离散数学期末复习试题及答案(一)
- 格式:doc
- 大小:177.00 KB
- 文档页数:8
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
离散数学综合练习题一一、单项选择题(每题2分 )16 %设P :王强是南方人,Q :他怕热.命题“王强不怕热是因为他是南方人”符号化为 ( ) (A)(B)()(D)P Q P Q C Q P Q P →→⌝→⌝→2 设F (x ):x 是熊猫,G (y ):y 是竹子,H (x ,y ):x 喜欢y. 那么命题“有些熊猫喜欢各种的竹子”符号化为 ( )(A) (()(()(,)))x F x y G y H x y ∃→∀∧ (B) (()(()(,)))x F x y G y H x y ∃→∀→ (C) (()(()(,)))x F x y G y H x y ∃∧∀→ (D) (()(()(,)))y x F x G y H x y ∀∃→∧3. 命题公式()p q p →∧⌝是 ( )(A) 重言式 (B) 矛盾式(C) 可满足式 (D) 以上3种都不是4. 设集合A ={a,b,{c,d,e}}则下列各式为真的是 ( )(A) ∈A (B) c ∈A (C) {c,d,e} A (D) {a,b}A5. 设函数 :f N N →且()3x f x =,则f 是 ( )(A) 单射,非满射 (B) 满射,非单射 (C) 双射 (D) 非单射,非满射6. 设E 为全集, A , B 为非空集,且BA ,则空集为( )(A) A B I (B) A B :I (C) A B I : (D) A B :I :7. 设A ={0,1,2,3},A 上的关系R ={<0,1>,<0,2>,<1,1>,<1,2>,<2,1>,<2,2>,<3,3>},则R 是 ( )(A )自反的 (B )对称的 (C )反对称的 (D )可传递的8. 无向图K 3,3是( )(A )哈密顿图 (B )欧拉图 (C )完全图 (D )平面图二、填空题(每空2分)18 %1. 设():F x x 是火车,():G y y 是汽车,H (x,y ):x 比y 快,则命题“说所有火车比有的汽车快是不对的”符号化是 ,其另一种等值形式为 。
离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。
证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。
离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。
离散数学试题(A卷及答案)一、证明题(10分)1)(P∧(Q∧R))∨(Q ∧R)∨(P ∧R)R证明: 左端(P ∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R((P ∨Q)∨(P∨Q))∧R T∧R(置换)R2)∃x(A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E, ⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S证明:(1) (C∨D)→⌝E(2) ⌝E→(A∧⌝B)(3) (C∨D)→(A∧⌝B)(4) (A∧⌝B)→(R∨S)(5) (C∨D)→(R∨S)(6) C∨D(7) R∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x)) 证明(1)∃xP(x)(2)P(a)(3)∀x(P(x)→Q(y)∧R(x))(4)P(a)→Q(y)∧R(a)(5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)∃x(P(x)∧R(x))(11)Q(y)∧∃x(P(x)∧R(x))五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)证明∵x∈A-(B∪C)⇔x∈A∧x∉(B∪C)⇔x∈A∧(x∉B∧x∉C)⇔(x∈A∧x∉B)∧(x∈A∧x∉C)⇔x∈(A-B)∧x∈(A-C)⇔ x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C)六、已知R、S是N上的关系,其定义如下:R={<x,y>| x,y∈N∧y=x2},S={<x,y>| x,y∈N∧y=x+1}。
大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。
