电磁兼容基础知识
- 格式:pdf
- 大小:1.10 MB
- 文档页数:126
电磁兼容教学大纲电磁兼容教学大纲电磁兼容(Electromagnetic Compatibility,简称EMC)是一个涉及电磁场与电子设备相互作用的领域。
随着电子技术的飞速发展,电磁兼容问题变得越来越重要。
为了培养具备电磁兼容知识和技能的工程师,制定一份全面的电磁兼容教学大纲显得尤为重要。
一、引言电磁兼容作为一门交叉学科,涉及电磁场理论、电路理论、电磁波传播、电磁干扰与抗干扰技术等多个领域。
本教学大纲旨在帮助学生全面了解电磁兼容的基本概念、原理和应用,掌握电磁兼容的分析与设计方法。
二、基础知识2.1 电磁场理论2.1.1 电磁场的基本概念2.1.2 麦克斯韦方程组2.1.3 电磁场的辐射与辐射场特性2.2 电磁波传播2.2.1 电磁波的基本特性2.2.2 电磁波在空间中的传播2.2.3 电磁波的传输线理论2.3 电磁干扰与抗干扰技术2.3.1 电磁干扰的分类与特性2.3.2 电磁兼容的基本原理2.3.3 电磁屏蔽与抗干扰技术三、电磁兼容分析与设计方法3.1 电磁兼容分析3.1.1 电磁兼容测试与测量方法3.1.2 电磁兼容仿真与建模技术3.1.3 电磁兼容问题的分析与评估3.2 电磁兼容设计3.2.1 电磁兼容设计的基本原则3.2.2 电磁兼容设计的方法与技巧3.2.3 电磁兼容设计的实践案例四、电磁兼容标准与法规4.1 国际电工委员会(IEC)电磁兼容标准4.2 国家电磁兼容标准与规范4.3 电磁兼容法规与政策五、电磁兼容实验与实践5.1 电磁兼容实验室的建设与管理5.2 电磁兼容测试与测量技术5.3 电磁兼容实践案例分析六、电磁兼容的前沿与发展趋势6.1 电磁兼容的新理论与新方法6.2 电磁兼容技术在新兴领域的应用6.3 电磁兼容的未来发展方向七、总结与展望电磁兼容作为一门重要的学科,对于保障电子设备的正常运行和互联互通具有重要意义。
本教学大纲旨在培养学生对电磁兼容的全面认识和深入理解,为他们今后从事电磁兼容相关工作奠定坚实基础。
电磁兼容课程知识点总结一、电磁兼容基础知识1.1 电磁兼容的基本概念电磁兼容是指在特定的电磁环境下,电子、通信设备和系统在不受到外来电磁辐射的干扰或干扰他人,保证其正常工作的能力。
1.2 电磁干扰的分类电磁干扰主要可以分为传导干扰和辐射干扰两大类。
传导干扰是通过导体传输,比如电源线传导电磁干扰。
辐射干扰是通过空气传输,比如无线电台产生的电磁辐射。
1.3 电磁兼容的重要性在现代电子设备和通信系统日益复杂的情况下,电磁兼容的重要性越来越突出。
如果设备没有良好的电磁兼容性,容易受到外界电磁干扰,影响其正常工作。
1.4 电磁兼容标准和法规为了确保电子设备和通信系统的电磁兼容性,在各国都有一系列的电磁兼容标准和法规,比如欧洲的CE标志、美国的FCC标准等。
二、电磁场理论2.1 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,包括电场和磁场之间的相互关系,是电磁场理论的基础。
2.2 电磁波的特性电磁波是由电场和磁场振荡而产生的一种波动,具有传播速度快、能够在真空中传播、波长和频率可调节等特点。
2.3 电磁波的传播特性电磁波的传播特性包括波速、波长、频率、极化、幅度等,这些特性决定了电磁波的传播范围和传播方式。
三、电磁兼容的分析方法3.1 电磁兼容的测试方法电磁兼容的测试方法包括辐射测试、传导测试、电磁场强度测试、电磁脉冲测试等,用于评估设备的电磁兼容性能。
3.2 电磁兼容的仿真模拟方法电磁兼容的仿真模拟方法包括有限元分析、电磁场求解和电磁兼容性分析软件等,可以用于预测设备在不同电磁环境下的性能。
