上海高考数学试题
- 格式:docx
- 大小:474.23 KB
- 文档页数:7
一、填空题2024310-2024年上海市春季高考数学1. log 2x 的定义域是 ( ).2. 直线 x −y +1=0 的倾斜角是 ( ).3. 已知 z 1+i=i , 则 ¯z = ( ).4. (2x −1)6 中 x 4 的系数为 ( ).5. 已知 △ABC 中,BC =2, A =π3, B =π4, 则 AB = ( ).6. 已知 ab =1, 则 4a 2+9b 2 的最小值为 ( ).7. 数列 {a n } 中,a n =n +c , S 7<0, 则 c 的取值范围为 ( ).8. 三角形三边长为 5, 6, 7, 则以边长为 6 的两个顶点为焦点,过另外一个顶点的双曲线的离心率为 ( ).9. 已知 f (x )=x 2,g (x )={, 求 g (x )≤2−x 的 x 的取值范围 ( ).f (x ),x ≥0−f (−x ),x <010. 已知正四棱柱 ABCD −A 1B 1C 1D 1, AA 1=3, BD =4 且 AB 1⋅BC −AD 1⋅DC =5, 求异面直线 AA 1 与 BD 的夹角 ( ).→→→→11. 正方形草地 ABCD 边长 12, E 到 AB ,AD 距离为 0.2, F 到 BC , CD 距离为 0.4, 有个圆形通道经过 E , F, 且经过 AD 上一点,求圆形通道的周长 (精确到 0.01) ( ).12. a 1=2, a 2=4, a 3=8, a 4=16, 任意 b 1, b 2, b 3,$b 4∈R ,满足{a i +a j |1≤i <j ≤4}={b i +b j |1≤i <j ≤4}, 求有序数列 {b 1,b 2,b 3,b 4} 有 ( )对.二、选择题13. a ,b ,c ∈R , b >c , 下列不等式恒成立的是A. a +b 2>a +c 2B. a 2+b >a 2+cC. ab 2>ac 2D. a 2b >a 2c14. 空间中有两个不同的平面 α, β 和两条不同的直线 m , n ,则下列说法中正确的是A. 若 α⊥β, m ⊥α, n ⊥β, 则 m ⊥nB. 若 α⊥β, m ⊥α, m ⊥n , 则 n ⊥βC. 若 α//β, m //α, n //β, 则 m //nD. 若 α//β, m //α, m //n , 则 n //β15. 有四种礼盒,前三种里面分别仅装有中国结、记事本、笔袋,第四个礼盒里面三种礼品都有,现从中任选一个盒子,设事件 A : 所选盒中有中国结,事件 B : 所选盒中有记事本,事件 C : 所选盒中有笔袋,则A. 事件 A 与事件 B 互斥B. 事件 A 与事件 B 相互独立C. 事件 A 与事件 B ∪C 互斥D. 事件 A 与事件 B ∩C 相互独立16. 现定义如下:当 x ∈(n ,n +1) 时 (n ∈N ), 若 f (x +1)=f ′(x ), 则称 f (x ) 为延展函数.现有,当 x ∈(0,1) 时,g (x )=e x 与 h (x )=x 10 均为延展函数,则以下结论① 存在 y =kx +b (k ,b ∈R ;k ,b ≠0) 与 y =g (x ) 有无穷个交点② 存在 y =kx +b (k ,b ∈R ;k ,b ≠0) 与 y =h (x ) 有无穷个交点A. ①② 都成立B. ①② 都不成立C. ① 成立 ② 不成立D. ① 不成立 ② 成立三、解答题17. ω>0, f(x)=sin(ωx+π3 ).(1) 设 ω=1, 求 y=f(x),x∈[0,π] 的值域;(2) a>π(a∈R), f(x) 的最小正周期为 π, 若在 x∈[π,a] 上恰有 3 个零点,求 a 的取值范围.18. 如图,PA, PB, PC 为圆锥三条母线,AB=AC.(1) 证明:PA⊥BC;(2) 若圆锥侧面积为 √3π, BC 为底面直径,BC=2 , 求二面角 B−PA−C的大小.19. 水果分为一级果和二级果,共 136 箱,其中一级果 102 箱,二级果 34 箱.(1) 随机挑选两箱水果,求恰好一级果和二级果各一箱的概率;(2) 进行分层抽样,共抽 8 箱水果,求一级果和二级果各几箱;(3) 抽取若干箱水果,其中一级果共 120 个,单果质量平均数为 303.45 克,方差为 603.46; 二级果 48 个,单果质量平均数为 240.41 克,方差为 648.21; 求 168 个水果的方差和平均数,并预估果园中单果的质量.20. 在平面直角坐标系 xOy 中,已知点 A 为椭圆 Γ:x26+y22=1 上一点,F1, F2 分别为椭圆的左、右焦点.(1) 若点 A 的横坐标为 2, 求 |AF1| 的长;(2) 设 Г 的上、下顶点分别为 M1、M2, 记 △AF1F2 的面积为 S1, △AM1M2 的面积为 S2, 若S1≥S2, 求 |OA| 的取值范围.(3) 若点 A 在 x 轴上方,设直线 AF2 与 Γ 交于点 B ,与 y 轴交于点 K, KF1 延长线与 Γ 交于点 C ,是否存在 x 轴上方的点 C ,使得 F1A+F1B+F1C=λ(F2A+F2B+F2C)(λ∈R) 成立?若存在,请求出点 C 的坐标;若不存在,请说明理由.→→→→→→21. 记 M(a)={t|t=f(x)−f(a),x≥a},L(a)={t|t=f(x)−f(a),x≤a}.(1)若 f(x)=x2+1 ,求 M(1) 和 L(1);(2)若 f(x)=x3−3x2, 求证:对于任意 a∈R, 都有 M(a)⊆[−4,+∞), 且存在 a, 使得−4∈M(a).(3)已知定义在 R 上 f(x) 有最小值,求证:“f(x) 是偶函数"是“对于任意正实数 c ,均有M(−c)=L(c)”的充要条件.。
2022年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.(4分)已知1z i =+(其中i 为虚数单位),则2z = .2.(4分)双曲线2219x y -=的实轴长为 .3.(4分)函数22()cos sin 1f x x x =-+的周期为 . 4.(4分)已知a R ∈,行列式1||32a 的值与行列式0||41a 的值相等,则a = . 5.(4分)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 . 6.(4分)0x y -,10x y +-,求2z x y =+的最小值 .7.(5分)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n = .8.(5分)若函数210()000a x x f x x a x x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,求参数a 的值为 .9.