第四章浅层地震勘探仪器简介
- 格式:ppt
- 大小:214.50 KB
- 文档页数:9
地震勘察仪器原理与结构地震勘察仪器是一种用于探测和测量地震波以及地壳运动的工具。
它可以帮助地震学家和地质学家了解地震的产生机制、地壳的变动以及预测地震的可能性。
地震勘查仪器的原理和结构主要可以分为三个部分:传感器、信号处理和数据记录。
传感器是地震仪器的核心部件,它主要用于感测地震波的运动。
地震波是由地壳运动引起的地球表面的振动,可以分为纵波和横波两种,传感器需要能够准确地感知这些振动并将其转化为电信号。
一种常用的传感器是加速度传感器,它通过测量物体的加速度来感测地震波的振动情况。
加速度传感器通常由质量块、弹簧和电感器构成,质量块受到地震波的作用后产生振动,振动的大小和方向通过感应到的电流信号传输到信号处理器。
信号处理是地震仪器的第二个关键步骤,它用于将传感器收集到的信号转化为可以分析和研究的数据。
地震波的振动信号通常是微弱的,同时还受到环境噪声的干扰,因此需要对信号进行过滤和放大,以提高信号的质量和可靠性。
信号处理器通常由低噪声放大器、滤波器和模数转换器等组成。
低噪声放大器用于放大微小的信号,滤波器用于滤除噪声干扰,模数转换器将模拟信号转化为数字信号,以便于保存和处理。
数据记录是地震仪器的最后一个部分,它用于记录和保存信号处理后的数据。
数据记录器通常由数字存储设备和计算机系统组成。
数字存储设备可以将经过信号处理的数据保存为数字文件,以便后续的分析和研究。
计算机系统可以用于控制仪器的工作流程,同时还可以进行数据的实时处理和分析。
通过对保存的数据进行分析,地震学家和地质学家可以研究地下地壳的结构和性质,进一步了解地震的发生机理和可能性。
除了以上的主要部分,地震勘查仪器还可以包括其他一些辅助部件,如温度和湿度传感器,用于记录环境的温度和湿度变化,以及定位系统,用于记录地震发生的位置和时间等信息。
总结起来,地震勘查仪器的原理和结构主要包括传感器、信号处理和数据记录三个部分。
传感器用于感测地震波的振动,信号处理器将振动信号转化为可分析的数据,数据记录器用于保存和记录处理后的数据。
物探(概述):通过观测和研究多种地球物理场旳变化来处理地责问题旳一种勘查措施。
地球物理勘探(全称):通过专门旳仪器观测地球物理场旳分布和变化特性,然后结合已知地质资料进行分析研究,推断出地下岩土介质旳性质和环境资源等状况,从而到达处理问题旳目旳。
2、物探旳分类及关系按研究地球物理场不一样分类:①地震勘探:以介质弹性差异为基础,研究波场变化规律旳措施。
②电法勘探:以介质电性差异为基础,研究天然或人工电场变化规律旳措施。
③放射性勘探:以介质放射性差异为基础,研究辐射场变化特性旳措施。
④地热测量:以地下热能分布和介质导热为基础,研究地温场旳措施。
⑤重力勘探:以地下介质密度差异为基础,研究重力场变化旳措施。
⑥磁法勘探:以介质磁性差异为基础,研究地磁场变化规律旳措施。
按物探工作旳空间分类: ①航空物探②海洋物探③地面物探④地下勘探按工作目旳和应用范围分类:①金属物探②石油物探③工程与环境物探形变:任何固体介质在外力作用下,内部质点旳互相位置会发生变化,使得介质旳形状或大小产生变化。
弹性:某物体在外力作用下产生形变,当外力取掉之后,物体能迅速恢复到受力前旳形态和大小,物体旳这种性质。
弹性介质:具有弹性旳介质。
地震勘探中,人工震源旳激发是脉冲式旳,作用时间短,激发能量对地下岩层和接受点介质产生作用力较小。
因此,可以把地下介质近似看作弹性介质。
各向同性介质:弹性性质与空间方向无关;各向异性介质:弹性性质与空间方向有关应变:单位长度所产生旳形变ΔL/L。
应力:单位横截面所产生旳内聚力F/s杨氏模量(或拉伸模量):线性弹性形变区,应力与应变旳比值。
