果蝇大试验
- 格式:ppt
- 大小:409.50 KB
- 文档页数:40
一、实验目的1. 了解果蝇的遗传学特性。
2. 掌握果蝇的遗传实验方法。
3. 学习基因分离和自由组合定律的应用。
二、实验原理果蝇(Drosophila melanogaster)是一种常用的遗传学实验材料,具有以下特点:1. 生命周期短,繁殖速度快,便于实验操作。
2. 基因连锁和交换现象明显,便于观察和研究遗传规律。
3. 基因数目相对较少,便于解析。
本实验主要观察果蝇的性别决定、染色体遗传、基因连锁和自由组合等现象,验证基因分离和自由组合定律。
三、实验材料与仪器1. 材料:果蝇、白蚁、酒精、生理盐水、显微镜、载玻片、盖玻片、镊子、解剖针、培养皿、酒精灯、剪刀等。
2. 试剂:醋酸、甘油、生理盐水、乳酸等。
四、实验步骤1. 观察果蝇的性别决定(1)观察果蝇的生殖器官,判断性别。
(2)记录性别比例。
2. 观察果蝇的染色体遗传(1)取果蝇幼虫,制作染色体涂片。
(2)观察染色体数目和形态,判断染色体遗传。
(3)记录染色体遗传现象。
3. 观察果蝇的基因连锁(1)选取具有特定基因型的果蝇,进行杂交。
(2)观察F1代的表现型,判断基因连锁。
(3)记录基因连锁现象。
4. 观察果蝇的自由组合(1)选取具有不同基因型的果蝇,进行杂交。
(2)观察F2代的表现型,判断自由组合。
(3)记录自由组合现象。
五、实验结果与分析1. 观察果蝇的性别决定:实验中,雌雄果蝇比例约为1:1,符合二倍体生物的性别比例。
2. 观察果蝇的染色体遗传:实验中,观察到果蝇的染色体数目为8条,符合二倍体生物的染色体数目。
3. 观察果蝇的基因连锁:实验中,观察到F1代的表现型为杂合子,符合基因连锁现象。
4. 观察果蝇的自由组合:实验中,观察到F2代的表现型比例为9:3:3:1,符合自由组合定律。
六、实验结论通过本实验,我们了解了果蝇的遗传学特性,掌握了果蝇的遗传实验方法,验证了基因分离和自由组合定律。
在实验过程中,我们学会了制作染色体涂片、观察染色体遗传、基因连锁和自由组合等现象,为今后的遗传学研究奠定了基础。
果蝇打斗实验报告模板
研究果蝇的打斗行为,了解其社会行为特征。
实验材料和方法:
实验材料:30只成年果蝇、观察箱、放大镜、相机。
实验方法:
1. 将30只成年果蝇随机分成10组,每组3只。
2. 将每组果蝇置于观察箱中,并加上足够的食物和水源。
3. 观察箱内设有白色背景,以方便观察果蝇的行为。
4. 使用相机记录果蝇的打斗行为。
实验结果:
经过5天的观察,我们发现果蝇间的打斗行为具有以下特征:
1. 打斗的果蝇会互相对抗,双方扇动翅膀并试图相互攻击。
2. 战斗时果蝇会发出嗡嗡声,并纠缠在一起。
3. 战斗通常持续几秒钟至几分钟不等。
4. 胜利的果蝇会呈现威胁性的姿态,将翅膀摆得更加平直并试图驱逐败者。
实验分析与讨论:
1. 打斗行为可能与资源争夺有关,如食物和交配权。
2. 打斗是果蝇社会中建立地位和领地的一种方式。
3. 打斗行为中的威胁姿态可能是果蝇之间的一种社交信号。
4. 打斗的果蝇往往会更受其他果蝇的攻击,表明果蝇间的打斗是一种社会行为。
实验结论:
通过观察果蝇的打斗行为,我们了解到果蝇的社会行为特征。
果蝇的打斗行为可能与资源争夺、建立地位和社交信号有关。
这些研究结果有助于我们更好地理解果蝇社会行为,并可以为进一步的研究提供基础。
果蝇实验报告果蝇实验报告引言:果蝇(Drosophila melanogaster)是一种常见的模式生物,因其短寿命、易于繁殖和基因组的简单性而被广泛应用于生物学研究。
本实验旨在通过观察果蝇的行为和遗传特征,探索其在遗传学和行为学领域的应用。
实验一:果蝇的繁殖与生命周期果蝇的繁殖能力强,每只雌蝇可产下数百个卵。
在实验中,我们选取了一对野生型果蝇,将其放置在含有适宜培养基的培养皿中。
经过一段时间的观察,我们发现果蝇卵孵化后,经历了卵、幼虫、蛹和成虫四个阶段。
整个生命周期约为10天。
这一发现表明果蝇是一种适合进行短期实验的模式生物。
实验二:果蝇的觅食行为果蝇对于食物的敏感性极高,能够迅速定位到食物的存在。
在实验中,我们将果蝇放置在一个圆形培养皿中,将一块成熟的水果放置在圆心位置。
果蝇会通过触角和视觉来感知食物的存在,并迅速飞向食物。
这一实验结果表明果蝇在觅食行为中运用了多种感知方式。
实验三:果蝇的遗传特征果蝇的遗传特征是其成为模式生物的重要原因之一。