(5分)为了检测学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的概率为 .10.(5分)已知等差数列{}n a 的公差不为零,n S 为其前n 项和,若50S =,则(0i S i =,1,2,⋯,100)中不同的数值有 个.11.(5分)若平面向量||||||a b c λ===,且满足0a b ⋅=,2a c ⋅=,1b c ⋅=,则λ= .12.(5分)设函数()f x 满足1()()1f x f x=+对任意[0,)x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有{|()y y f x =,0}f x a A =,则a 的取值范围为 .二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项. 13.(5分)若集合[1A =-,2),B Z =,则(A B = )A .{2-,1-,0,1}B .{1-,0,1}C .{1-,0}D .{1}-14.(5分)若实数a 、b 满足0a b >>,下列不等式中恒成立的是( ) A.a b +>B.a b +<C.22ab +> D.22ab +< 15.(5分)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q16.(5分)设集合222{(,)|()()4||,}x y x k y k k k Z Ω=-+-=∈, ①存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧; ②存在直线l ,使得集合Ω中存在无数点在l 上;( ) A .①成立②成立 B .①成立②不成立 C .①不成立②成立D .①不成立②不成立三、解答题(本大题共有5题,满分76分).17.(14分)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.18.(14分)33()log ()log (6)f x a x x =++-.(1)若将函数()f x 图像向下移(0)m m >后,图像经过(3,0),(5,0),求实数a ,m 的值. (2)若3a >-且0a ≠,求解不等式()(6)f x f x -.19.(14分)在如图所示的五边形中,6AD BC ==,20AB =,O 为AB 中点,曲线CD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称,MO AB ⊥; (1)若点P 与点C 重合,求POB ∠的大小;(2)P 在何位置,求五边形MQABP 面积S 的最大值.20.(16分)设有椭圆方程2222:1(0)x y a b a bΓ+=>>,直线:420l x y +-=,Γ下端点为A ,M 在l 上,左、右焦点分别为1(2,0)F -、2(2,0)F .(1)2a =,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM ∆中有一内角余弦值为35,求b ;(3)在椭圆Γ上存在一点P 到l 距离为d ,使12||||6PF PF d ++=,随a 的变化,求d 的最小值.21.(18分)数列{}n a 对任意*n N ∈且2n ,均存在正整数[1,1]i n ∈-,满足12n n i a a a +=-,11a =,23a =. (1)求4a 可能值; (2)命题p :若1a ,2a ,,8a 成等差数列,则930a <,证明p 为真,同时写出p 逆命题q ,并判断命题q 是真是假,说明理由;(3)若23m m a =,*()m N ∈成立,求数列{}n a 的通项公式.2022年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.(4分)已知1z i =+(其中i 为虚数单位),则2z = 22i - . 【解析】1z i =+,则1z i =-,所以222z i =-.故答案为:22i -. 【评注】本题考查了共轭复数的概念,是基础题.2.(4分)双曲线2219x y -=的实轴长为 6 .【解析】由双曲线2219x y -=,可知:3a =,所以双曲线的实轴长26a =.故答案为:6.【评注】本题考查双曲线的性质,是基础题.3.(4分)函数22()cos sin 1f x x x =-+的周期为 π .【解析】2222222()cos sin 1cos sin cos sin 2cos cos21f x x x x x x x x x =-+=-++==+,22T ππ==. 故答案为:π.【评注】本题主要考查了三角函数的恒等变换,三角函数的周期性及其求法,倍角公式的应用,属于基础题.4.(4分)已知a R ∈,行列式1||32a 的值与行列式0||41a 的值相等,则a = 3 . 【解析】因为1||2332a a =-,0||41a a =,所以23a a -=,解得3a =.故答案为:3. 【评注】本题考查了行列式表示的值,属于基础题.5.(4分)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 24π. .【解析】因为圆柱的底面积为9π,即29R ππ=,所以3R =,所以224S Rh ππ==侧.故答案为:24π. 【评注】本题考查了圆柱的侧面积公式,属于基础题. 6.(4分)0x y -,10x y +-,求2z x y =+的最小值 32. 【解析】如图所示:由0x y -,10x y +-,可知行域为直线0x y -=的左上方和10x y +-=的右上方的公共部分, 联立010x y x y -=⎧⎨+-=⎩,可得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,即图中点11(,)22A ,当目标函数2z x y =+沿着与正方向向量(1,2)a =的相反向量平移时,离开区间时取最小值, 即目标函数2z x y =+过点11(,)22A 时,取最小值:1132222+⨯=.故答案为:32.【评注】本题考查了线性规划知识,难点在于找到目标函数取最小值的位置,属于中档题. 7.(5分)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n = 10 .【解析】二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,即220353n n n n C C -⨯=⨯,即(1)592n n -=⨯,10n ∴=,故答案为:10.【评注】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.8.