3.3 电磁兼容的设计方法电磁兼容的设计方法包括布线设计、地线设计、屏蔽设计、滤波器设计等,用于提高设备的电磁兼容性能。
四、电磁兼容的干扰控制方法4.1 电磁辐射的控制方法电磁辐射的控制方法包括合理布局、优化线路、采用屏蔽结构等,用于减少设备产生的电磁辐射。
4.2 电磁传导的控制方法电磁传导的控制方法包括使用滤波器、采用平衡电路、采用防干扰接口等,用于减少设备对外界电磁干扰的敏感性。
电磁兼容知识点总结一、电磁干扰的特点1.电磁干扰的来源电磁干扰主要来自于电子设备、无线通信设备、电源线、雷电放电、静电放电等。
其中电子设备是产生电磁干扰最主要的来源,包括计算机、通信设备、电视机、音响、照明设备等。
这些设备在工作时会产生电磁场,从而对其它设备产生干扰。
2.电磁干扰的传播电磁干扰的传播途径主要有辐射传播和传导传播两种方式。
辐射传播是指电磁波以空间传播的方式传播干扰,主要影响范围是设备本身周围的空间。
传导传播是指电磁波通过导体传播干扰,通常是通过电源线、信号线、地线等传导到其它设备。
3.电磁干扰的特点电磁干扰的特点包括频率广泛、能量巨大、传播速度快、影响范围广等。
由于电磁干扰的这些特点,一旦产生干扰就会对其它设备产生不同程度的影响,从而影响设备的正常工作。
二、电磁兼容的基本原理和方法1.基本原理电磁兼容的基本原理是通过设计、测试和控制减小设备产生的电磁干扰和提高设备抗干扰能力,使设备在电磁环境中能够共存共存。
为了实现这一目标,需要对设备进行整体设计,考虑其电磁兼容性,包括电源线滤波、辐射和导体电磁干扰控制、接地系统设计等。
2.基本方法电磁兼容的基本方法主要包括以下几种:a.增加滤波器滤波器是电磁兼容的重要手段,它能够有效地减小电磁干扰并提高设备对外部干扰的抵抗能力。
常见的滤波器有电源线滤波器、信号线滤波器、天线滤波器等。
b.增加屏蔽屏蔽是减小电磁辐射和提高设备抗干扰能力的重要手段,主要包括电磁屏蔽罩、屏蔽涂料、屏蔽隔板等。
通过在设备内部或外部增加屏蔽,可以有效减小电磁干扰。
c.合理设计接地系统接地系统是提高设备抗干扰能力的关键因素,通过合理设计接地系统可以减小设备对外部干扰的敏感性和提高设备对外部干扰的抵抗能力。
d.改善功率供应改善功率供应是减小电磁干扰的重要手段,包括选择优质的电源装置、增加稳压器、提高电源线的质量等。
e.系统整体设计系统整体设计是电磁兼容的关键环节,通过对系统整体进行电磁兼容性的考虑,可以有效地减小系统产生的电磁干扰并提高其抗干扰能力。
EMC基础培训资料一、什么是 EMCEMC 即电磁兼容性(Electromagnetic Compatibility),指的是设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
简单来说,就是电子设备在运行过程中,既不会受到外部电磁环境的干扰,也不会对外界产生过多的电磁干扰。
电磁兼容性包括两个方面:一方面是设备要有一定的抗干扰能力,能够在复杂的电磁环境中稳定运行;另一方面,设备自身产生的电磁辐射要控制在一定范围内,不能影响其他设备的正常工作。
二、EMC 问题的产生电子设备在工作时,会通过电路中的电流变化产生电磁波。
当多个设备同时工作时,这些电磁波就可能相互干扰。
例如,手机在通话时会发出电磁波,如果附近的电子设备对这种电磁波过于敏感,就可能出现工作异常。
同时,外部的电磁环境,如雷电、电力系统的电磁辐射等,也可能对电子设备造成干扰。
三、EMC 标准与规范为了确保电子设备的电磁兼容性,各国和国际组织都制定了相应的标准和规范。
这些标准规定了电子设备在不同频段内允许产生和承受的电磁干扰水平。
常见的 EMC 标准包括国际电工委员会(IEC)制定的标准,以及各个国家和地区自己制定的标准,如我国的 GB 标准。