在实验中,我们通过交配不同基因型的果蝇,观察后代的表型变化。
例如,我们将一只长翅果蝇(Ww)与一只短翅果蝇(ww)交配,得到了一代杂合子(Ww)和纯合子(ww)的后代。
纯合子表现出短翅的特征,而杂合子表现出中等长度的翅膀。
这一实验结果展示了果蝇的遗传规律,即显性和隐性基因的表现。
实验四:果蝇的学习与记忆能力果蝇在学习和记忆方面也具有一定的能力。
在实验中,我们使用经典条件作用实验,将一种特定的气味与电击刺激同时呈现给果蝇,经过多次重复后果蝇会形成条件反射,即当闻到该气味时会表现出避开的行为。
这一实验结果显示果蝇具有学习和记忆能力,为研究学习和记忆的机制提供了一个简单而有效的模型。
结论:通过对果蝇的观察和实验,我们可以得出结论:果蝇是一种适用于遗传学和行为学研究的理想模式生物。
其短寿命、易于繁殖和遗传特征的简单性使得果蝇成为科学家们研究基因和行为的重要工具。
一、实验目的1. 了解果蝇的基本生物学特征。
2. 观察果蝇的生殖发育过程。
3. 掌握显微镜的使用方法。
4. 分析果蝇生长发育过程中的形态变化。
二、实验材料1. 果蝇若干只2. 显微镜3. 显微镜载物台4. 显微镜物镜5. 显微镜目镜6. 滴管7. 玻片8. 载玻片9. 尼龙网10. 实验记录表三、实验方法1. 观察果蝇外部形态:使用放大镜观察果蝇的头部、胸部、腹部、触角、翅膀等部位的结构。
2. 观察果蝇内部结构:将果蝇置于载玻片上,滴加生理盐水,盖上玻片,置于显微镜下观察其内部结构。
3. 观察果蝇生殖发育过程:将果蝇置于尼龙网中,放入培养箱,观察其繁殖情况,记录孵化时间、幼虫发育阶段、蛹化时间、成虫羽化时间等。
四、实验步骤1. 观察果蝇外部形态:将果蝇置于放大镜下,观察其头部、胸部、腹部、触角、翅膀等部位的结构,并记录观察结果。
2. 观察果蝇内部结构:将果蝇置于载玻片上,滴加生理盐水,盖上玻片,置于显微镜下观察其内部结构,如消化系统、生殖系统等,并记录观察结果。
3. 观察果蝇生殖发育过程:将果蝇置于尼龙网中,放入培养箱,观察其繁殖情况,记录孵化时间、幼虫发育阶段、蛹化时间、成虫羽化时间等,并记录观察结果。
五、实验结果与分析1. 观察果蝇外部形态:果蝇头部较大,触角细长,胸部发达,腹部较细,翅膀薄膜状,有翅脉分布。
2. 观察果蝇内部结构:果蝇消化系统包括口腔、咽、食道、胃、小肠、大肠、肛门等;生殖系统包括雄性生殖器官和雌性生殖器官。
3. 观察果蝇生殖发育过程:果蝇的生殖发育过程为卵、幼虫、蛹、成虫四个阶段。
孵化时间约为12小时,幼虫发育阶段分为三个阶段,蛹化时间约为4天,成虫羽化时间约为2天。
六、实验结论1. 果蝇具有明显的头部、胸部、腹部等部位,触角、翅膀等器官。
2. 果蝇内部结构复杂,包括消化系统、生殖系统等。
3. 果蝇的生殖发育过程为卵、幼虫、蛹、成虫四个阶段,具有明显的变态发育特点。
七、实验讨论1. 果蝇作为生物学研究的重要模式生物,其繁殖速度快、易于饲养,便于观察和研究。
附一、数据记录表反交灰体黑体合计♀♂♀♂红、长、直╋╋╋白、短、卷━━━白、长、直━╋╋红、短、卷╋━━红、长、卷╋╋━白、短、直━━╋红、短、直╋━╋白、长、卷━╋━体色合计性别合计性别合计♀♂答:(1)对于正交组,三隐性突变体雌蝇(X w sn m X w sn m)与红眼(+)、直刚毛(+)、长翅(+)野生型雄蝇(X+++Y)杂交,则F1可产生三杂合体雌蝇(Xw sn m X+++)和三隐性雄蝇(X w sn m Y)。
由于Y染色体上不携带相应的等位基因,因而表现出X染色体上三个隐性基因所控制的性状,相当于一个三隐性纯合体。
用F1代杂交(相当于测交),F2代表现出的8种表型及数目与F1雌蝇产生的8种配子及数目一致。
而反交组由于F1中的雄果蝇是野生型的,其显性基因掩盖了F1雌蝇产生的8种配子中的部分隐性性状,导致F2不出现8种表型,因此不能直接进行三点测交。
(2)反交组若要进行三点测交,可以用F1中的处女蝇与6号亲本雄蝇回交,观察F2的表型即可进行三点测交。
反交组三点测交示意图:P ♀+ + +/+ + + ×w m sn/Y♂↓F1 ♀w m sn ⁄+ + + ×w m sn/Y♂(处女蝇)↓(P)F2 w m sn + m sn w + sn w m ++ + + w + + + m + + + sn附二、实验结果分析1..分离定律:χ2检验表反交基因体色基因(B/b)F2表型灰体黑体合计实得数预期数χ2P(n=1)2.自由组合定律:χ2检验表表型合计反交灰体红眼灰体白眼黑檀体红眼黑檀体白眼实得数预期数χ2P(n=3)3.伴性遗传:χ2检验表红眼白眼合计反交F1表型雌雄雌雄实得数预期数χ2P(n=1)F2表型雌雄雌雄合计实得数预期数χ2P(n=2)。