离散数学习题参考答案第一章集合1.分别用穷举法,描述法写出以下集合(1)偶数集合〔2〕36的正因子集合〔3〕自然数中3的倍数〔4〕大于1的正奇数(1)E={⋯,-6,-4,-2,0,2,4,6,⋯}={2 i | i∈I }(2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 }(3) N3= { 3, 6, 9, ```} = { 3n | n∈N }(4) A d= {3, 5, 7, 9, ```} = { 2n+1 | n∈N }2.确定以下结论正确与否〔1〕φ∈φ×〔2〕φ∈{φ}√〔3〕φ⊆φ√〔4〕φ⊆{φ}√〔5〕φ∈{a}×〔6〕φ⊆{a}√〔7〕{a,b}∈{a,b,c,{a,b,c}}×〔8〕{a,b}⊆{a,b,c,{a,b,c}}√〔9〕{a,b}∈{a,b,{{a,b}}}×〔10〕{a,b}⊆{a,b,{{a,b}}}√3.写出以下集合的幂集〔1〕{{a}}{φ, {{ a }}}( 2 ) φ{φ}〔3〕{φ,{φ}}{φ, {φ}, {{φ}}, {φ,{φ}} }〔4〕{φ,a,{a,b}}{φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }},{a, {a b }}, {φ,a,{ a, b }} }〔5〕P〔P〔φ〕〕{φ, {φ}, {{φ}}, {φ,{φ}} }4.对任意集合A,B,C,确定以下结论的正确与否〔1〕假设A∈B,且B⊆C,那么A∈C√ 〔2〕假设A∈B,且B⊆C,那么A⊆C× 〔3〕假设A⊆B,且B∈C,那么A∈C× 〔4〕假设A⊆B,且B∈C,那么A⊆C ×5.对任意集合A,B,C,证明右分配差差左=--=--)C A ()B A ()C B (A M.D )C B (A )C B (A )C A ()B A ()C B (A )1(右差分配差左右差的结论差左=--=-------=-)C A ()B A ()C A ()B A ()C B (A M.D )C B (A )2)C A ()B A ()C A ()B A ()1()C B (A )1)C A ()B A ()C B (A )2(右交换结合幂等差左=--=-)C A ()B A (,)C B ()A A ()C B (A M.D )C B (A )C A ()B A ()C B (A )3())B )B (A ())B B ()B A ((,)B )B A (()B )B A ((B)B A (BA B )B A )(4( --⊕=⊕+结合分配对称差差左右零一互补==φ-φ-)B A ()B A ()A ()U )B A (()C B (A )C B (A M .D )C B (A C )B A ()C B (A C )B A )(5( --=--差结合差左右差结合交换结合差左=----=--B )C A (B)C A ()B C (A )C B (A C )B A (B )C A (C )B A )(6(左交换零一互补分配差右=------------=--C )B A ()5()C B (A )B C (A )U )B C ((A ))C C ()B C ((A ))C B (C (A ))C B (C (A )5()C B ()C A (C )B A )(7(6.问在什么条件下,集合A,B,C满足以下等式时等式成立须左若要右右左A C ),C B (A C ,)C A ()B A (C )B A ()C B (A )1(⊆∴⊆⊆⊆==时等式成立是显然的右左φ=∴⊆=-⊆⊆=-B A ,B A ,B A B A A ,A B A )2(时等式成立代入原式得φ==∴φ=φ-φ=⊆==-B A ,A ,B ,B B ,B B A BB A )3(时等式成立只能B A ,A B ,A B ,B A ,B A ,A B B A A B B A )4(=∴⊆φ=-⊆φ=-φ==-=-矛盾当矛盾当若A B A b ,A b ;A B A b ,A b ,B b ,B ,B A B A )5(=⊕∈∉=⊕∉∈∈∃φ≠φ==⊕} 时等式成立是显然的左右B A BA AB ,B A B BA ,B A A ,B A B A ,B A B A )6(=∴=⎩⎨⎧⊆⊆⊆⊆⊆⊆=时等式成立左φ=∴=-=====--C B A A )C B (A )C B (A )C B (A )C A ()B A (A)C A ()B A )(7(时等式成立左C A ,B A ),C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(8(⊆⊆∴⊆φ=-====φ=--时等式成立左)C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(9(⊆∴φ=-====φ=--时等式成立知由C A B A ,C A B A ),C A ()B A (,)6()C A ()B A ()C A ()B A ())C A ()B A (())C A ()B A (()C A ()B A )(10(=∴-=--=---=--φ=-----φ=-⊕-时等式成立B A B )B A (U )B A ()A A ()B A ()A B (A B)A B (A )11(⊆∴=====-7.设A={a,b,{a,b},},求以下各式〔1〕φ∩{φ}=φ 〔2〕{φ}∩{φ}={φ} 〔3〕{φ,{φ}}-φ={φ,{φ}} 〔4〕{φ,{φ}}-{φ}= {{φ}} 〔5〕{φ,{φ}}-{{φ}}={φ} 〔6〕A-{a,b}={{a,b}, φ} 〔7〕A-φ = A〔8〕A-{φ}={a,b,{a,b}} 〔9〕φ-A=φ 〔10〕{φ}-A=φ8.在以下条件下,一定有B=C吗?(1) C A B A =否,例:A={1,2,3},B={4},C={3,4},C B ,}4,3,2,1{C A B A ≠==而 。