企业在生产电子设备时,必须按照相关标准进行设计和测试,以确保产品能够通过 EMC 认证,进入市场销售。
四、EMC 测试项目EMC 测试主要包括两个方面:电磁干扰(EMI)测试和电磁抗扰度(EMS)测试。
电磁干扰测试是测量电子设备向外发射的电磁能量,常见的测试项目有:1、传导干扰测试:检测设备通过电源线、信号线等导体向外传播的干扰。
2、辐射干扰测试:测量设备通过空间向外辐射的电磁波。
电磁抗扰度测试是评估电子设备在受到外部电磁干扰时的工作性能,常见的测试项目有:1、静电放电抗扰度测试:模拟人体静电放电对设备的影响。
2、射频电磁场辐射抗扰度测试:考察设备在射频电磁场中的抗干扰能力。
EMC基础知识分享目录1、 EMC基本概念2、EMC标准化组织3、 EMC标准介绍4、EMI测试项目介绍E M C基本概念电磁兼容性EMC(Electro Magnetic Compatibility)的定义是指:设备或系统在所处的电磁环境中能符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
其中EMC包含EMI(电磁干扰度)和EMS(电磁抗干扰度)两个部分,EMI是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;EMS是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
因此,根据定义。
E M C标准化组织IEC:国际电工委员会,成立于1906年,它是世界上成立最早的国际性电工标准化机构,负责有关电气工程和电子工程领域中的国际标准化工作。
CISPR:国际无线电干扰特别委员会,负责>9KHz所有类型电器的EMI无线电信号保护测试标准规范的编写。
TC77:第77技术委员会,整个频率范围内的抗扰度,低频范围内(<9KHz)的发射,以及CISPR不涉及的骚扰现象;负责制定基本文件即IEC61000系列标准。
其中IEC61000-4系列标准是目前国际上比较完整和系统的抗扰度基础标准。
CENELEL:欧洲电工标准化委员会,制定统一的欧洲电工标准(EN标准),实行电工产品的合格认证制度。
SAC: 中国国家标准化管理委员会,制定我国的标准化制度E M C标准介绍电磁兼容标准分为基础标准、通用标准、产品类标准。
1、基础标准:描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据。
基础标准不涉及具体产品。
2、产品类标准:针对某种产品系列的EMC测试标准。
往往引用基础标准,但根据产品的特殊性提出更详细的规定。
3、通用标准:按照设备使用环境划分的,当产品没有特定的产品类标准可以遵循时,使用通用标准来进行EMC测试。
EM C 常用标准对照表E M I测试项目介绍1、EMI测试设备的分组和分类2、传导骚扰(CE)①测试简介:传导干扰是用来衡量电子产品在运行过程中对整个电网发送电子干扰信号大小的一个概念。
什么是EMC:一分钟了解电磁兼容性基础知识随着无线连接设备数量的增加,EMC的重要性日益增加,定义EMC是什么并理解这些概念可以从一开始就实现电磁兼容性,电磁兼容性,EMC是使不同电子设备在没有相互干扰的情况下运行的概念- 电磁干扰,EMI - 当它们彼此靠近操作时。
所有电子电路都有可能辐射拾取不需要的电干扰,这可能损害一个或另一个电路的操作。
电磁兼容性EMC /电磁干扰EMI概念1、什么是EMC - 定义EMC定义为设备和系统在其电磁环境中运行而不损害其功能且无故障的能力,反之亦然。