果蝇的观察实验报告实验目的:通过观察果蝇的生命历程和遗传特征,了解果蝇基因的遗传规律。
实验原理:果蝇是一种重要的实验生物,它具有生命周期短、培养容易、繁殖能力强等优点,因此成为遗传学的经典模型生物。
这里介绍利用果蝇进行遗传实验的基本原理。
实验步骤:1、制作培养基:将50g玉米粉、25g酵母粉、75g糖和1.5g琼脂混合均匀后加入800ml蒸馏水中煮沸,煮沸后加入10g麦芽糖搅拌均匀,然后加入5ml5%酸性苏打溶液,再加入1.5ml甲基对羟基苯甲酸(表面活性剂),继续搅拌均匀后煮沸5min。
2、制作接种用液体:将20只成年果蝇挑选出来放入一个小玻璃瓶中,加入3ml20%甲醇溶液。
3、取出培养基,晾凉后将培养基先倒入瓶底1cm处,然后加入接种用液体,再用润滑油封瓶口。
4、将装有接种液的瓶子放入恒温器内,设定温度为25℃±1℃,相对湿度为60%~70%,24h-48h后开启显微镜。
实验结果:观察果蝇约经过2周的时间后,开始产卵。
果蝇的卵是白色小圆球状的,直径约0.8mm。
果蝇的卵在经过1-2天的时间孵化出小型幼虫。
小型幼虫经过3天左右的时间进入成长期,变成有脚的大幼虫。
成长期大约持续5天。
成长期结束后大幼虫停止进食,脱离食料后,挖掘地洞,变成蛹。
蛹的表面覆盖有一层硬壳,颜色为棕黄色。
蛹期持续6-7天。
成虫期发生在蛹孵化之后。
成虫首先从头部和胸部破壳而出,身体尚未展开,翅膀和颜色尚未发育。
成虫经过4-5天后颜色最浅,紫色的队形在翅膀中形成。
再过2-3天,成蝇翅膀干燥并膨胀到正常大小。
到第10天,成蝇已完全成熟,可以进行交配和产卵。
实验分析:通过实验我们可以清晰地观察到果蝇的生命周期。
我们还发现了果蝇的遗传特征,比如说果蝇红眼与白眼间的遗传规律是隐性缺失。
这意味着前代中有一个显性基因,因而两种不同染色体中都含有这种基因的果蝇就显示为红眼或白眼;否则,果蝇将拥有两个隐性基因,它就表现为白眼果蝇。
通过对果蝇这一模型生物的观察和遗传实验,我们得出了一些重要的结论,比如说:果蝇的生命周期短,容易培养、繁殖等特点,使其成为遗传学研究的理想模型生物之一;在果蝇遗传实验中,我们学习了关于基因的遗传规律,如显性基因、隐性基因等,这些规律对了解遗传学的基本知识非常有帮助。
果蝇大实验一、实验目的1、了解果蝇的生活史,识别雌雄,观察常见的几种突变型;2、通过果蝇的杂交实验,验证独立分配,伴性遗传,连锁遗传规律。
二、实验材料果蝇(2n=8)三、实验用具及药品1、仪器用具解剖镜、恒温箱、培养瓶、麻醉瓶、白瓷盘、标签2、药品试剂乙醚、玉米粉、蔗糖、琼脂、丙酸、酵母粉、酒精3、培养基玉米粉培养基:琼脂糖和玉米粉,加上酵母使其发酵,加入丙酸,目的是一来防止霉菌生长,二来果蝇偏好丙酸的味道四、实验原理(一)果蝇的生活史及形态观察1、生活史观察(1)卵成熟的雌蝇交尾后(2–3d)将卵产在培养基的表层。
用解剖针的针尖在果蝇培养瓶内沿着培养基表面挑取一点培养基将其置于载玻片上,然后滴上1滴清水,用解剖针将培养基展开后放在显微镜低倍镜下仔细进行观察。
果蝇的卵为椭圆形,长约0.5mm ,腹面稍扁平,前端伸出的触丝可使卵附着在培养基表层而不陷入深层。
(2)幼虫果蝇的受精卵经过一天的发育即可孵化为幼儿虫。
幼虫在培养基内及瓶壁上都有,培养基内的幼虫一般要小一些。
这是因为果蝇的幼虫从一龄幼虫开始经两次蜕皮,形成二龄和三龄幼虫,随着发育而不断长大,三龄幼虫往往爬到瓶壁上来化蛹,其长度可达4–5mm 。
幼虫一端稍尖为头部,黑点处为口器。
幼虫在培养基内和瓶壁上蠕动爬行。
(3)蛹幼虫经过4–5d的发育开始化蛹。
一般附着在瓶壁上,颜色淡黄。
随着发育的继续,蛹的颜色逐渐加深,最后为深褐色。
在瓶壁上看到的几乎透明的蛹是已经羽化完而遗留的蛹的空壳。
(4)成虫刚羽化出的果蝇虫体较长,翅膀也没有完全展开,体表未完全几丁质化所以成半透明透乳白色。
随着发育,身体颜色加深,体表完全几丁质化。
羽化出的果蝇在8–12h后开始交配,成体果蝇在25℃条件下的寿命为37d 。
2、雌雄鉴别为了准确地配制果蝇的杂交组合和果蝇遗传性状分析,必须首先能够正确辨别果蝇的性别。
(1)麻醉对果蝇实施麻醉是为了便于性状观察和转移果蝇,因此麻醉时一定要根据实验目的的而确定麻醉的深度。
