管理统计学第六章假设检验
- 格式:pdf
- 大小:839.20 KB
- 文档页数:56
管理统计学课后习题答案第一章:统计学基础1. 描述统计与推断统计的区别是什么?- 描述统计关注的是对数据集的描述和总结,如均值、中位数、众数、方差等;而推断统计则使用样本数据来推断总体特征,包括参数估计和假设检验。
2. 什么是正态分布?- 正态分布是一种连续概率分布,其形状呈钟形曲线,具有对称性,其数学表达式为 \( N(\mu, \sigma^2) \),其中 \( \mu \) 为均值,\( \sigma^2 \) 为方差。
第二章:数据收集与处理1. 抽样误差和非抽样误差的区别是什么?- 抽样误差是由于样本不能完全代表总体而产生的误差;非抽样误差则来源于数据收集和处理过程中的其他问题,如测量误差、数据录入错误等。
2. 描述数据清洗的步骤。
- 数据清洗通常包括:识别和处理缺失值、异常值检测与处理、数据标准化和归一化、数据整合等步骤。
第三章:描述性统计分析1. 计算给定数据集的均值和标准差。
- 均值是数据集中所有数值的总和除以数据点的数量。
标准差是衡量数据点偏离均值的程度,计算公式为 \( \sigma =\sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i - \mu)^2} \)。
2. 解释箱型图(Boxplot)的作用。
- 箱型图是一种图形表示方法,用于展示数据的分布情况,包括中位数、四分位数、异常值等,有助于快速识别数据的集中趋势和离散程度。
第四章:概率分布1. 什么是二项分布?- 二项分布是一种离散概率分布,用于描述在固定次数 \( n \) 的独立实验中,每次实验成功的概率为 \( p \) 时,成功次数的概率分布。
2. 正态分布的数学性质有哪些?- 正态分布具有许多重要性质,如对称性、均值等于中位数、68-95-99.7规则等。
第五章:参数估计1. 解释点估计和区间估计的区别。
- 点估计是用样本统计量来估计总体参数的单个值;区间估计是在一定置信水平下,给出总体参数可能落在的区间范围。
第六章假设检验第六章假设检验一、选择题1.当显著水平为0.05时,则置信度为()A.99%B.5%C.2.5%D.95%答案:D2.单个正态总体均值的假设检验,方差σ2已知时,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:A3.单个正态总体均值的假设检验,方差σ2未知,样本容量较小时,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:B4.在假设检验中,如果待检验的原假设为Ho,那么犯第二类错误的是指()A.H o成立,接受H oB.H o不成立,接受H oC.H o成立,拒绝H oD.H o不成立,拒绝H o答案:B5.配对比较两个正态总体均值的假设检验,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:B6.成组比较两个正态总体方差的假设检验,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:D7.单个正态总体方差的假设检验,应选择()A.u检验B.t检验C.2χ检验答案:C8.在假设检验的问题中,显著性水平α的意义是()A.原假设H o 成立,经检验不能拒绝的概率B.原假设H o 成立,经检验被拒绝的概率C.原假设H o 不成立,经检验不能拒绝的概率D.原假设H o 不成立,经检验被拒绝的概率答案:B9.当方差σ2已知时,单个正态总体均值μ的假设检验选择的统计量是() A.n u /σμ-= B.n S X /t μ-= C.222)1σχS n -=( D.22222121//σσS S F =答案:A10.在假设检验中,未知方差σ2,单个正态总体均值μ的假设检验采用()A.u 检验B.2χ检验C.t 检验D.F 检验答案:C11.假设检验时应注意的主要问题是()A.资料来源必须随机化B.检验方法应符合其适用条件C.不要把“显著”当作相差很大D.以上都对答案:D 12.对于单个正态总体方差σ2的假设检验,备择假设为H 1:σ2>σ20,进行了2χ单侧检验。