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。
答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。
答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。
一、填空2.A ,B,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C )—A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 . 6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。
//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a ,b),(a ,c ), (a ,d), (b,d ), (c,d )} U {(a ,a),(b,b)(c,c )(d ,d )} .//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。
//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图。
自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d } ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统〈A,*〉的幺元是 a ,有逆元的元素为 a ,b,c,d ,它们的逆元分别为 a ,b ,c,d 。
//备注:二元运算为x*y=max{x,y },x ,y ∈A 。
10.下图所示的偏序集中,是格的为 c 。
//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ.2、下列集合中相等的有( B 、C )A CA .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。
A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。
答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。
安徽大学2006-2007学年第1学期《离散数学》期末考试试卷(A 卷)(时间120分钟)开课院(系、部) 姓名 学号 .一、选择题(每小题2分,共20分)1.下列语句中,哪个是真命题( )A 、42=+x ;B 、我们要努力学习;C 、如果ab 为奇数,那么a 是奇数,或b 是偶数;D 、如果时间流逝不止,你就可以长生不老。
2.下列命题公式中,永真式的是( )A 、P Q P →→)(;B 、P P Q ∧→⌝)(;C 、Q P P ↔⌝∧)(;D 、)(Q P P ∨→。
3.在谓词逻辑中,令)(x F 表示x 是火车;)(y G 表示y 是汽车;),(y x L 表示x 比y 快。
命题“并不是所有的火车比所有的汽车快”的符号表示中哪些是正确的?( ) I.)),()()((y x L y G x F y x →∧∀⌝∀ II.)),()()((y x L y G x F y x ⌝∧∧∃∃III. )),()()((y x L y G x F y x ⌝→∧∃∃A 、仅I ;B 、仅III ;C 、I 和II ;D 、都不对。
4.下列结论正确的是:( )A 、若C AB A =,则C B =; B 、若B A B A ⊆,则B A =;C 、若C A B A =,则C B =;D 、若B A ⊂且D C ⊂,则D B C A ⊂。
5.设φ=1A ,}{2φ=A ,})({3φρ=A ,)(4φρ=A ,以下命题为假的是( ) A 、42A A ∈; B 、31A A ⊆; C 、24A A ⊆; D 、34A A ∈。
6.设R 是集合},,,{d c b a A =上的二元关系,},,,,,,,,,,,{><><><><><><=b d d b a c c a a d d a R 。