果蝇大实验设计初稿PS: 求吐槽、拍砖~1、PPS:和新蕾讨论出来后, 感觉现在有的材料果蝇有:2、转基因果蝇A(Tau)3、转基因果蝇B(绿色荧光)4、残刻翅果蝇(有balancer)5、短刚毛果蝇(有balancer)6、GMR-Gal4果蝇(与A杂交后会有发育不良的表征)实验需要的是转基因果蝇A和转基因果蝇B的三号染色体上基因重组, 追求的稳定遗传则可以是“balancer+重组基因”(因为两条的纯合重组感觉很困难的样子), 其余三只是供我们选择, 作为工具的。
而balancer的效果是:1)与残刻翅/短刚毛决定基因在同一条染色体上, 让其不发生重组2)如果出现残刻翅/短刚毛纯合, 也即是balancer纯合, 那么果蝇死亡(这样使活着的都满足残刻翅/短刚毛杂合)另外, 感觉还有一点(通过题目前提介绍和后来强调的白眼): A的纯合度(也就是插入进的基因数)越大, 那么眼睛越红(也就是与白眼纯合杂交后会生出橙色眼的子代)实验大致设计:[1]选取A果蝇的处女蝇和B果蝇的雄蝇杂交(数量, 防止回交)[2]选取[1]中子代(应该是相同的基因型)中的处女蝇与残刻翅(感觉残刻翅更好观察区分)雄果蝇杂交(数量, 防止回交)[3]选取[2]中子代有绿色荧光且残刻翅的, 并将其中的处女蝇与GMR-Gal4雄果蝇杂交,出现眼睛发育不良即证明亲代处女蝇为目标蝇(这里就发现亲代处理方面会存在问题, 所以不知道能不能通过眼睛颜色来进行判断;或许可以采用先用眼睛颜色判断,然后再用GMR-Gal4果蝇进行检验;也可以在眼睛发育不良的子代中挑选绿色荧光的子代, 但这会导致以后的子代出现眼睛发育不良, 应该不是上上选)(数量、防止回交)求大大们拍砖呐~。
第1篇一、实验目的1. 通过果蝇实验,验证孟德尔遗传学定律,包括分离定律、自由组合定律和连锁定律。
2. 学习和掌握果蝇的饲养、观察和杂交技术。
3. 提高对遗传学实验设计、操作和数据分析的能力。
二、实验原理果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。
果蝇具有以下优点:1. 饲养简单,繁殖速度快,便于实验操作。
2. 染色体数目少,便于观察和分析。
3. 遗传变异丰富,便于研究基因和性状之间的关系。
本实验主要研究果蝇的遗传学定律,包括分离定律、自由组合定律和连锁定律。
三、实验材料与仪器1. 实验材料:野生型果蝇、突变型果蝇(如红眼、白眼、长翅、残翅等)、培养皿、培养箱、显微镜、解剖针、酒精灯、镊子等。
2. 实验仪器:电子天平、温度计、计时器、酒精棉球、乙醚、酒精、清水等。
四、实验方法1. 果蝇饲养:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 果蝇杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代;将F1代雌雄果蝇进行杂交,得到F2代。
3. 果蝇观察:观察F1代和F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 数据分析:根据观察结果,分析遗传学定律。
1. 饲养果蝇:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。
2. 杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代。
3. 观察F1代:观察F1代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
4. 杂交F1代:将F1代雌雄果蝇进行杂交,得到F2代。
5. 观察F2代:观察F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。
6. 数据分析:根据观察结果,分析遗传学定律。
六、实验结果与分析1. F1代观察结果:F1代果蝇全部表现为红眼和长翅,说明红眼和长翅为显性性状。
2. F2代观察结果:F2代果蝇中,红眼:白眼=3:1,长翅:残翅=3:1,符合孟德尔的分离定律。
实验二果蝇杂交大实验(单、双因子杂交及果蝇伴性遗传实验)
一、原种的扩大培养
1.品系四个品系果蝇:野生果蝇(红眼、灰身、全翅);残翅果蝇(红眼、灰
身、残翅);黑檀体果蝇(红眼、黑身、全翅)、白眼(白眼、灰身、全翅)
2.数量根据杂交需要扩大培养原种,每个品系原种至少分成2管。