泊松比:介质旳横向应变与纵向应变旳比值。
拉梅系数:各向同性旳均匀介质,各不一样方向旳弹性系数大都对应相等,可以归结为应力与应变方向一致和互相垂直时旳两个系数λ和μ,合称拉梅系数弹性振动:应力和惯性力不停作用,使质点围绕其本来旳平衡位置发生振动等效空穴:震源点附近旳非线性形变区振动图:用u-t坐标系统表达旳质点振动位移随时间变化旳图形描述振动曲线旳参数:A:地震波振动位移大小(称振幅值变化)T:振动周期△t:延续时间 t0:初至时间波长:波峰至相邻波峰间旳距离λ。
一、实验目的1. 了解浅层地震勘探的基本原理和方法;2. 掌握地震资料的采集、处理和分析技术;3. 通过实验,提高对浅层地质结构的认识。
二、实验原理浅层地震勘探是利用地震波在地下传播的特性,通过采集地震波数据,分析地震波在不同地层中的传播速度、反射和折射等现象,从而推断地下地质结构的一种地球物理勘探方法。
实验中,我们主要采用反射波法,即通过激发地震波,接收其反射波,分析反射波的特征,推断地下地质结构。
三、实验内容1. 实验器材(1)地震仪:用于采集地震波数据;(2)震源:用于激发地震波;(3)接收器:用于接收地震波;(4)计算机:用于数据处理和分析;(5)实验场地:用于进行地震波数据采集。
2. 实验步骤(1)实验场地选择:选择合适的实验场地,确保场地平坦、开阔,便于地震波传播。
(2)地震波数据采集:按照设计好的测线,布置震源和接收器,激发地震波,接收其反射波。
采集过程中,注意控制震源和接收器的间距、排列方向等参数。
(3)地震资料处理:将采集到的地震波数据传输到计算机,利用地震数据处理软件进行预处理、去噪、叠加等操作。
(4)地震资料分析:对处理后的地震资料进行分析,识别反射波特征,推断地下地质结构。
四、实验结果与分析1. 实验结果通过实验,我们采集到了一定数量的地震波数据,并对这些数据进行了处理和分析。
根据分析结果,我们得到了以下地质结构信息:(1)地下存在一个明显的反射界面,推断为沉积层与基岩的接触面;(2)地下存在一个倾斜的断层,推断为该地区的主要断裂;(3)地下存在一些小型的地质构造,如溶洞、地裂缝等。
2. 分析与讨论(1)实验结果表明,浅层地震勘探方法可以有效地探测地下地质结构,为地质勘探、工程地质、地质灾害防治等领域提供重要依据。
(2)在实验过程中,我们发现地震波数据采集、处理和分析的质量对实验结果具有重要影响。
因此,在实际应用中,应严格控制实验参数,提高数据处理和分析的精度。
(3)针对不同地质条件,选择合适的地震波数据采集、处理和分析方法,以提高实验结果的可靠性。
《浅层地震勘探》总结绪论:地震勘探方法简介:地震勘探:人工震源激发地震波,研究其在地下介质中的传播规律,解决地质问题。
各物探均以各种物性为前提,地震勘探依据岩、矿石的弹性,研究地下弹性波场的变化规律。
浅层地震勘探:常用于“水、工、环”地质调查,主要用于解决:工程地质填图、建筑、水电、矿山、铁路、公路、桥梁、港口、机场等各种工程地质问题,因此,多被人称之为:“工程地震勘探”。
分类据波的类型分:纵波、横波、面波勘探据波传播特点分:反射、折射、透射波法据目的层深度分:浅层<n.100m,中层(n.100~n.1000m),深层>n.1000m 据勘探目的任务:工程(浅层), 煤田, 石油, 地震测深地震测深: 研究大地构造、深部地质问题。
浅震的特点:工作面积小,勘探深度浅,探测对象规模小,浅部各种干扰因素复杂。
优点:精度高、分辨率高、抗干扰能力强、仪器轻便第一章地震勘探的理论基础第一节弹性理论概述一、弹性介质与粘弹性介质1.弹性介质弹性: 外力体积、形状变化外力去掉恢复原状:具有这种特性的物体称为弹性体,其形变称为弹性形变:……如弹簧、橡皮等。