下列哪些命题为真?( ) I.R R ⋅是对称的 II. R R ⋅是自反的 III. R R ⋅不是传递的A 、仅I ;B 、仅II ;C 、I 和II ;D 、全真。
《离散数学》期末复习题一、填空题(每空2分,共20分)1、集合A上的偏序关系的三个性质是、和。
2、一个集合的幂集是指。
3、集合A={b,c},B={a,b,c,d,e},则A?B= 。
4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。
5、若A是2元集合, 则2A有个元素。
6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则2*3= 。
7、设A={a, b,c,d }, 则∣A∣= 。
8、对实数的普通加法和乘法,是加法的幂等元,是乘法的幂等元。
9、设a,b,c是阿贝尔群<G,+>的元素,则-(a+b+c)= 。
10、一个图的哈密尔顿路是。
11、不能再分解的命题称为,至少包含一个联结词的命题称为。
12、命题是。
13、如果p表示王强是一名大学生,则┐p表示。
14、与一个个体相关联的谓词叫做。
15、量词分两种:和。
16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B的。
17、集合上的三种特殊元是、及。
18、设A={a, b},则ρ(A) 的四个元素分别是:,,,。
19、代数系统是指由及其上的或组成的系统。
20、设<L,*1,*2>是代数系统,其中是*1,*2二元运算符,如果*1,*2都满足、,并且*1和*2满足,则称<L,*1,*2>是格。
21、集合A={a,b,c,d},B={b },则A \ B= 。
22、设A={1, 2}, 则∣A∣= 。
23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示以。
24、一个图的欧拉回路是。
25、不含回路的连通图是。
26、不与任何结点相邻接的结点称为。
27、推理理论中的四个推理规则是、、、。
二、判断题(每题2分,共20分)1、空集是唯一的。
2、对任意的集合A,A包含A。
3、恒等关系不是对称的,也不是反对称的。
4、集合{1,2,3,3}和{1,2,2,3}是同一集合。
离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。
离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。
7. 一个连通图的生成树包含______条边。
8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。
9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。
10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。
三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。
()12. 一个连通图的所有顶点都连通。
()13. 在一个简单图中,每个顶点的度数都小于等于n-1。
()14. 每个图都有哈密顿路径。
()15. 一个图G的生成树是原图G的子图。
()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。
17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。
18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。
《离散数学》期末考试复习题及答案第一部分、考试形式和时间答题时限:120 分钟考试形式:闭卷笔试第二部分、考试题型和得分构成一、选择题:对每一道小题,从其4个备选答案中选择最适合的一项,每小题2分,共10道小题,20分。
二、填空题:每空1分,共5道小题,10个空白处待填,10分。
三、判断题:每一道小题均以述语句描述,对的打√,错的打х。
每小题1分,共10道小题,10分。
四、综合题:每小题10分,共6道小题,60分。
第三部分、考试复习围一、选择题1.含n个元素的集合A的幂集的元素个数为多少?答案:2n个。
2.数理逻辑的创始人是谁?答案:莱布里茨。
3.设(R,+,⋅)是环,它有哪些特性?答案:1.(R,+)是阿贝尔群。
2.(R,•)是半群。
3.•对+可分配。
4.排中律满足哪些性质?答案:A ∧ 不成立。
(不应同时否认一个命题(A )及其否定(非A ))x (F (x )∨F (x ))对任个体x 而言,x 有性质F 或没有性质F 。
5.什么是真命题?命题“如果雪是黑的,则1+1=0”是真命题吗?答案:真值为真的命题为真命题。