二、杂交亲本的准备
1.亲本的挑出:从扩大培养的原种中,随机选择10对果蝇,放入装有的培养
基的大试管中,每组每个品系各1瓶,共准备4瓶(原种);
2.处女蝇的准备策略:各品系亲本果蝇在培养的第10天晚上10点(pm10:00)
弃去老果蝇(此时有很多没孵化出幼虫和蛹),接着每天按照①am6:00,pm2:00,pm10:00的方法连续(2-3天)分别收集分离♀♂成蝇,放入杂交瓶中每瓶培养基放置10对亲本果蝇,雌雄分开(见附录一,P63)(取一正方形白纸,沿对角线对折然后展平,平置于桌面,将麻醉之果蝇倒于对角线折痕上,用尺、尖头镊子或解剖针拨弄果蝇使其均匀分散于对角线的折痕上,然后沿对角线将雌雄果蝇分类拨入各侧)。
- 1 -
2
注:每个杂交组合至少10对,F1代自交时可以15对,每次统计杂交后代形状分离分化时,后代数越多越好,统计更准确!实验结果分析参照书上P28。
生命科学学院遗传学实验报告组员:杨朝雄张晓旭赵慧佳杨明月徐聪吴燕张玮单因子、双因子杂交、伴性遗传和三点测交实验一、实验目的:1、通过对果蝇的杂交实验,正确理解分离定律的实质,并验证与加深理解三个的遗传规律;2、认识伴性遗传的正、反交差别,掌握伴性遗传的特点;3、掌握绘制遗传学图的原理和方法,加深对重组值、遗传学图、双交换、并发率和干涉等概念的理解;4、掌握果蝇的杂交技术,并学会记录交配结果和掌握统计处理的方法;二、实验器材:1、材料: 6号果蝇灰体白眼短翅卷刚毛和26号果蝇黑檀体红眼长翅直刚毛2、试剂:乙醇、乙醚、果蝇培养基等3、器具:麻醉瓶、酒精灯、白瓷板、毛笔、镊子、培养管、棉球等三、实验原理:果蝇具有生活史短、繁殖率高、饲养简便、染色体数目少2n=8和突变性状多等特点,是研究遗传学的好材料;本次设计实验就是利用果蝇进行一系列的遗传学验证实验和染色体基因相对顺序和距离的测定;1、双因子杂交:果蝇的灰体基因E与黑檀体基因e为一对相对性状,而长翅与短翅为另一对相对性状;这两对基因是没有连锁关系的,位于不同染色体上的非等位基因; 因此非同源染色体的这两对非等位基因可以很好的验证自由组合定律;自由组合规律:位于非同源染色体上的两对非等位基因,其杂合体在形成配子时,等位基因彼此分离,进入不同的配子中,非等位基因可自由组合进入同一配子,结果产生4种比例相等的配子;若显性完全, F1自交产生F2代表现出4种表型,比例为3:3:1:1;双因子杂交的遗传规律:双因子杂交正交6♀×26♂灰长黑短F1 灰长2、伴性遗传:位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传;果蝇的红眼与白眼是一对相对性状,由单基因控制,位于X染色体上,基因之间的关系为红眼对白眼完全显性;当白眼果蝇♀和红眼果蝇♂杂交,F1代中的雌果蝇为红眼,雄果蝇却为白眼;F2代中红眼果蝇∶白眼果蝇=1∶1,在雌果蝇或雄果蝇中红眼果蝇与白眼果蝇的比例均为1∶1;伴性遗传的遗传规律:X w X w X+Y♂白眼♀红眼F1: X+X w X w Y♀红眼♂白眼F2: X+X w X w X w X+ Y X w Y♀红眼♀白眼♂红眼♂白眼3、三点测交位于同一条染色体上的基因是连锁的,而同源染色体上的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型;重组型出现的多少反映出基因间发生交换的频率的高低;而根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系;基因图距就是通过基因间重组值的测定而得到的;如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正,来求出基因图距;通过一次三点测验可以同时确定三个连锁基因的位置,即相当于进行三次两点测验,而且能在试验中检测到所发生的双交换;如果两个基因间的单交换并不影响邻近两个基因的单交换,那么预期的双交换频率应当等于两个单交换频率的乘积,但实际上观察到的双交换值往往低于预期值,因为每一次发生单交换,它邻近也发生一次交换的机会就减少,这叫干涉; 三点测交6号♀wsnm/wsnm ⨯ 26号♂+++/Y白卷短 红直长统计F2代各类型及数目填入表格四、实验步骤: 1.