塑性: 外力 体积、形状变化 去掉外力 不恢复原状,保持外力作用时的状态:具有这种特性的物体称为塑性体,其形变称为塑性形变:……. 如橡皮泥外力下,是弹是塑,取决于: 是否在弹性限度之内,即三个方面: 外力大小、作用时间长短、物体本身的性质。
自然界中绝大部分物体,在外力作用下,既可显弹,也可显塑地震勘探,震源是脉冲式的,作用时间很短(持续十几~几十毫秒),岩土受到的作用力很小,可把岩、土介质看作弹性介质,用弹性波理论来研究地震波。
各向同性介质:凡弹性性质与空间方向无关的介质 各向异性介质: 凡弹性性质与空间方向有关的介质 沉积稳定的沉积岩区,各项同性,简化问题地震勘探中,只要岩土性质差异不大,都可以将岩土作为各向同性介质来研究,这样可使很多弹性理论问题的讨论大为简化。
DZQ48/24D/12A高分辨率地震仪(浅层地震仪)DZQ48,24D,12A高分辨率地震仪(浅层地震仪)地震仪f浅层地震仪第7卷第5期36DZ048/24D/12A高分辨率地震仪(浅层地震仪)DzQ48高分辨率地震仪是重庆地质仪器厂在DZQ24地震仪(获2002年国家科技进步三等奖)的基础上,结合我国国情研制的新一代全中文WinXP系统下工作的真24位数字地震仪器.它既融入了该厂多年设计制造地震仪器的宝贵经验,又吸纳了当今国内外先进电子技术和设计理念,集多功能,高精度,高速度,高可靠性,良好的人机界面功能及可扩展性于一身的国内领先的地震仪.仪器可利用锤击,电火花或爆炸等作为激发震源,勘探深度从几米到上千米,也可使用延时功能获取地下更深部地层的地震资料,适用方法有:反射,折射,面波勘探,桩基检测,地脉动测量,高密度地震映象,震动测量及剪切波测试等地震勘探方法,广泛应用于水利,电力,铁路,桥梁,城建,交通等领域工程地质勘探,也适用于石油,煤田,铀矿及地下水等领域资源勘探.技术指标:模拟道数:48道(1,2,3,4,6,12,24,48道工作模式可选);9采样率:10S,31.25s,62.5uS,125S,250S,500US,ImS,2mS,4ms,8ms,16ms,32ms到400InS若干档;?采样点数:512,1024,2048,4096,8192,16384等,最大记录长达32768;?前放增益:每六道为一组,由软件可选64倍(36dB),16倍(24dB),4倍(12dB),1倍;?A/D转换:采用最新,超高速?一?24位A/D转换器;去假频滤波器:随采样率自动跟踪;在采样率的0.216倍处为一3dB,下至120dB.并配有各种数字滤波器,截频点(一3dB处)根据需要人为设置;频响范围:0.1HZ,4kHZ;噪音:全频状态下小于IV;采样延时:0,999mS;幅度一致性:优于?0.02%;相位一致性:优于?0.O1mS;?动态范围:优于144dB;信号迭加增强:32位;操作系统:WinXP;数据格式:SEG—2;处理软件:浅折射处理软件包(WindoWS界面);折射处理软件包(WindOWS界面);面波处理软件包(WindOWS界面);爆破,脉动采集处理软件;剪切波处理软件包(WindOWS界面);高密度地震映像采集处理软件;触发:内,外触发可用锤击开关,爆破,电火花触发,也可断线或接通触发;?时钟:年度计时钟,文件记录的时间数随参数存入文件;电源:12V?20%蓄电池供电;整机耗电:小于4安培(48道,1cD超亮度工作时为5安培);仪器使用环境温度:-10,+55?;?仪器储藏温度:一20,+60?;湿度:90%RH.。
地震仪器知识第一节地震仪器发展简介第二节地震数据采集系统原理介绍第三节目前常用地震仪器简介第四节可控震源与气枪第五节地震仪器日、月、年检记录第六节电缆检波器地面站管理规定第四章地震仪器知识第一节地震仪器发展简介地震勘探就是用人工方法激发地震波,研究地震波在地层中传播的规律,以查明地下的地质情况,为寻找油、气田或实现其它勘探目的服务的一种物探方法。