命题“如果雪是黑的,则1+1=0”是真命题!解析:p:雪是黑的;q:1+1=0;如果雪是黑的,则1+1=0:p →q 。
由于p 为假,所以无论的真值如,“p →q ”的真值都为真。
6. 下列哪个等价公式有错?A .P Q Q P →⇔→;B .P Q P Q →⇔⌝∨;C .P Q Q P →⇔⌝∨;答案:A7. 设G 为4阶有向图,度数列为(3,4,2,3),若它的入度列为(1,2,2,1),则出度列为哪项?A .(1,2,1,2);B .(2,2,0,2);C .(2,1,1,2).答案:B解析:有向图中:度数=出度数+入度数。
8. 设{}{},3,4,S a φ=,则表示空元素属于S 怎样写?答案:Ø∈S9. 什么是前束式?下面哪个是前束式?A .(,)()()(,,)Q x z x y R x y z →∃∀ ;B .()()(,)x y Q x y ∀∃.A答案:前束式:如果量词均在全式的开头,它们的作用域延伸到整个公式的末端,则该公式叫做前束式。
离散数学习题参考答案
第一章集合
1.分别用穷举法,描述法写出下列集合
(1)偶数集合
(2)36的正因子集合
(3)自然数中3的倍数
(4)大于1的正奇数
(1)E={,-6,-4,-2,0,2,4,6,}
={2 i | i∈ I }
(2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 }
(3) N
= { 3, 6, 9, ```} = { 3n | n∈N }
3
(4) A
= {3, 5, 7, 9, ```} = { 2n+1 | n∈N }
d
2.确定下列结论正确与否
(1)φ∈φ×
(2)φ∈{φ}√
(3)φ⊆φ√
(4)φ⊆{φ}√
(5)φ∈{a}×
(6)φ⊆{a}√
(7){a,b}∈{a,b,c,{a,b,c}}×
(8){a,b}⊆{a,b,c,{a,b,c}}√(9){a,b}∈{a,b,{{a,b}}}×
(10){a,b}⊆{a,b,{{a,b}}}√
3.写出下列集合的幂集
(1){{a}}
{φ, {{ a }}}
( 2 ) φ
{φ}
(3){φ,{φ}}
{φ, {φ}, {{φ}}, {φ,{φ}} }
(4){φ,a,{a,b}}
{φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }}, {a, {a b }}, {φ,a,{ a, b }} }
(5)P(P(φ))
{φ, {φ}, {{φ}}, {φ,{φ}} }
4.对任意集合A,B,C,确定下列结论的正确与否(1)若A∈B,且B⊆C,则A∈C√(2)若A∈B,且B⊆C,则A⊆C×(3)若A⊆B,且B∈C,则A∈C×(4)若A⊆B,且B∈C,则A⊆C×
5.对任意集合A,B,C,证明
右
分配
差
差
左=--=--)C A ()B A ()C B (A M
.D )
C B (A )C B (A )C A ()B A ()C B (A )1(
右
差
分配
差
左
右差
的结论
差
左
=--=-------=-)C A ()B A ()
C A ()B A ()
C B (A M
.D )
C B (A )2)C A ()B A ()
C A ()B A ()1()
C B (A )1)C A ()B A ()C B (A )2(
右
交换
结合幂等
差
左=--=-)C A ()B A (,)
C B ()A A ()
C B (A M
.D )
C B (A )C A ()B A ()C B (A )3(
))
B )B (A ())B B ()B A ((,)B )B A (()B )B A ((B
)B A (B
A B )B A )(4( --⊕=⊕+结合
分配对称差
差
左
右
零一
互补
==φ-φ-)B A ()B A ()A ()U )B A ((
)
C B (A )
C B (A M .
D )C B (A C )B A ()
C B (A C )B A )(5( --=--差
结合
差
左
右
差
结合
交换结合差
左=----=--B )C A (B
)C A ()
B C (A )
C B (A C )B A (B )C A (C )B A )(6(
左
交换
零一互补
分配差右=------------=--C )B A ()
5()
C B (A )
B C (A )U )B C ((A ))C C ()B C ((A ))
C B (C (A ))C B (C (A )5()C B ()C A (C )B A )(7(
6.问在什么条件下,集合A,B,C满足下列等式
时等式成立须左若要右右左A C ),C B (A C ,)C A ()B A (C )B A ()C B (A )1(⊆∴⊆⊆⊆==
时等式成立是显然的右左φ=∴⊆=-⊆⊆=-B A ,B A ,B A B A A ,A B A )2(
时等式成立代入原式得φ==∴φ=φ-φ=⊆==-B A ,A ,B ,B B ,B B A B
