为 100∽1500Hz),传播方向复杂,以及井下高温、高 压、高腐蚀性的恶劣环境,要求微震监测用井中检波 器是高灵敏度、高频、体积小的三分量检波器,其本 身及有关连接件、信号传输线等应具有耐高温、高压 和耐腐蚀的性能。
引言
C – SeisPTTM微地震监测解释软件 声发事件的探测 声发事件的分析 微地震的定位 压裂裂缝绘制
左图:模拟无裂缝的均匀介质中P波和S波的传播.(图中小圆圈为接收点,星号为震 源-小裂缝) 右图:模拟有裂缝时的波传播情况( a. 40毫秒时 b. 75毫秒时. P波和S波的速度从 外部岩石向裂缝内部明显下降)
引言
高压泵
压裂作业井
监测井 十二级接收器
岩石破裂
微地震事件
微地震监测主要包括数据采集、数据处理、精细反演等 几个关键技术。
引言
C8b C11 C16
压裂事件空间计算图
引言
1965年:美国滨州岩石力学实验室开始声发射和微震研 究,称为AE/MS技术。
1973年:首次开始现场试验工作,这次现场试验研究是 AMOCO公司等在美国科罗拉多州的Wattenberg油田进行的。 目的层为含气致密砂岩,深约2440m。当时人们沿袭传统的 地震勘探数据采集方法,采用布置在地面的检波器排列来监 测水力压裂裂缝的发展。由于地面噪音太高而诱发微震的水 平很低,加之那时的记录仪器及数据处理方法水平都不高, 无法从这种低信噪比的记录中识别出微震信号来。试验没有 成功。