准备工作:将麻醉瓶和器具白瓷板、毛笔等领取培养管6支,填写标签并贴在培养管上; 标签写法举例如右:选取6号处女蝇和26号雄蝇:实验前2-3天陆续按组合收集8小时内羽化的果蝇,分离♀♂2果蝇杂交:转移5-6对亲本,记录杂交日期和亲本组合名称; 4、去亲本:杂交后7-8天;F1: ♀+++/wsnm ♂wsnm/Y 红直长 白卷短⊗5、F1代性状观察及自交:去亲本后4-5天进行,连续检查2-3天;移5-6对进行自交无需处女蝇;6、再去亲本:自交后7-8天7、记录结果:去亲本后4-5天进行,连续统计7-8天五、实验记录:记录了11月12日到11月20日的数据;数据总数表一表二表三六、实验数据分析:1、单因子杂交的实验数据分析1预期F2的表型与比例灰体:黑檀体=3:1单因子杂交的χ2测验df=2-1=1;α=;χα2=结论:χ2<χα2;观察值与预期值之间的差异不显著,实验结果符合3:1的分离比;2、双因子杂交的实验数据分析1预期F2的表型与比例:灰长:灰短:黑长:黑短=3:3:1:1双因子杂交的χ2测验df=4-1=3;α=;χα2=结论:χ2<χα2;观察值与预期值之间的差异不显著,实验结果符合3:3:1:1的分离比;3、伴性遗传的实验数据分析1预期F2的表型与比例:红眼雌:白眼雌:红眼雄:白眼雄=1:1:1:1伴性遗传的χ2测验df=4-1=3;α=;χα2=结论:χ2<χα2;观察值和预期值之间的差异不显著,实验结果符合1:1:1:1的分离比4、三点测交的实验数据分析:两端的基因间距离进行校正:%+2×%=%据本次实验结果算出的三个基因的相对顺序和距离w-sn-m三个基因的遗传学图单交换率分别为%和%;双交换率为%并发率=%/%×%=,干扰==;意味着13%的双交换被干涉掉了,说明染色体的一个区段的交换抑制了邻近区段的另一次交换;七、结果讨论:本次遗传学综合大实验历时一个多月,并分为单因子、双因子杂交、伴性遗传和三点测交四个部分;在实验过程中,需要小组成员之间的合作,并且分配好每个人的任务,在观察和统计的过程中要认真、细心;就实验结果来看,一个小组的实验数据是远远不够的,实验数据少导致了在验证伴性遗传、自由结合定律的时候与预期比例有偏差;但是总体来说,本次的实验还是成功的;。
一、实验目的1. 了解果蝇的生物学特性及其生长发育过程。
2. 掌握果蝇的遗传规律和基因突变方法。
3. 培养实验操作技能,提高观察和分析能力。
二、实验原理果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物,具有以下特点:1. 生命周期短,易于观察和实验操作。
2. 遗传背景明确,便于基因定位和功能研究。
3. 生长发育过程中形态变化明显,便于观察和记录。
本实验通过观察果蝇的生长发育过程,分析其遗传规律,并利用基因突变方法研究基因功能。
三、实验材料与仪器1. 材料:果蝇、培养基、酵母提取物、果糖、琼脂、显微镜等。
2. 仪器:恒温培养箱、解剖镜、酒精灯、镊子、剪刀、吸管、滴管等。
四、实验步骤1. 果蝇培养(1)将果蝇置于恒温培养箱中,保持温度在25-28℃。
(2)将酵母提取物、果糖和琼脂按比例混合,制成培养基。
(3)将培养基倒入培养皿中,待凝固后放入果蝇。
2. 观察果蝇生长发育过程(1)每天观察果蝇的生长发育情况,记录其形态特征、生长速度等。
(2)通过显微镜观察果蝇的生殖器官、染色体等结构。
3. 基因突变实验(1)利用化学物质或物理方法诱导果蝇基因突变。
(2)观察突变果蝇的表型变化,分析突变基因的功能。
4. 数据分析(1)将实验数据整理成表格,进行统计分析。
(2)分析果蝇生长发育规律、遗传规律和基因突变结果。
五、实验结果与分析1. 果蝇生长发育过程(1)果蝇从卵到成虫的生长周期约为10-12天。
(2)卵孵化后,幼虫期约3-4天,幼虫发育过程中形态逐渐变化。
(3)幼虫化蛹,蛹期约4-5天,蛹形态发生显著变化。
(4)蛹羽化为成虫,成虫交配、产卵,继续繁殖后代。
2. 果蝇遗传规律(1)果蝇具有明显的遗传规律,遵循孟德尔遗传定律。
(2)通过观察果蝇的表型,可以推断其基因型。
(3)基因突变实验表明,某些基因突变会导致果蝇表型发生变化。
3. 基因突变结果(1)通过化学物质或物理方法诱导果蝇基因突变,部分突变果蝇表现出表型变化。
一、实验目的1. 了解果蝇的生物学特性。
2. 掌握果蝇的饲养方法。
3. 观察果蝇的生长发育过程。
4. 分析果蝇在不同环境条件下的生长情况。
二、实验材料1. 果蝇(Drosophila melanogaster)成虫若干。
2. 10%的葡萄糖溶液。
3. 果蝇饲养盒。
4. 玻璃培养皿。
5. 滤纸。