电磁兼容性,EMC确保操作不会影响电磁环境,以至于其他设备和系统的功能受到不利影响。
2、人们对EMC的认识历程:在电子产品的早期,相对较少的电子设备项目正在使用中。
然而今天,日常电子产品的数量已经大幅增加。
其中一些发射信号,而其他许多是敏感接收器。
其他人可能利用可能由瞬态信号错误触发的数字电子系统。
这些更多的例子可能是EMC电子设计的关键要素。
在电子系统的早期,收音机收到的流行音乐,刘海和一般噪音被视为收听收音机的“体验”的一部分- 即使它们是由其他本地电气设备制造的,电气干扰对电子系统影响的一些主要问题来自军事应用。
第二次世界大战后,随着核武器重要性的提高,爆炸产生的电子脉冲及其对设备的影响成为一个问题。
此外,高功率雷达系统对设备的影响也是一个问题。
后来,与ESD相关的电子设备面临的风险变得明显。
这些不仅损坏了电子设备,而且还可以设置错误的触发器。
在20世纪70年代,逻辑电路的使用迅速增长,并且随之增加了切换速度。
这些电路开启了EMI的影响,并且如果这些项目在现实世界中令人满意地工作,则需要将EMC预防措施纳入设计中。
由于这种日益增长的实现,许多国家开始意识到EMC是一个日益严重的问题,一些人开始向电子设备制造商发出指令,定义设备在出售设备之前应该满足的标准。
欧洲共同体是个实施EMC要求的地方,虽然许多人初都持怀疑态度,但EMC标准的引入提高了标准,使大多数类型的设备能够在不受干扰的情况下并排运行。
电磁兼容测试基础知识电磁兼容测试主要包括辐射测试和传导测试。
辐射测试是指电气和电子设备的辐射干扰是否超过规定的限值,主要测试项目包括电磁场辐射和电源线传导干扰。
电磁场辐射就是设备在工作过程中产生的电磁辐射干扰,电源线传导干扰是指设备的电源线传导到其他设备的干扰。
传导测试是指电气和电子设备对外界电磁场的敏感程度,主要测试项目包括电磁场抗扰度和电源线抗扰度两个方面。
在进行电磁兼容测试之前,需要先对设备进行电磁兼容设计。
电磁兼容设计主要包括两个方面,一是电磁兼容规划,即确定设备的工作环境和与其他设备之间的关系;二是电磁兼容控制,即采取有效的措施降低设备的干扰或提高设备的抗干扰能力。
电磁兼容设计中的一些常用措施包括屏蔽、滤波、接地等。
进行电磁兼容测试时,需要使用专用的电磁兼容测试设备。
常用的测试设备包括辐射测试设备和传导测试设备。
辐射测试设备主要包括无线电频谱分析仪、天线、电场强度计等。
传导测试设备主要包括电磁场发生装置、各种仿真耦合装置、电源线耦合装置等。
电磁兼容测试主要分为以下几个步骤。
首先是确定测试的频率范围,根据设备的工作频率确定测试的频率范围。
然后是选择适合的测试设备,根据测试的要求选择相应的测试设备。
接下来是进行辐射测试,根据测试标准将设备置于规定的测试环境中进行测试。
再次是进行传导测试,根据测试标准将设备与其他设备连接,检测其是否受到干扰。
最后是测试结果的评估和判断,根据测试结果判断设备是否符合要求。
电磁兼容测试在各个领域都有广泛的应用,例如通信设备、工业自动化设备、医疗设备等。
通过电磁兼容测试,可以避免设备之间的互相干扰,保证设备的正常运行。
同时,对电磁兼容测试的要求也在不断提高,新的测试标准不断出台,以适应新的技术和市场需求。
总之,电磁兼容测试是确保电气和电子设备正常工作的重要环节,它涉及到的领域广泛,要求也不断提高。
掌握电磁兼容测试的基础知识对于设计和制造高质量的电气和电子设备至关重要。
电磁兼容知识点总结_电磁兼容基础知识全面详解什么是电磁兼容电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
电磁干扰源种类电磁干扰源种类繁多,可按不同的方法进行分类。
对测量环境中直接影响测量及测量设备的干扰来源可分为自然干扰源和人为干扰源。