(5分)若函数210()000a x x f x x a x x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,求参数a 的值为 1 .【解析】函数210()000a x x f x x a x x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,()()f x f x ∴-=-,(1)(1)f f ∴-=-,21(1)a a ∴--=-+,即(1)0a a -=,求得0a =或1a =. 当0a =时,1,0()0,0,0x f x x x x -<⎧⎪==⎨⎪>⎩,不是奇函数,故0a ≠;当1a =时,1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,是奇函数,故满足条件,综上,1a =,故答案为:1.【评注】本题主要考查函数的奇偶性的定义和性质,属于中档题.9.(5分)为了检测学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的概率为37. 【解析】从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的方法共有112121134134C C C C C C ⋅⋅+⋅⋅种,而所有的抽取方法共有48C 种,故每一类都被抽到的概率为11212113413448303707C C C C C C C ⋅⋅+⋅⋅==,故答案为:37.【评注】本题主要考查古典概率及其计算公式的应用,属于基础题.10.(5分)已知等差数列{}n a 的公差不为零,n S 为其前n 项和,若50S =,则(0i S i =,1,2,⋯,100)中不同的数值有 98 个.【解析】等差数列{}n a 的公差不为零,n S 为其前n 项和,50S =,∴5154502S a d ⨯=+=,解得12a d =-, 21(1)(1)2(5)222n n n n n dS na d nd d n n --∴=+=-+=-, 0d ≠,(0i S i ∴=,1,2,100)中050S S ==,233S S d ==-,142S S d ==-,其余各项均不相等,(0i S i ∴=,1,2,100)中不同的数值有:101398-=.故答案为:98.【评注】本题考查等差数列的前n 项和公式、通项公式等基础知识,考查运算求解能力,是中档题. 11.(5分)若平面向量||||||a b c λ===,且满足0a b ⋅=,2a c ⋅=,1b c ⋅=,则λ【解析】由题意,有0a b ⋅=,则a b ⊥,设,a c θ<>=, 21a c b c ⋅=⎧⎪⎨⋅=⎪⎩⇒2,1,2a c cos b c cos θπθ⎧=⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩①② 则②①得,1tan 2θ=,由同角三角函数的基本关系得:cos θ=,则||||cos 2a c a c θλλ⋅==⋅=,2λ=λ=. 【评注】本题考查平面向量的数量积,考查学生的运算能力,属于中档题.12.(5分)设函数()f x 满足1()()1f x f x=+对任意[0,)x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有{|()y y f x =,0}f x a A =,则a 的取值范围为)+∞ . 【解析】法一:令11x x =+,解得x =,当1x ∈时,2111x x =∈+,当1)x ∈+∞时,2111x x =∈+,且当1)x ∈+∞时,总存在2111x x =∈+,使得12()()f x f x =,故51{|(),0}2fy y f x x A -==,若a <易得{}|(),0f y y f x x a ∉=,所以512a -,即实数a 的取值范围为)+∞; 法二:原命题等价于任意10,()()1a f x a f x a >+=++,所以11(1)1a x a x a a⇒-+++恒成立,即1(1)0a a -+恒成立,又0a >,所以512a -,即实数a的取值范围为)+∞. 故答案为:)+∞. 【评注】本题考查了抽象函数的性质的应用,同时考查了集合的应用,属于中档题. 二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项. 13.(5分)若集合[1A =-,2),B Z =,则(A B = )A .{2,1,0,1}--B .{1,0,1}-C .{1,0}-D .{1}-【解析】[1A =-,2),B Z =,{1,0,1}A B ∴=-,故选:B .【评注】本题考查了集合的交集的运算,是基础题.14.(5分)若实数a 、b 满足0a b >>,下列不等式中恒成立的是( ) A.a b +>B.a b +<C.22ab +> D .22ab +< 【解析】因为0a b >>,所以2a b ab+,当且仅当a b =时取等号, 又0a b >>,所以a b+>A 正确,B 错误,22222a a b b +⨯=22a b =,即4a b =时取等号,故CD 错误,故选:A . 【评注】本题考查了基本不等式的应用,考查了学生的理解能力,属于基础题.15.(5分)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q【解析】线段MN 上不存在点在线段1A S 、1B D 上,即直线MN 与线段1A S 、1B D 不相交, 因此所求与1D 可视的点,即求哪条线段不与线段1A S 、1B D 相交,对A 选项,如图,连接1A P 、PS 、1D S ,因为P 、S 分别为AB 、CD 的中点,∴易证11//A D PS ,故1A 、1D 、P 、S 四点共面,1D P ∴与1A S 相交,A ∴错误;对B 、C 选项,如图,连接1D B 、DB ,易证1D 、1B 、B 、D 四点共面, 故1D B 、1D R 都与1B D 相交,B ∴、C 错误;对D 选项,连接1D Q ,由A 选项分析知1A 、1D 、P 、S 四点共面记为平面11A D PS ,1D ∈平面11A D PS ,Q ∉平面11A D PS ,且1A S ⊂平面11A D PS ,点11D A S ∉,1D Q ∴与1A S 为异面直线,同理由B ,C 选项的分析知1D 、1B 、B 、D 四点共面记为平面11D B BD ,1D ∈平面11D B BD ,Q ∉平面11D B BD ,且1B D ⊂平面11D B BD ,点11D B D ∉,1D Q ∴与1B D 为异面直线,故1D Q 与1A S ,1B D 都没有公共点,D ∴选项正确.故选:D .【评注】本题考查新定义,共面定理的应用,异面直线的判定定理,属中档题. 16.