与其它物探方法相比,地震勘探具有精度高、分辨率高、勘探深度大等优点,因此,已成为石油勘探中一种最有效的勘探方法。
地震勘探工作基本包括激发地震波、接收记录地震波和处理解释地震资料三个方面。
每一项工作都需要使用特定的设备,才能完成预期的任务。
地震勘探仪器就是为了接收和记录地震波专门设计的一种集精密传感器技术、近代电子技术和计算机技术为一体的组合装置。
最早的地震仪器是1914年Mintrop的机械式地震仪器。
近半个世纪以来,随着电子技术、计算机技术、通讯技术和地震勘探技术的迅速发展,石油地震勘探仪器也在不断地发展、完善和提高。
从地震仪器的记录内容和方式来看,大致分为四代:一、第一代:模拟光点记录仪㈠发展时间:30年代到50年代,经历了30多年。
我国从50年代初到60年代末,应用光点记录地震仪,简称51型地震仪。
㈡主要特点:1.地震记录为模拟波形光点感光照相记录。
2.采用电子管电路。
㈢存在问题:1.此种记录不能作回放处理,故不可作多次覆盖地震勘探。
在现场进行生产时,接收记录前必须选好激发和接收因素,否则无法补救。
2.地震资料的处理只能用手工进行,工作效率低,质量难有保证。
3.记录仪器动态范围小,一般只有20dB左右。
4.地震仪器记录频带窄,一般为30Hz左右。
使大量有效波丢失。
5.地震道数少,一般只有26道,只能进行二维地震勘探。
6.只适用于地震地质条件简单的地区工作,在复杂地区不能获得好的地震资料。
二、第二代:模拟磁带记录地震仪㈠发展时间:从50年代初到60年代末,经历了约十几年的时间。
2014-2015学年第一学期地球物理综合训练实习报告专业班级:地球物理11-1班学号:11013127:汤婕指导老师:兵祥、徐凯军、宋娟、唐杰时间:2014年12月10日-15日前言地球物理勘探简称“物探”,即用物理的原理研究地质构造和解决找矿勘探中问题的方法。
它是以各种岩石和矿石的密度、磁性、电性、弹性、放射性等物理性质的差异为研究基础,用不同的物理方法和物探仪器,探测天然的或人工的地球物理场的变化,通过分析、研究所获得的物探资料,推断、解释地质构造和矿产分布情况,目前主要的物探方法有:重力勘探、磁法勘探、电法勘探、地震勘探、放射性勘探等。
依据工作空间的不同,又可分为:地面物探、航空物探、海洋物探、井中物探等。
地下赋存的岩(矿)体或地质构造基于它们所具有的物理性质、规模大小及所处的位置,都有相应的物理现象反映到地表或地表附近,这种物理现象是地球整体物理现象的一部分。
地球物理勘探的主要工作容是利用相应仪器测量、接收工作区域的各种物理现象的信息,应用有效的处理方法从中提取出需要的信息,并根据岩(矿)体或构造和围岩的物性差异,结合地质条件进行分析,做出地质解释,推断探测对象在地下赋存的位置、大小围和产状,以及反映相应物性特征的物理量等,做出相应的解释推断的图件。
地理物理勘探是地质调查和地质学研究不可缺少的一种手段和方法。
地球物理勘探所给出的是根据物理现象对地质体或地质构造做出解释推断的结果,因此,它是间接的勘探方法。
此外,用地球物理方法研究或勘查地质体或地质构造,是根据测量数据或所观测的地球物理场求解场源体的问题,是地球物理场的反演的问题,而反演的结果一般是多解的,因此﹐地球物理勘探存在多解性的问题。
为了获得更准确更有效的解释结果,一般尽可能通过多种物探方法配合,进行对比研究,同时,要注重与地质调查和地质理论的研究相结合,进行综合分析判断。
地球物理勘探是一门实践性极强、科技含量极高的一门应用性学科,具体工作方法是从不同的时间、空间角度去观测对象的响应信息,而把握这些响应信息需要借助现代仪器、观测技术、解释技术。
地震勘探仪器原理与结构5.1地震勘探仪器的任务、研究方法一、地震勘探仪器的任务、研究方法所谓地震勘探就是用人工方法激发地震波,研究地震波在地层中传播的规律,以查明地下的地质情况,为寻找油气田或其它勘探目的服务的一种物探方法。