B A )3(
时等式成立只能B A ,A B ,A B ,B A ,B A ,A B B A A B B A )4(=∴⊆φ=-⊆φ=-φ==-=-
矛盾当矛盾当若A B A b ,A b ;A B A b ,A b ,
B b ,B ,
B A B A )5(=⊕∈∉=⊕∉∈∈∃φ≠φ==⊕
} 时等式成立是显然的左右B A B A A
B ,B A B B
A ,
B A A ,B A B A ,
B A B A )6(=∴=⎩⎨
⎧⊆⊆⊆⊆⊆⊆=
时等式成立左φ=∴=-=====--C B A A )C B (A )C B (A )C B (A )C A ()B A (A
)C A ()B A )(7(
时等式成立左C A ,B A ),
C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(8(⊆⊆∴⊆φ=-====φ
=--
时等式成立左)C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(9(⊆∴φ=-====φ
=--
时等式成立知由C A B A ,C A B A ),C A ()B A (,)6()C A ()B A ()C A ()B A ())C A ()B A (())C A ()B A (()C A ()B A )(10(=∴-=--=---=--φ=-----φ
=-⊕-
时等式成立B A B )B A (U )B A ()
A A ()
B A ()A B (A B
)A B (A )11(⊆∴=====-
7.设A={a,b,{a,b},},求下列各式
(1)φ∩{φ}=φ (2){φ}∩{φ}={φ} (3){φ,{φ}}-φ={φ,{φ}} (4){φ,{φ}}-{φ}= {{φ}} (5){φ,{φ}}-{{φ}}={φ} (6)A-{a,b}={{a,b}, φ} (7)A-φ = A
(8)A-{φ}={a,b,{a,b}} (9)φ-A=φ (10){φ}-A=φ
8.在下列条件下,一定有B=C吗?
(1) C A B A =
否,例:A={1,2,3},B={4},C={3,4},
C B ,}4,3,2,1{C A B A ≠==而 。
(2)C
A B A =
否,例:A={1,2,3},B={2,3},C={2,3,4}
C B ,}3,2{C A B A ≠==而 。
(3)C A B A ⊕=⊕
矛盾若若不妨若对C
A a ,C A a ,C A a ,
B A a ,B A a ,B A a ,A a ;
C A a ,C A a ,C A a ,
B A a ,B A a ,B A a ,A a ,
C a ,B a ,,C B ,⊕∉∉∉⊕∈∉∈∉⊕∈∉∈⊕∉∈∈∈∉∈∃≠
(4)C A B A C A B A ==且
C B ,B C ,,C B ,C b ,C A B A b ,A b ,C b ,C A B A b ,A b ,B b =∴⊆⊆∴∈=∉∉∈=∈∈∈∀同理若若
9. (1) B A )C B ()B A ( ⊆
B A a ,A a ,B a ,)B A (a ;B a ,B a ,)
C B (a ,a :∈∴∈∉∈∈∉∉∈∀而左证
(2)φ≠⊆⊆B ,)C A (B )C B (A 则且若 。
矛盾即若,B a B a ,C a ,)C B (A a ),
C A ()C A (B a ,B ∉∈∴∉⊆∈=⊆∈∃φ≠
10.化简
A
B )A B ()A B ()A A (A
)B A (A )B A ()A ))C B (A (())B A ()C B A ((-=-φ===-=-
11. 设A={2,3,4},B={1,2},C={4,5,6},求 (1)
4} 3, {1,B A =⊕
(2)}
6,5,3,1{C B A =⊕⊕
(3)}
6,5,3,2{)C B ()B A (=⊕⊕⊕
12. 设A={1,2,3,4},B={1,2,5},求 (1) =)B (P )A (P {φ,{1},{2},{1,2}} (2) =)B (P )A (P
{φ,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}, {1,2,3,},{1,2,4,},{1,3,4,},{2,3,4},{1,2,3,4,},{5},{1,5}, {2,5},{1,2} } (3)=-)B (P )A (P
{ {3},{4},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4},{1,2,3,4} } (4)=⊕)B (P )A (P
{{3},{4},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4},{1,2,3,4},{5},{1,5},{2,5},{1,2,5} }
(注:可编辑下载,若有不当之处,请指正,谢谢!)。