(5分)设集合222{(,)|()()4||,}x y x k y k k k Z Ω=-+-=∈, ①存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧; ②存在直线l ,使得集合Ω中存在无数点在l 上;( ) A .①成立②成立 B .①成立②不成立 C .①不成立②成立D .①不成立②不成立【解析】当0k =时,集合222{(,)|()()4||,}{(0,0)}x y x k y k k k Z Ω=-+-=∈=, 当0k >时,集合222{(,)|()()4||,}x y x k y k k k Z Ω=-+-=∈,表示圆心为2(,)k k ,半径为r =2y x =上,半径()r f k ==相邻两个圆的圆心距d =,相邻两个圆的半径之和为l =,因为d l >有解,故相邻两个圆之间的位置关系可能相离,当0k <时,同0k >的情况,故存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧,故①正确, 若直线l 斜率不存在,显然不成立,设直线:l y mx n =+,若考虑直线l 与圆222()()4||x k y k k -+-=的焦点个数,2d =,r = 给定m ,n ,当k 足够大时,均有d r >,故直线l 只与有限个圆相交,②错误.故选:B . 【评注】本题考查了动点的轨迹、直线与圆的位置关系,属于中档题. 三、解答题(本大题共有5题,满分76分).17.(14分)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.【解析】(1)在三棱锥P ABC -中,因为PO ⊥底面ABC ,所以PO AC ⊥,又O 为AC 边中点,所以PAC ∆为等腰三角形,又2AP AC ==.所以PAC ∆是边长为2的为等边三角形,PO ∴=,三棱锥体积2112133P ABC ABC V S PO -∆=⋅==,(2)以O 为坐标原点,OB 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系,则P,B ,(0,1,0)C,1,0)2M,31(,22PM =, 平面PAC 的法向量(3,0,0)OB =,设直线PM 与平面PAC 所成角为θ, 则直线PM 与平面PAC所成角的正弦值为3sin ||||||3PM OBPM OB θ⋅==⋅ 所以PM 与面PAC 所成角大小为 【评注】本题考查线面垂直的证明,考查线面角的求法,考查空间中线线、线面间的位置关系等基础知识,考查运算求解能力,是中档题.18.(14分)33()log ()log (6)f x a x x =++-.(1)若将函数()f x 图像向下移(0)m m >后,图像经过(3,0),(5,0),求实数a ,m 的值. (2)若3a >-且0a ≠,求解不等式()(6)f x f x -. 【解析】(1)因为函数33()log ()log (6)f x a x x =++-,将函数()f x 图像向下移(0)m m >后,得33()log ()log (6)y f x m a x x m =-=++--的图像, 由函数图像经过点(3,0)和(5,0),所以33log (3)10log (5)00a m a m ++-=⎧⎨++-=⎩,解得2a =-,1m =.(2)3a >-且0a ≠时,不等式()(6)f x f x -可化为3333log ()log (6)log (6)log a x x a x x ++-+-+, 等价于060600()(6)(6)a x x a x x a x x x a x +>⎧⎪->⎪⎪+->⎨⎪>⎪+-+-⎪⎩,解得660(3)0x ax x a x a x >-⎧⎪<⎪⎪<+⎨⎪>⎪-⎪⎩,当30a -<<时,03a <-<,366a <+<,解不等式得3a x -<, 当0a >时,0a -<,66a +>,解不等式得36x <;综上知,30a -<<时,不等式()(6)f x f x -的解集是(,3]a -,0a >时,不等式()(6)f x f x -的解集是[3,6).【评注】本题考查了函数的性质与应用问题,也考查了含有字母系数的不等式解法与应用问题,是中档题. 19.(14分)在如图所示的五边形中,6AD BC ==,20AB =,O 为AB 中点,曲线CD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称,MO AB ⊥; (1)若点P 与点C 重合,求POB ∠的大小;(2)P 在何位置,求五边形MQABP 面积S 的最大值.【解析】(1)点P 与点C 重合,由题意可得10OB =,6BC =,120ABC ∠=︒, 由余弦定理可得22212cos 361002610()1962OP OB BC OB BC ABC =+-⋅∠=+-⨯⨯⨯-=,所以14OP =,在OBP ∆中,由正弦定理得sin120sin OP BPPOB=︒∠,6sin POB=∠,解得sin POB ∠POB ∠的大小为;(2)如图,连结QA ,PB ,OQ ,OP ,曲线CMD 上任意一点到O 距离相等,14OP OQ OM OC ∴====,P ,Q 关于OM 对称,P ∴点在劣弧CM 中点或劣弧DM 的中点位置,QOM POM S S α∆∆==,则2BOP AOQ BOP S πα∆∠=∠==-,则五边形面积112()2[sin()sin ]196sin 140cos 222AOQ QOM S S S OQ OA OQ OM παααα∆∆=+=⋅⋅⋅-+⋅⋅⋅=+)αϕ=+,其中5tan 7ϕ=,当sin()1αϕ+=时,MQABP S 五边形取最大值,∴五边形MQABP 面积S 的最大值为.【评注】本题考查了扇形的性质、正、余弦定理和面积公式在解三角形问题中的应用,同时考查了学生的逻辑推理能力、运算能力等,属于中档题.20.(16分)设有椭圆方程2222:1(0)x y a b a bΓ+=>>,直线:0l x y +-,Γ下端点为A ,M 在l 上,左、右焦点分别为1(F 、2F .(1)2a =,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM ∆中有一内角余弦值为35,求b ;(3)在椭圆Γ上存在一点P 到l 距离为d ,使12||||6PF PF d ++=,随a 的变化,求d 的最小值.【解析】(1)由题意可得2,a b c ==22:1,(0,42x y A Γ+=,AM 的中点在x 轴上,M ∴0x y +-=得M .(2)由直线方程可知B ,①若3cos 5BAM ∠=,则4tan 3BAM ∠=,即24tan 3OAF ∠=,∴234OA OF ==∴b =②若3cos 5BMA ∠=,则4sin 5BMA ∠=,4MBA π∠=,∴34cos()55MBA AMB ∠+∠=∴cos BAM ∠=tan 7BAM ∴∠=.