工程材料第五章
- 格式:ppt
- 大小:4.34 MB
- 文档页数:89
1.奥氏体晶粒大小与哪些因素有关?什么缘故说奥氏体晶粒大小直接阻碍冷却后钢的组织和性能?奥氏体晶粒大小是阻碍利用性能的重要指标,要紧有以下因素阻碍奥氏体晶粒大小。
(1)加热温度和保温时刻。
加热温度越高,保温时刻越长,奥氏体晶粒越粗大。
(2)加热速度。
加热速度越快,过热度越大,奥氏体的实际形成温度越高,形核率和长大速度的比值增大,那么奥氏体的起始晶粒越细小,但快速加热时,保温时刻不能太长,不然晶粒反而加倍粗大。
(3)钢的化学成份。
在必然含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大偏向增加,但当含碳量超过必然限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大偏向减小。
(4)钢的原始组织。
钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小。
传统多晶的强度与尺寸的关系符合Hall-Petch关系,即σs=σ0+kd-1/2,其中σ0和k是常数,σs是,d是平均直径。
显然,尺寸与强度成反比关系,晶粒越细小,强度越高。
但是常温下的晶粒是和晶粒度相关的,通俗地说常温下的晶粒度遗传了晶粒度。
因此晶粒度大小对钢冷却后的组织和性能有专门大阻碍。
奥氏体晶粒度越细小,冷却后的组织转变产物的也越细小,其强度也越高,另外塑性,韧性也较好。
2.过冷奥氏体在不同的温度等温转变时,可取得哪些转变产物?试列表比较它们的组织和性能。
3.共析钢过冷奥氏体在不同温度的等温进程中,什么缘故550℃的孕育期最短,转变速度最快?因为过冷奥氏体的稳固性同时由两个因素操纵:一个是旧与新相之间的自由能差ΔG;另一个是原子的扩散系数D。
等温温度越低,过冷度越大,自由能差ΔG也越大,那么加速过冷奥氏体的转变速度;但原子扩散系数却随等温温度降低而减小,从而减慢过冷奥氏体的转变速度。
高温时,自由能差ΔG起主导作用;低温时,原子扩散系数起主导作用。
1.画出Fe-Fe3C相图,指出图中S、E、GS、SE、PQ、PSK和ECF 各点线的含义,并标注各区域的相组成物或组织组成物。
略2.何谓铁素体(F)、奥氏体(A)、渗碳体(Fe3C)、珠光体(P)?铁素体(F):C在α-Fe中的间隙固溶体,具有体心立方晶格。
奥氏体(A):C在γ-Fe中的间隙固溶体,具有面心立方晶格。
渗碳体(Fe3C):C与Fe的化合物。
珠光体(P):铁素体与渗碳体的机械混合物。
3.在Fe-Fe3C相图上,指出碳在α-Fe和γ-Fe中的溶解度曲线,并指出它们的溶碳范围。
α-Fe:0~0.0218%γ-Fe:0~2.11%4.分别画出含碳为0.45%、0.77%、和1.0%的铁碳合金的结晶过程和室温组织。
w C=0.45%,亚共析钢w C=0.77%,共析钢:w C=1.0%,过共析钢:5.计算下列问题(1)0.6%C钢中的珠光体和铁素体各占多少?(2)1.2%C钢中的珠光体和渗碳体(二次)各占多少?6.某钢试样在显微镜下观察,发现珠光体占40%,铁素体占60%,试问这是什么成分的钢?首先由题设可知,该钢为亚共析钢。
设碳含量为x:求出x=0.32,即该钢为0.32%C的亚共析钢。
7.写出下列牌号钢材所属种类,含碳量和主要用途:45、50、T8、T12A。
45:平均碳含量为0.45%的优质碳素结构钢。
50:平均碳含量为0.50%的优质碳素结构钢。
优质碳素结构钢中有害杂质及非金属夹杂物含量较少,化学成分控制比较严格,塑韧性较好,多用于制造较重要零件。
T8:平均碳含量为0.8%的碳素工具钢。
T12A:平均碳含量为1.2%的高级碳素工具钢。
碳素工具钢含碳量较高,适用于制作工具。
8.解释下列名词α-Fe、α相与铁素体、γ-Fe、γ相与奥氏体α-Fe:具有体心立方晶格的Fe。
α相与铁素体:C在α-Fe中的间隙固溶体,具有体心立方晶格γ-Fe:具有面心立方晶格的Fe。
γ相与奥氏体:C在γ-Fe中的间隙固溶体,具有面心立方晶格。
工程材料第5章:钢铁材料引言钢铁是人类社会发展史上的重要材料之一,早在古代,人们就开始使用铁器了。
随着科技的发展,钢铁材料的生产和应用不断创新,已经成为现代工业领域中不可或缺的材料之一。
本章主要介绍钢铁的基础知识、分类、合金元素及其制备方法、表面处理和防腐保护。
钢铁基础知识钢铁是由铁与碳混合而成的合金,碳与铁的相互作用是决定钢铁特性的重要因素。
根据其化学成分和性质,钢铁可分为低碳钢、中碳钢、高碳钢和合金钢等多种类型。
除碳外,钢铁中常见的合金元素还有锰、铬、镍、钼、钴、硅等。
这些元素的加入可以改善钢铁的特性,例如增强硬度、延展性、耐蚀性等。
钢铁分类根据碳含量、成分和性能,钢铁可分为以下几类:1.低碳钢:碳含量不超过0.25%,具有良好的焊接性、塑性和韧性,通常用于制造汽车、建筑、家具等产品。
2.中碳钢:碳含量在0.25%-0.60%之间,硬度较高,适用于制造车轴、弹簧等产品。
3.高碳钢:碳含量在0.60%-1.5%之间,硬度特别高,但韧性和塑性较差,通常用于制造锯条、钻头、刀片等工具。
4.合金钢:在钢铁中添加一定的合金元素,具有较好的耐磨性、耐腐蚀性及高温性能,广泛用于航空、航天、机床等领域。
合金元素及其制备方法钢铁中常见的合金元素有锰、铬、镍、钼、钴、硅等。
这些元素的加入可以改变钢铁的化学成分和微观结构,从而提高钢铁的性能。
合金元素的制备方法取决于元素的化学性质、物理性质和工业生产需求。
例如,锰可采用矿物热还原法、电解法和化学还原法等多种方法制备;铬可采用硅铬还原法、电解法和铝热还原法等多种方法制备。
表面处理和防腐保护表面处理和防腐保护是钢铁材料应用中非常重要的环节。
在工程应用中,钢铁材料存在着许多易腐蚀、受潮、老化等问题,表面处理和防护是有效防止这些问题的方法。
常见的表面处理方法包括亚光处理、沙化处理、喷砂处理等。
防腐保护方法包括物理防护、化学防护、电化学防护等。
钢铁材料作为工程领域中广泛应用的材料,其基础知识、分类、合金元素及其制备方法、表面处理和防腐保护具有重要的理论意义和实践应用价值。