自然干扰源包括:(1)大气噪声干扰:如雷电产生的火花放电、属于脉冲宽带干扰,其覆盖从数Hz到100MHz 以上.传播的距离相当远。
(2)太阳噪声干扰:指太阳黑子的辐射噪声。
在太阳黑子活动期.黑子的爆发.可产生比平稳期高数千倍的强烈噪声.致使通信中断。
(3)宁宙噪声:指来自宇宙天体的噪声。
(4)静电放电:人体、设备上所积累的静电电压可高达几万伏直到几十万伙.常以电晕或火花方式放掉,称为静电放电。
静电放电产生强大的瞬间电流和电磁脉冲,会导致静电敏感器件及设备的损坏。
静电放电属脉冲宽带干扰、频谱成分从直流一直连续剑中频频段。
人为干扰源指而电气电子设备和其他人工装置产生的电磁干扰。
这里所说的人为干扰源都是指无意识的干扰。
至于为了达到某种目的而有意施放的干扰,如电子对抗等不属于本文讨论范围。
任何电子电气设备都可能产生人为干扰。
在此,只是提到一些常见的干扰测量环境的干扰源。
(1)无线电发射设备:包括移动通信系统、广播、电视、雷达、导航及无线电接力通信系统.如微波接力,卫星通信等。
因发射的功率大,其基波信号可产生功能性干扰;谐波及乱真发射构成非功能性的无用信号干扰。
电磁兼容(EMC)基础知识全面详解一、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility)对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为一门学科来说,应该译为“电磁兼容”。
国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
”简单的说,就是抗干扰的能力和对外骚扰的程度。
电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统、系统;广义的还包括生物体)可以共存并不致引起降级的一门科学。
二、基本概念Electromagnetic compatibility(EMC)电磁相容—电子产品能够在一电磁环境中工作而不会降低功能或损害之能力;Electromagnetic interference(EMI)电磁干扰—电子产品之电磁能量经由传导或辐射之方式传播出去的过程;由干扰源、耦合通道及被干扰接收机三要素组成。
Radio frequency(RF)无线电频率,射頻—通訊所用的频率范围,大约是10kHz 到100GHz。
这些能量可以是有意产生的,如无限电传发射器,或者是被电子产品无意产生的;RF能量经由两种模式传播:Radiated emissions(RE)—此种RF 能量的电磁场经由媒介而传输;RF 能量一般在自由空间(free space)內传播,然而,其他种类也有可能发生。
Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介而传播,一般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。
Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。
Immunity 免疫力—一相对的测量产品承受EMI的能力;Electrical overstress(EOS)电子过度高压—当遇到高压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。
电磁兼容(EMC)基础知识本文思维导图:01EMC(Electro Magnetic Compatibility,电磁兼容)是指电子、电气设备或系统在预期的电磁环境中,不会因为周边的电磁环境而导致性能降低、功能丧失或损坏,也不会在周边环境中产生过量的电磁能量,以致影响周边设备的正常工作。