第六章假设检验一、单项选择题二、多项选择题三、判断题四、填空题1、原假设(零假设)备择假设(对立假设)2、双侧检验Z Z =xn︱Z︱<︱︱(或1-α)23、左单侧检验Z <-(或α)4、右单侧检验Z Z =xnZ >(或α)5、t t =︱t︱>︱︱(或α)sx2n6、弃真错误(或第一类错误)存伪错误(或第二类错误)7、越大越小8、临界值五、简答题(略)六、计算题1、已知:σx = 12 n = 400 x= 21 建立假设H0:X≤20H1:X>20右单侧检验,当α= 0.05时,Z0.05 = 1.645 构造统计量ZxZ =1.667>Z0.05 = 1.645,所以拒绝原假设,说明总体平均数会超过20。
2、已知:P0 = 2% n = 500 p = 建立假设H0:P ≥ 2%H1:P <2%左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-1.597∣Z∣=1.597<∣Z0.05∣= 1.645,所以接受原假设,说明该产品不合格率没有明显降低。
3、已知:σx = 2.5 cm n = 100 X0 =12 cm x= 11.3 cm 建立假设H0:X≥12H1:X<12左单侧检验,当α= 0.01时,Z0.01 = -2.33 构造统计量Zx-2.8 2.5 ∣Z∣= 2.8>∣Z0.01∣= 2.33,所以拒绝原假设,说明所伐木头违反规定。
4、已知:P0 = 40% n = 60 p = 建立假设H0:P ≥ 40%H1:P <40% 21= 35% 60左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-0.791∣Z∣= 0.791<∣Z0.05∣= 1.645,所以接受原假设,说明学生的近视率没有明显降低。
5、已知:X0 =5600 kg/cm2 σx = 280 kg/cm2 n = 100 x= 5570 kg/cm2 建立假设H0:X= 5600 H1:X≠5600双侧检验,当α= 0.05时,∣Z0.025∣= 1.96 构造统计量Z∣Z∣∣Z∣=1.07<∣Z0.025∣= 1.96,所以接受原假设,说明这批车轴符合要求。
统计学中假设检验的基本步骤详解假设检验是统计学中一种重要的统计推断方法,用于根据样本数据对总体参数进行推断。
它的基本步骤包括以下几个方面。
1.建立假设:在进行假设检验之前,首先需要明确研究者的研究问题,并建立相应的假设。
常见的研究问题包括总体均值是否等于一些特定值、两个总体均值是否相等以及总体比例是否等于一些特定比例等等。
根据研究问题的不同,构建出相应的零假设(H0)和备择假设(H1或HA)。
2.确定检验统计量:检验统计量是用于度量样本数据与假设之间的差异程度的一个统计量,它的选择应当与所建立的假设相一致。
常见的检验统计量有Z统计量(用于已知总体均值和标准差的情况),T统计量(用于只知道总体均值和标准差的样本的情况),以及χ2统计量(用于比较两个或多个分类变量之间的关系)等。
3.设置显著性水平:显著性水平(α)是在进行假设检验时所允许的错误发生概率,一般常见的显著性水平是0.05或者0.01、根据研究问题的重要程度和数据的可靠性来确定显著性水平,从而决策是否拒绝或接受原假设。
4.计算检验统计量的值:假设检验要根据样本数据来推断总体参数,因此需要计算出检验统计量的具体数值。
根据样本数据的类型和所选择的检验方法,进行相关的计算。
例如,对于两个总体均值是否相等的检验,可以通过计算两个样本均值的差异来得到T统计量的值。
5.做出决策:在进行假设检验时,需要根据计算得到的检验统计量的值来做出决策。
根据显著性水平和检验统计量的临界值,我们可以通过比较检验统计量的值与临界值来判断是否拒绝原假设。
如果检验统计量的值在临界值的拒绝域内,那么就拒绝原假设,否则就接受原假设。
6.得出结论:根据做出的决策,最终给出关于原假设的结论。
如果拒绝了原假设,说明样本数据与原假设之间存在显著的差异,可以接受备择假设。
如果不能拒绝原假设,则无法得出结论表明样本数据对于总体参数没有明显的证据。
7.给出推断:在假设检验中,最终的目的是对总体参数进行推断。