6. 移液器。
7. 电子秤。
8. 温度计。
9. 环境控制器。
三、实验方法1. 果蝇的饲养(1)将成虫放入饲养盒中,加入适量的10%葡萄糖溶液作为食物。
(2)将饲养盒放置在适宜的温度和湿度条件下,温度控制在25℃左右,湿度控制在60%左右。
(3)定期更换葡萄糖溶液,保持饲养盒的清洁。
2. 果蝇的生长发育观察(1)观察果蝇的成虫形态、体色等特征。
(2)记录果蝇的发育阶段,包括卵、幼虫、蛹和成虫。
(3)观察果蝇的生长速度、繁殖能力等。
3. 不同环境条件下的果蝇生长实验(1)设置不同温度(20℃、25℃、30℃)和湿度(50%、60%、70%)的实验组。
(2)将果蝇分别放入对应的培养皿中,加入适量的葡萄糖溶液。
(3)定期观察和记录果蝇的生长情况。
四、实验结果与分析1. 果蝇的生物学特性(1)果蝇的成虫形态:果蝇成虫体长约2-3毫米,身体呈黄褐色,复眼大而突出,触角细长。
(2)果蝇的发育阶段:果蝇的发育过程为卵、幼虫、蛹和成虫四个阶段。
2. 果蝇的生长发育过程(1)卵期:果蝇的卵期为1-2天,卵呈椭圆形,乳白色。
(2)幼虫期:果蝇的幼虫期为2-3天,幼虫呈白色,体长逐渐增长。
(3)蛹期:果蝇的蛹期为2-3天,蛹呈金黄色,身体缩短。
(4)成虫期:果蝇的成虫期为2-3天,成虫开始繁殖。
3. 不同环境条件下的果蝇生长情况(1)温度对果蝇生长的影响:在20℃、25℃、30℃三种温度条件下,果蝇的生长速度和繁殖能力依次增加。
其中,25℃条件下果蝇的生长速度最快,繁殖能力最强。
(2)湿度对果蝇生长的影响:在50%、60%、70%三种湿度条件下,果蝇的生长速度和繁殖能力依次增加。
果蝇综合大实验(反交组)综合实验内容果蝇分离定律的实果蝇自由组合的实验分析果蝇的伴性遗传实验分析实验第一部分果蝇综合大实验实验设计一、实验目的1、理解和验证分离定律;2、了解两对不连锁基因的杂交方法,验证自由组合定律;3、正确认识伴性遗传的正、反交的差别,验证伴性遗传规律;4、理解连锁和交换的原理,学习实验结果的数据处理和重组值的计算方法,绘制遗传学图。
二、实验原理(1)分离定律一对等位基因在杂合子中,各自保持其独立性,在配子型城市,彼此分开,随即进入不同的配子,在一般情况下:F1杂合子的配子分离比为:1:1;F2表型分离比是3:1;F2基因型分离比为1:2:1。
P 黑檀体(e e)×灰体(++)↓F1 灰体(+e)↓F2 灰体(++):灰体(+e):黑檀体(ee)1 2 1(2)自由组合定律支配两对(或两对以上)不同形状的等位基因,在杂合状态保持其独立性。
配子形成时,各等位基因彼此独立分离,不同对的基因自由组合。
在一般情况下,F1配子分离比是1:1: 1: 1;F2基因型分离比率(1:2:1)2, F2表型比率:9:3:3:1P 长翅黑檀体(++ee)×短翅灰体(++mm)↓F1 长翅灰体(+m +e)↓F2 长翅灰体:长翅黑檀体:短翅灰体:短翅黑檀体9 3 3 1(3)伴性遗传由性染色体所携带的基因在遗传时与性别相联系的遗传方式。
果蝇野生型红眼(X+)和突变型白眼(Xw)是一对相对性状,X+对Xw是显性。
将显性纯合的红眼雌蝇(X+X+)与白眼雄蝇(XwY)杂交,F1不论雌雄均表现为红眼。
F1雌雄个体互交,F2红眼与白眼的比例为3:1,但无白眼雌蝇。
白眼(X+X+)♀ 红眼(XwY) ♂↓红眼(X+ Xw)♀(X+Y)♂↓⊕红眼雌X+X + 红眼雌X+X w 红眼雄X+ Y 白眼雄XwY红眼:白眼=3 :1雌性:雄性=1 :1三、实验材料1、果蝇材料:陕师大生命科学学院遗传学实验室保存的6和26号品系:品系体色眼色翅型刚毛6 灰白w(1) 短m(1) 卷sn(1)26 黑檀体e(3) 红长直2、实验器具与药品用具:解剖镜、麻醉瓶、毛笔、培养瓶、白瓷板、死蝇瓶药品:乙醚四、实验步骤(技术路线)1)挑选至少4只6处女蝇,4只26雄蝇放入培养瓶(亲本杂交瓶),贴标签↓(7~8天)倒去亲本果蝇↓(3~5天)F1代果蝇出现↓(2~3天)移出5~6对雌雄蝇(无需处女蝇)放入新的培养瓶(F1瓶),贴标签↓(7~8天)倒去F1亲本↓(3~5天)F2代果蝇出现,观察统计↓数据归类,结果分析,卡方检测,结论,总结等2)反交组的具体分配反交组,26号8管、6号8管↓确认亲本蝇性状,有三龄幼虫时,倒去已有成蝇↓反交组(2管/4位—26号)收集26处女蝇和26♂各8只,分别放入新培养瓶;↓交换♂后,每4位同学做1管正交6(♀)×26 (♂) 或1管反交26(♀) ×6(♂),每管4对亲本蝇,贴标签;↓每4人1管P1×P2(亲本瓶)↓待F1成蝇出现后,统计并观察性状,分别挑选4~5对F1 ♀♂转入新的培养管,贴标签;↓每2人1管(F1瓶)↓每两位同学统计一个杂交管中的F2,统计至200只左右,并分别写出实验报告(若F2数量太少,相同杂交组同学可合并统计数据)五、实验结果记录表格实验记录表格(自行设计)。