即2tan 7OAF ∠=,∴OA ,∴b ,综上b =.(3)设(cos ,sin )P a b θθ62a =-,很明显椭圆在直线的左下方,则62a =-,即)θϕ+=,222a b =+,∴)θϕ+=-,据此可得)22a θϕ+=-,|sin()|1θϕ+=,整理可得(1)(35)0a a --,即513a,从而58626233d a =--⨯=.即d 的最小值为83.【评注】本题主要考查椭圆方程的求解,点到直线距离公式及其应用,椭圆中的最值与范围问题等知识,属于中等题.21.(18分)数列{}n a 对任意*n N ∈且2n ,均存在正整数[1i ∈,1]n -,满足12n n i a a a +=-,11a =,23a =. (1)求4a 可能值; (2)命题p :若1a ,2a ,,8a 成等差数列,则930a <,证明p 为真,同时写出p 逆命题q ,并判断命题q 是真是假,说明理由;(3)若23m m a =,*()m N ∈成立,求数列{}n a 的通项公式. 【解析】(1)32125a a a =-=,43227a a a =-=或43129a a a =-=.(2)1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 为等差数列,∴*2,21([1,8],)n d a n n n N ==-∈∈, 9823030i i a a a a =-=-<.逆命题q :若930a <,则1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 为等差数列是假命题,举例: 11a =,23a =,35a =,47a =,59a =,611a =,713a =,875217a a a =-=,987221a a a =-=.(3)23m m a =,∴12222213,2(2)m m m m i a a a a i m ++++==-,2122(21)m m j a a a j m +=--, 22242m m j i a a a a +∴=--,∴12222244333m m m j i m m m a a a a a +++=-=⨯-==,以下用数学归纳法证明数列单调递增,即证明1n n a a +>恒成立: 当1n =,21a a >明显成立,假设n k =时命题成立,即11210k k k a a a a a -->>>>>>,则120k k k i k k i a a a a a a a +-=--=->,则1k k a a +>,命题得证. 回到原题,分类讨论求解数列的通项公式:1.若2j =1m -,则2212122m j i m i m i a a a a a a a --=+=+>-矛盾, 2.若2j =2m -,则13m j a -=,∴1323m m i j a a -=-=,22i m ∴=-, 此时11212223353m m m m m j a a a --+=-=⨯-=⨯,∴3*2*2115321,32,n n nn a n k k N n k k N -=⎧⎪⎪=⨯=+∈⎨⎪⎪=∈⎩, 3.若2j <2m -,则1223m j a -<⨯,∴1323m m i j a a -=->,21j m ∴=-,2221212m m m a a a ++-∴=-(由(2)知对任意m 成立),6532a a a =-,事实上:6522a a a =-矛盾. 综上可得3*2*2115321,32,n n nn a n k k N n k k N -=⎧⎪⎪=⨯=+∈⎨⎪⎪=∈⎩. 【评注】本题主要考查数列中的递推关系式,数列中的推理问题,数列通项公式的求解等知识,属于难题.。
上海市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题圆x2+y2-4x+6y=0的圆心坐标是 ( )A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)第(2)题设复数z满足,z在复平面内对应的点为(x,y),则A.B.C.D.第(3)题已知集合,则=A.B.C.D.第(4)题若、是非零向量,且,,则函数是A.一次函数且是奇函数B.一次函数但不是奇函数C.二次函数且是偶函数D.二次函数但不是偶函数第(5)题函数的部分图象如图所示,现将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向下平移1个单位所得图象对应的函数为,则下列结论正确的是()A.函数在区间单调递减B.C .点是函数图象的一个对称中心D .直线是函数的一条对称轴第(6)题阅读如图所示的程序框图,运行相应的程序.若输出的为,则判断框中填写的内容可以是()A.B.C.D.第(7)题在复平面内,复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限第(8)题函数=的部分图像如图所示,则的单调递减区间为A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若圆与圆交于A,B两点,则下列选项中正确的是()A.点在圆内B.直线的方程为C.圆上的点到直线距离的最大值为D.圆上存在两点P,Q,使得第(2)题如图,在四棱锥中,已知底面,底面为等腰梯形,,,记四棱锥的外接球为球,平面与平面的交线为的中点为,则()A.B.C.平面平面D.被球截得的弦长为1第(3)题直线是曲线的切线,则实数的值可以是()A.3πB.πC.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设为抛物线的焦点,、、为抛物线上不同三点,且,为坐标原点,若、、的面积分别为、、,则___________.第(2)题函数的图象在点处的切线方程为___________.第(3)题的展开式中的系数为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在世界杯期间,学校组织了世界杯足球知识竞赛,有单项选择题和多项选择题(都是四个选项)两种:(1)甲在知识竞赛中,如果不会单项选择题那么就随机猜测.已知甲会单项选择题和甲不会单项选择题随机猜测的概率分别是.问甲在做某道单项选择题时,在该道题做对的条件下,求他会这道单项选择题的概率;(2)甲在做某多项选择题时,完全不知道四个选项正误的情况下,只好根据自己的经验随机选择,他选择一个选项、两个选项、二个选项的概率分别为.已知多项选择题每道题四个选项中有两个或三个选项正确,全部选对得5分,部分选对得2分,有选择错误的得0分.某个多项选择题有三个选项是正确的,记甲做这道多项选择题所得的分数为,求的分布列及数学期望.第(2)题已知点是抛物线上不同三点,直线与抛物线相切.(1)若直线的斜率为2,线段的中点为,求的方程;(2)若为定值,当变动时,判断是否为定值,若为定值,求出该定值;若不为定值,请说明理由.第(3)题如图,圆台的上、下底面圆半径分别为1,2,圆台的高为,是下底面圆的一条直径,点在圆上,且,点在圆上运动(与在的两侧),是圆台的母线,.(1)求的长;(2)求平面与平面夹角的余弦值.第(4)题已知数列的首项,其前项和为,对于任意正整数,,都有.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,且.①求证数列为常数列.②求数列的前项和.第(5)题已知函数.(1)证明:当时,;(2)求在区间上的零点个数.。