与其它物探方法相比,地震勘探具有精度高、分辨率高、勘探深度大等优点,因此,已成为石油勘探中一种最有效的勘探方法。
在西方发达国家,石油勘探方面总投资的90%用于地震勘探。
在我国,自大庆油田发现以来,新发现的油田有90%是用地震勘探的方法找到的。
目前在我国的石油物探队伍中,绝大部分是地震队。
地震勘探基本上可分为野外数据采集、室内资料处理、地震资料解释三个阶段。
每一个阶段都需要使用一定的设备才能完成预期的任务。
没有这些设备作为工具和手段,地震勘探理论再完善也不能付诸实施,当然也就达不到勘探的目的。
地震勘探装备是地震勘探的物质基础。
事实上,一个国家勘探装备的状况,在很大程度上反映了这个国家的石油勘探水平。
地震勘探装备种类很多,涉及的范围很广。
其中直接用于野外地震数据采集的专用设备称之为地震勘探仪器。
地震勘探仪器的任务是将由震源激发的,并经地层传播反射回地表的地震波接收和记录下来。
从这个意义上来讲,地震勘探仪器主要包括检波器和记录仪器。
检波器接收地露波并把它转换成电信号,记录仪器对地震电信号进行放大滤波再把它记录下来,成为野外地震记录。
地震勘探第一阶段(野外数据采集阶段)的最终成果,就是地震勘探仪器产生的野外地震记录。
这些野外地震记录是地震勘探的资料处理和资料解释的原始依据和工作基础。
地震勘探仪器本身性能好坏和使用是否恰当,直接影响地震记录质量,也就必然影响到后期资料处理和资料解释工作,最终势必影响到地震勘探效果。
所以,地震勘探仪器是地震勘探装备中员基础的设备,也是最关键、最重要的设备。
正是由于地震勘探仪器在地震勘探中有很重要的地位和作用,所以地震勘探仪器原理历来是地震勘探这门学科中一个不可分割的内容。
地震仪器1. 引言地震是一种自然灾害,常常给人们的生命财产造成巨大的破坏。
为了及早探测地震的发生,并及时采取预防措施,科学家们开发了各种地震仪器。
本文将重点介绍几种常见的地震仪器,包括地震计、地震监测系统和地震防灾设备等。
2. 地震计地震计是一种用于测量地震波的仪器。
它的主要功能是记录地震波的振幅、频率和持续时间等信息,以便科学家们研究地震的性质和趋势。
地震计的原理是基于地震波在地球内部的传播和反射。
常见的地震计主要有三种类型:•倾斜仪:通过测量地面的倾斜角度来判断地震活动的情况。
倾斜仪通常使用液体磁测量仪或光纤传感器进行测量。
•加速度计:用于测量地面的加速度变化,可以精确地记录地震波的振幅和频率。
加速度计通常使用压电传感器或激光测距仪等设备。
•应变仪:通过测量地面的应变来判断地震波的传播情况。
常见的应变仪包括应变计和位移计等。
3. 地震监测系统地震监测系统是一种集成了多个地震仪器的综合系统,用于实时监测和记录地震活动的情况。
地震监测系统通常由地震计、地震定位系统和数据传输系统等组成。
其中,地震计用于测量地震波的振幅和频率,地震定位系统用于确定地震的发生位置,数据传输系统用于将地震监测数据传送到地震监测中心。
地震监测系统的核心设备是地震计。
它可以分布在不同的地点,并通过无线网络或有线网络连接到地震监测中心。
地震监测中心可以实时接收到各地地震计的数据,并进行分析和处理。
当地震发生时,地震监测系统可以及时发出警报,以提醒人们采取相应的应急措施。
4. 地震防灾设备为了减少地震给人们带来的伤害和损失,科学家们开发了一系列地震防灾设备。
这些设备旨在提供人们在地震发生时的保护和逃生途径。
常见的地震防灾设备包括:•避震建筑:采用特殊的抗震设计和结构,能够减少地震时建筑物的损坏和倒塌风险。
避震建筑通常使用减震器和隔震器等技术手段来减轻地震波对建筑物的影响。
•防震家具:设计特殊的家具,如抗震床、防震书架等,能够在地震时提供人们的保护。