果蝇实验手册一、实验目的果蝇实验是一种基因突变实验,旨在探究特定基因在果蝇中的表达情况。
通过实验,可以了解基因突变对果蝇的影响,以及突变对果蝇的行为和生理特征的影响。
二、实验材料1.果蝇:果蝇是实验的主要实验材料,需要使用若干只果蝇进行实验。
2.培养基:果蝇的生长发育需要适当的培养基,常见的培养基有蔗糖水、糖水和蛋白等。
3.实验器材:实验需要使用若干种实验器材,如显微镜、烧杯、试管、移液器等。
三、实验步骤1.准备实验材料:准备好所需的果蝇、培养基和实验器材,准备好实验空间。
2.果蝇繁殖:将果蝇放入实验空间,按照一定的比例添加培养基,调节温度和湿度,以促进果蝇的繁殖。
3.基因突变:通过基因敲除、基因插入或其他方法,在果蝇的基因中进行突变,以观察突变基因的表达情况。
4.观察果蝇:观察果蝇的行为和生理特征,以及突变基因的表达情况,以确定突变对果蝇的影响。
四、实验注意事项1.实验空间:实验空间要保持干燥、通风、明亮,并且要保持室温恒定,以保证果蝇的生长发育。
2.培养基:培养基的比例要适当,不能过多或过少,以免影响果蝇的生长发育。
3.基因突变:基因突变要慎重,确保突变的基因能够有效地表达,避免出现意外情况。
五、实验结果通过果蝇实验,可以获得果蝇突变基因的表达情况,以及突变对果蝇的行为和生理特征的影响。
通过综合分析,可以更好地了解基因突变对果蝇的影响,从而为基因突变的研究提供参考。
六、实验示例下面是一个典型的果蝇实验示例:实验对象:果蝇实验材料:果蝇、培养基、实验器材实验步骤:1.将果蝇放入实验空间,添加适量的培养基,调节温度和湿度,以促进果蝇的繁殖。
2.通过基因敲除、基因插入或其他方法,在果蝇的基因中进行突变。
3.观察果蝇的行为和生理特征,以及突变基因的表达情况,以确定突变对果蝇的影响。
七、安全措施1.实验空间要保持干燥、通风、明亮,并且要保持室温恒定,以保证果蝇的生长发育。
2.使用实验器材时,要注意安全,避免发生意外。
果蝇实验报告果蝇实验报告一、实验目的:1. 了解果蝇的生命周期和繁殖方式。
2. 掌握通过交配、选择和突变等方式改变果蝇的性状。
3. 观察果蝇的遗传规律和遗传变异情况。
二、实验原理:果蝇是常见的家蝇类昆虫,生命周期短,繁殖能力强,易于培养和观察。
果蝇的繁殖方式是雌雄交配,雄性果蝇有较长且尖锐的性腿和黑色性斑,雌性果蝇则没有。
果蝇的性状受到基因的控制,可以通过交配、选择和突变等措施来改变果蝇的性状。
三、实验步骤:1. 实验器材准备:玻璃瓶、标签、棉花、果蝇培养剂、果蝇筛、酒精、显微镜等。
2. 实验前准备:将玻璃瓶贴上标签,标明实验日期和内容。
3. 构建果蝇培养环境:将玻璃瓶内放入一层湿润的棉花,然后倒入适量的果蝇培养剂。
4. 放入果蝇:用果蝇筛将成虫果蝇筛入玻璃瓶内,盖上盖子。
5. 观察果蝇:每天观察果蝇的数量、活动状态和性状。
6. 交配实验:将雌雄果蝇放在同一个培养瓶中,观察交配情况。
7. 选择实验:根据性状选择某些果蝇进行繁殖,观察后代的性状变化。
8. 突变实验:将果蝇暴露在一定剂量的辐射源下,观察突变果蝇的性状变化。
9. 遗传分析:通过交叉配对的方式观察果蝇后代的性状分布,分析遗传规律。
四、实验结果:1. 果蝇繁殖情况:果蝇的繁殖速度很快,只需几天就能产生大量的后代。
观察期间果蝇的数量逐渐增多。
2. 交配实验结果:将雌雄果蝇放在一起,果蝇会进行交配,种群数量会增加。
3. 选择实验结果:通过选择具有特定性状的果蝇进行繁殖,后代中特定性状的表现会增加。
4. 突变实验结果:突变果蝇的性状会发生明显的变异,如体色、翅膀形状等。
5. 遗传分析结果:通过交叉配对的方式观察果蝇后代的性状分布,发现符合孟德尔遗传规律。
五、实验结论:1. 果蝇的生命周期短,繁殖能力强,易于培养和观察。
2. 通过交配、选择和突变等方式可以改变果蝇的性状。
3. 果蝇的性状符合孟德尔遗传规律,遗传性状可以通过交叉配对观察和分析。
六、实验启示:果蝇实验是一种经典的遗传实验,通过实验可以了解生物的遗传机制和变异情况。