2021年上海市夏季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知121i,23i z z =+=+(其中i 为虚数单位),则12z z += .【思路分析】复数实部和虚部分别相加【解析】:1234z z i+=+【归纳总结】本题主要考查了复数的加法运算,属于基础题.2、已知{}{}21,1,0,1,A x x B =≤=-则 I A B = 【思路分析】求出集合A ,再求出A B I【解析】:{}1212A x x x x ìü=≤=≤íýîþ,所以{}1,0I A B =-【归纳总结】本题主要考查了集合的交集运算,属于基础题.3、若22240x y x y +--=,则圆心坐标为【思路分析】将圆一般方程化为标准方程,直接读取圆心坐标【解析】:22240x y x y +--=可以化为22125x y -+-=()()所以圆心为(1,2)【归纳总结】本题主要考查了圆的方程,属于基础题.4、如图边长为3的正方形,ABCD 则u u u r u u u rAB AC ⋅= 【思路分析】利用向量投影转化到边上.【解析】方法一:2=9u u u r u u u r u u u r AB AC AB ⋅=方法二:由已知||3AB =u u u r ,||AC =u u u r ,,4AC AB p<>=u u u r u u u r ,则39AB AC ⋅=´=u u u r u u u r ;【归纳总结】本题考查了平面向量的数量积的定义、正方形的几何性质;基础题;5、已知3()2,f x x=+则1(1)f -= 【思路分析】利用反函数定义求解.【解析】由题意,得原函数的定义域为:(,0)(0,)-¥+¥U ,结合反函数的定义,得312x=+,解得3x =-,所以,1(1)3f -=-;【归纳总结】本题主要考查了反函数的定义的应用,属于基础题.6.已知二项式()5x a +的展开式中,2x 的系数为80,则a =________.【思路分析】利用二项式展开式通项公式求解.【解析】5331553,80,2r r r r T C a x r C a a -+=⇒===【归纳总结】本题考查了二项式定理的通项公式、组合数公式与指数幂运算;基础题。
2024年普通高等学校招生全国统一考试数学(上海卷)一、 填空题本题共12小题,满分54分。
1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得0分。
1、 设全集{}U 1,2,3,4,5=,集合{}A 24=,,求A =_________________。
2、 已知()01, 0x f x x >=≤ ,()f x =______________。
3、 不等式2230x x −−<的解集为_________________。
4、 已知()3f x x a =+,且()f x 是奇函数,则a =___________________。
5、 已知()2,5a =,()6b k =,,//a b ,则k 的值为________________。
6、 在()1nx +的展开式中,若各项系数和为32,则展开式中2x 的系数为__________。
7、 已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为_______。
8、 某校举办科学竞技比赛,有A,B,C,3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题,小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是______。
9、 已知虚数z ,其实部为1,且()2z m m R z+=∈,则实数m 为____________。
10、设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,则集合中元素个数的最大值为____________。
11、海上有灯塔O,A,B,货船T,如图,已知A 在O 的正东方向,B 在O 的正北方向,O 到A,B的距离相等,165BTO ∠=°,37ATO ∠=°,则BOT ∠=____________。
高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。
由于值域为[0, +∞),所以函数的零点个数为2。
2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。
又因为z的实部与虚部的和为0,即a + b = 0。
解得a = 1, b = -1。
3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。
4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。
5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。
6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。
2023高考上海卷数学试题及答案高考如何填报志愿1、登录指定网页:网上填报志愿需要在省级招办指定的网上进行,比如登录指定网页,打开浏览器,输入网报网址;其中指定网页一般会印制在准考证上面,或者打省招办办公定电话咨询。
2、输入用户名和密码:一般来说用户名是考生准考证上的14位报名号数字,而第一次登录网上报名系统的初始密码是身份证号码,所以考生输入用户名和密码后即可登录网上报名系统。
3、阅读考生须知:考生在进入网上填报志愿系统后,网页会跳出“网上填报志愿考生须知”,其主要就是告知考生网上填报志愿的流程和注意事项。
所以考生应当仔细阅读,在具体了解操作流程和相关要求以后再进行下一步的操作,这样主要目的就是为了保持志愿填报的正确无误。
4、修改初始密码:在第一次登录网上填报志愿系统后,考生切记一定要修改初始密码,如不修改则会自动返回到上一步,无法继续往下操作。