EMI(Electro Magnetic Interference,电磁干扰):自身产生的电磁干扰不能超过一定的限值。
EMS(Electro Magnetic Susceptibility,电磁抗扰度):自身承受的电磁干扰在一定的范围内。
电磁环境:同种类的产品,不同的环境就有着不同的标准。
需要说明的是,以上都基于一个前提:一定环境里,设备或系统都在正常运行下。
02电磁干扰的产生原因:电压/电流的变化中不必要的部分。
电磁干扰的耦合途径有两种:导线传导和空间辐射。
导线传导干扰原因是电流总是走“最小阻抗”路径。
以屏蔽线为例,低频(f<1kHz)时,导线的电阻起到主要作用,大部分电流从导线的铜线中流过;高频(f>10kHz)时,环路屏蔽层的感抗小于导线的阻抗,因此信号电流从屏蔽层上流过。
干扰电流在导线上传输有两种方式:共模和差模。
一般有用的信号为差模信号,因此共模电流只有转变为差模电流才能对有用信号产生干扰。
阻抗平衡防止共模电流向差模转变,可以通过多点接地用来降低地线公共阻抗,减小共地线阻抗干扰。
空间辐射干扰分近场和远场。
近场又称为感应场,与场源的性质密切相关。
当场源为高电压小电流时,主要表现为电场;当场源为低电压大电流时,主要表现为磁场。
无论是电场还是磁场,当距离大于λ/2π时都变成了远场。
远场又称为辐射场。
远场属于平面波,容易分析和测量,而近场存在电场和磁场的相互转换问题,比较复杂。
这里面有问题的是如果导线变成天线,有时候就分不清是传导干扰还是辐射干扰?低频带下特别是30 MHz以下的主要是传导干扰。
或者可以估算当设备和导线的长度比波长短时,主要问题是传导干扰,当它们的尺寸比波长长时,主要问题是辐射干扰。
EMC基础必学知识点
1. 什么是EMC? EMC是电磁兼容的缩写,指的是电子设备在电磁环境中正常工作,不产生不可接受的干扰,也不受其他设备的干扰。
2. 电磁辐射和电磁感应:电磁辐射是指电磁波在空间中的传播,而电磁感应是指电磁波对接收器件产生的电磁场效应。
3. 电磁兼容测试:包括辐射发射测试、辐射抗干扰测试、传导发射测试、传导抗干扰测试、静电放电测试、浪涌电流测试等测试方法。
4. 电磁波频谱:电磁波频谱是指电磁波在频率上的分布,从低频到高频分别是直流、低频、射频、微波、红外线、可见光、紫外线、X射线和伽马射线。
5. 辐射发射:是指电子设备在工作过程中通过电磁波在空间中传播,例如无线电、电视、手机等无线通信设备。
6. 辐射抗干扰:是指电子设备在电磁环境中受到其他设备的干扰时仍能正常工作,例如家用电器受到电信号干扰而不受影响。
7. 传导发射:是指电子设备在工作过程中通过电源线、信号线等传导方式将电磁波传递到其他设备上。
8. 传导抗干扰:是指电子设备在电磁环境中受到其他设备的传导干扰时仍能正常工作,例如高频电磁场对电子设备的传播线进行干扰。
9. 静电放电:是指电子设备在操作过程中由于电荷的不平衡而引起的电流突然释放,例如人体静电放电对电子元件造成的损坏。
10. 浪涌电流:是指电子设备在电源启动、断电、过电压等情况下突然产生的大电流脉冲,容易对电子设备造成损坏。
以上是EMC的基础必学知识点,有助于了解电磁兼容的相关概念和测试方法。
电磁兼容知识点什么是电磁兼容?电磁兼容(Electromagnetic Compatibility, EMC)是指在特定的电磁环境中,各种电子设备能够在不相互干扰的情况下正常工作并共存的能力。
在现代社会中,电子设备的日益普及给我们的生活带来了很多便利,但同时也带来了电磁干扰的问题。
电磁兼容的研究旨在避免电磁干扰对设备正常工作和通信造成的负面影响,确保设备之间的互相兼容性。