一般来说修改的密码的时候尽量填写自己常用的联系方式;在正式修改成功后,再开始填报志愿。
5、选择批次填报志愿:点击“填报志愿”按钮后,选择要填报的批次,然后根据提前草拟的志愿表填报院校代码和所选专业代码到志愿栏,此时需要注意的就是千万不要错栏错位,所以需要仔细且严格按照流程来操作。
6、检查核对:考生在自己的院校代号和专业代号输入完毕后,点击“下一步”按钮,网上填报志愿系统将已填的代号转换成相对应的院校和专业供考生检查核对,在该种情况下考生一定要阅读屏幕上的提示信息,仔细核实显示的学校和专业是不是自己想要填报的。
一般不是的情况是会出现红色字体提示的“无效院校”或“无效专业”,这样就需要及时更正;而想要修改或补填志愿,则可以点击“上一步”按钮,返回到填报界面进行修改或补填。
(这是高考网上填报志愿非常重要的步骤之一)7、保存志愿信息:在检查志愿信息无误后,点击“保存”按钮,只有点击了填报的志愿信息才会储存到网报系统中;不点击的话,志愿信息就保存不了,等于没有填报志愿;且在填好每一个批次的志愿后,都要点击“保存”按钮,保存这个批次的志愿信息;而在保存好以后,再从第五步开始填报其他批次志愿。
2023年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)已知集合A={1,2},B={1,a},且A=B,则a= 2 .【答案】见试题解答内容【解答】解:集合A={1,2},B={1,a},且A=B,则a=2.故答案为:2.2.(4分)已知向量=(3,4),=(1,2),则﹣2= (1,0) .【答案】见试题解答内容【解答】解:因为向量=(3,4),=(1,2),所以﹣2=(3﹣2×1,4﹣2×2)=(1,0).故答案为:(1,0).3.(4分)不等式|x﹣1|≤2的解集为: [﹣1,3] .(结果用集合或区间表示)【答案】见试题解答内容【解答】解:不等式|x﹣1|≤2即为﹣2≤x﹣1≤2,即为﹣1≤x≤3,则解集为[﹣1,3],故答案为:[﹣1,3].4.(4分)已知圆C的一般方程为x2+2x+y2=0,则圆C的半径为 1 .【答案】见试题解答内容【解答】解:根据圆C的一般方程为x2+2x+y2=0,可得圆C的标准方程为(x+1)2+y2=1,故圆C的圆心为(﹣1,0),半径为1,故答案为:1.5.(4分)已知事件A的对立事件为,若P(A)=0.5,则P()= 0.5 .【答案】见试题解答内容【解答】解:事件A的对立事件为,若P(A)=0.5,则P()=1﹣0.5=0.5.故答案为:0.5.6.(4分)已知正实数a、b满足a+4b=1,则ab的最大值为 .【答案】见试题解答内容【解答】解:正实数a、b满足a+4b=1,则ab=,当且仅当a=,时等号成立.故答案为:.7.(5分)某校抽取100名学生测身高,其中身高最大值为186cm,最小值为154cm,根据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为 7 .【答案】见试题解答内容【解答】解:极差为186﹣154=32,组距为5,且第一组下限为153.5,=6.4,故组数为7组,故答案为:7.8.(5分)设(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a4= 17 .【答案】见试题解答内容【解答】解:根据题意及二项式定理可得:a0+a4==17.故答案为:17.9.(5分)已知函数f(x)=2﹣x+1,且g(x)=,则方程g(x)=2的解为 x=3 .【答案】见试题解答内容【解答】解:当x≥0时,g(x)=2⇔log2(x+1)=2,解得x=3;当x<0时,g(x)=f(﹣x)=2x+1=2,解得x=0(舍);所以g(x)=2的解为:x=3.故答案为:x=3.10.(5分)为了学习宣传党的二十大精神,某校学生理论宣讲团赴社区宣讲,已知有4名男生,6名女生,从10人中任选3人,则恰有1名男生2名女生的概率为 0.5 .【答案】见试题解答内容【解答】解:从10人中任选3人的事件个数为,恰有1名男生2名女生的事件个数为,则恰有1名男生2名女生的概率为.故答案为:0.5.11.(5分)已知z1,z2∈C且z1=i(i为虚数单位),满足|z1﹣1|=1,则|z1﹣z2|的取值范围为 [0,] .【答案】见试题解答内容【解答】解:设z1﹣1=cosθ+i sinθ,则z1=1+cosθ+i sinθ,因为z 1=i•,所以z2=sinθ+i(cosθ+1),所以|z1﹣z2|===,显然当=时,原式取最小值0,当=﹣1时,原式取最大值2,故|z1﹣z2|的取值范围为[0,].故答案为:[0,].12.(5分)已知、、为空间中三组单位向量,且⊥、⊥,与夹角为60°,点P为空间任意一点,且||=1,满足|•|≤|•|≤|•|,则|•|最大值为 .【答案】见试题解答内容【解答】解:设,,,,不妨设x,y,z>0,则||=x2+y2+z2=1,因为|•|≤|•|≤|•|,所以,可得,z≥y,所以,解得,故=y.故答案为:.二、选择题(本大题共有4题,满分18分,13−14题每题4分,第15−16题每题5分)每题有且只有一个正确选项,考生应在答题纸相应的位置,将代表正确选项的小方格涂黑. 13.(4分)下列函数是偶函数的是( )A.y=sin x B.y=cos x C.y=x3D.y=2x【答案】B【解答】解:对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由正弦函数的性质可知,y=cos x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.故选:B.14.(4分)如图为2017﹣2021年上海市货物进出口总额的条形统计图,则下列对于进出口贸易额描述错误的是( )A.从2018年开始,2021年的进出口总额增长率最大B.从2018年开始,进出口总额逐年增大C.从2018年开始,进口总额逐年增大D.从2018年开始,2020年的进出口总额增长率最小【答案】C【解答】解:显然2021年相对于2020年进出口额增量增加特别明显,故最后一年的增长率最大,A对;统计图中的每一年条形图的高度逐年增加,故B对;2020年相对于2019的进口总额是减少的,故C错;显然进出口总额2021年的增长率最大,而2020年相对于2019年的增量比2019年相对于2018年的增量小,且计算增长率时前者的分母还大,故2020年的增长率一定最小,D正确.故选:C.15.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,点P为边A1C1上的动点,则下列直线中,始终与直线BP异面的是( )A.DD1B.AC C.AD1D.B1C【答案】B【解答】解:对于A,当P是A1C1的中点时,BP与DD1是相交直线;对于B,根据异面直线的定义知,BP与AC是异面直线;对于C,当点P与C1重合时,BP与AD1是平行直线;对于D,当点P与C1重合时,BP与B1C是相交直线.