电磁干扰的来源电磁干扰是指各种电子设备之间或设备与电磁环境之间的相互干扰现象。
电磁干扰的来源可以分为内部干扰和外部干扰两种。
内部干扰内部干扰是指同一个设备内部各个部件之间的相互干扰。
这种干扰常常是由于设备内部电路设计不当、接地不良或信号线的不正确布局而导致的。
例如,高频信号线和低频信号线交叉布局就会引起串扰干扰。
外部干扰外部干扰是指来自于其他电子设备、天线、电力系统、雷电等外部电磁源对设备产生的干扰。
这种干扰主要通过空气传播,也可以通过传导、辐射等方式产生。
常见的外部干扰源有电压干扰、电流干扰、电磁波干扰等。
电磁兼容的评价指标为了保证设备之间的互相兼容性,我们需要依据一些评价指标来对电磁兼容性进行评估。
以下是一些常见的电磁兼容评价指标:电磁敏感性电磁敏感性是指设备对外部电磁场的响应能力。
如果设备对外部电磁场的响应过于敏感,就容易受到外部干扰而产生故障。
一般来说,电磁敏感性越低,设备的抗干扰能力越强。
电磁辐射电磁辐射是指设备在工作过程中向外部环境辐射出的电磁波。
当设备辐射的电磁波超过一定限值时,会对周围的其他设备造成干扰。
因此,减小电磁辐射是提高电磁兼容性的重要手段之一。
入射抑制比入射抑制比是指设备对外部电磁场的抑制能力。
当设备工作时,它的内部电路产生的电磁场可能会干扰周围的其他设备。
入射抑制比越高,设备对外部干扰的影响越小。
传导抑制比传导抑制比是指设备内部电路之间相互干扰的抑制能力。
当设备内部的高频信号线和低频信号线相交布局时,容易产生串扰干扰。
一、电磁兼容的定义电磁兼容一词源于英语Electromagnetic Compatibility,简称EMC。
国标《电磁兼容术语》中定义为:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物枸成不能承受的电磁骚扰的能力。
军标《电磁干扰与电磁兼容性名词术语》中定义为:设备在共同的电磁环境中能一起执行各自的功能的共存状态。
即该设备不会由于受到处于同一电磁环境中其他设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其他设备因受其电磁发射导致或遭受不允许的降级。
电磁环境是由空间时间和频谱三要素组成的。
二、电磁兼容的研究领域•骚扰源特性。
包括电磁骚扰的产生机理,频域与时域的特性,表征其特性的参数,抑制其发射强度的方法等。
•敏感设备的抗干扰性能。
被干扰的设备或可能受电磁骚扰影响的设备称为敏感设备,在系统分析中称为骚扰接收器。
•电磁骚扰的传播特性。
即严究电磁骚扰如何从骚扰源传播到敏感设备上去,包括辐射与传导。
电磁骚扰的传播特性的特点在于源的非理想化以及宽的频率范围。
•电磁兼容测量。
包扩测量设备、测量方法、数据处理方法、测量结果的评价等。
由于电磁兼容的复杂性,理论的结果和实际相距较远,使得电磁兼容测量尤为重要。
为了各国测量结果之间的可比性,必须详细规定测量仪器的各方面指标。
•系统内与系统间的电磁兼容性。
如欲解决电磁兼容问题,分别严究源、传播以及被干扰对象是不够的。
在一个系统内与系统间,干扰源可能同时是敏感设备;传播的途径往往是多通道的;干扰源与敏感设备不只一个等。
这就需要对系统内的或系统间的电磁兼容问题进行分析和预测。
由于系统间的电磁兼容的复杂性,不可能要求分析系统内与系统间的问题达到非常高的精度,但预测误差过大又失去了实际意义。
三、电磁干扰的危害。
•干扰电视的收看、广播收音机的收听。
•数字系统与数据传输过程中数据的丢失。
•在设备分系统或系统级正常工作的破环。
•医疗电子设备的工作失常。
•自动化微处理器控制系统的工作失控。