故选:B.16.(5分)已知无穷数列{a n}的各项均为实数,S n为其前n项和,若对任意正整数k>2022都有|S k|>|S k+1|,则下列各项中可能成立的是( )A.a1,a3,a5,⋯,a2n﹣1,⋯为等差数到,a2,a4,a6,⋯,a2n,⋯为等比数列B.a1,a3,a5,⋯,a2n﹣1,⋯为等比数列,a2,a4,a6,⋯,a2n,⋯为等差数列C.a1,a2,a3,⋯,a2022为等差数列,a2022,a2023,⋯,a n,⋯为等比数列D.a1,a2,a3,⋯,a2022为等比数列,a2022,a2023,⋯,a n,⋯为等差数列【答案】C【解答】解:由对任意正整数k>2022,都有|S k|>|S k+1|,可以知道a2022,a2033,a2024,⋯,a n不可能为等差数列,因为若d<0,当n→+∞,an→﹣∞,Sn→﹣∞,必有k使得|Sk+1|>|Sk|,矛盾;若d=0,a n=0,则|S k|=|S k+1|,矛盾;若d=0,a n<0,当n→+∞,S n→﹣∞,k使得|S k+1|>|S k|,矛盾;若d=0,a n>0,当n→+∞,S n→+∞,必有k使得|S k+1|>|S k|,矛盾;若d>0,当n→+∞,a n→+∞,S n→+∞必有k使得|S k+1|>|S k|,矛盾;所以选项B中的a2,a4,a6,⋯,a2n为等差数列与上述推理矛盾,故不可能正确;选项D中的a2022,a2023,a2024,⋯,a n为等差数列与上述推理矛盾,故不可能正确;选项A中的a1,a3,a5,⋯,a2n﹣1为等差数列与上述推理矛盾,故不可能正确;事实上,只需取即可.故选:C.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤。
2024年上海市高考数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(★)(5分)已知集合U={1,2,3,4,5,6,7,8,9},A={2,3,4,5},B={1,2,3,6,7},则B∩(∁U A)=()A.{1,6}B.{6,7}C.{6,7,8}D.{1,6,7}2.(★)(5分)函数f(x)=+的定义域为()A.[0,2)B.(2,+∞)C.[,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)3.(★★)(5分)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R且a>b,则下列不等式恒成立的是()A.<B.a2>b2C.a|c|>b|c|D.>4.(★)(5分)若x<0,M=5x2+x+2,N=4x(x+1),则M与N的大小关系为() A.M>N B.M=N C.M<N D.无法确定5.(★★)(5分)若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则a的取值范围是()A.a≤2B.-2<a≤2C.-2<a<2D.a<26.(★)(5分)函数f(x)=x2+x在区间[-1,1]上的最小值是()A.B.0C.D.27.(★★)(5分)对于非空集合P,Q,定义集合间的一种运算“★”:P★Q={x|x∈P∪Q且x∉P∩Q}.如果P={x|-1≤x-1≤1},Q={x|y=},则P★Q=()A.{x|1≤x≤2}B.{x|0≤x≤1或x≥2}C.{x|0≤x≤1或x>2}D.{x|0≤x<1或x>2}8.(★★)(5分)中国南宋大数学家秦九韶提出了“三斜求积术“,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a、b、c,则三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a=3,b+c=5,则此三角形面积的最大值为()A.B.3C.D.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.(★)(5分)下列四组函数中表示同一个函数的是()A.f(x)=x,g(x)=()2B.f(a)=3a2-2a+3,g(t)=3t2-2t+3C.f(x)=,g(x)=xD.f(x)=0,g(x)=+10.(★★)(5分)下列结论不正确的是()A.“x∈N”是“x∈Q”的充分不必要条件B.“∃x∈N*,x2-3<0”是假命题C.△ABC内角A,B,C的对边分别是a,b,c,则“a2+b2=c2”是“△ABC是直角三角形”的充要条件D.命题“∀x>0,x2-3>0”的否定是“∃x>0,x2-3≤0”11.(★★)(5分)下列说法正确的是()A.若a>b>0,则a>>>bB.当a>0,b>0时,++2≥4C.若a2+b2=2,则a+b的最大值为2D.y=+有最小值212.(★★)(5分)“双11”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给予优惠:(1)如果购物总额不超过50元,则不给予优惠;(2)如果购物总额超过50元但不超过100元,可以使用一张5元优惠券;(3)如果购物总额超过100元但不超过300元,则按标价给予9折优惠;(4)如果购物总额超过300元,其中300元内的按第(3)条给予优惠,超过300元的部分给予8折优惠.某人购买了部分商品,则下列说法正确的是()A.如果购物总额为78元,则应付款为73元B.如果购物总额为228元,则应付款为205.2元C.如果购物总额为368元,则应付款为294.4元D.如果购物时一次性全部付款442.8元,则购物总额为516元三、填空题(本题共4小题,每小题5分,共20分)13.(★)(5分)若集合A={x|-3≤x<a},B={x|x≤b},且A∩B=∅,则实数b取值范围为(-∞,-3).14.(★★)(5分)已知f(+1)=2x+3,则f(x)的解析式为f(x)=2x2-4x+5(x≥1).15.(★)(5分)能够说明“若a,b,c是任意正实数,则”是假命题的一组整数a,b,c的值依次为1,1,1(答案不唯一).16.(★)(5分)一位少年能将圆周率π准确记忆到小数点后面200位,更神奇的是提问小数点后面的位数时,这位少年都能准确地说出该数位上的数字.记圆周率π小数点后第n位上的数字为y,则y是n的函数,设y=f(n),n∈N*.则(1)y=f(n)的值域为{0,1,2,3,4,5,6,7,8,9};(2)函数y=f(n)与函数y=n3的交点有1个.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(★★)(10分)在①A=∅,②A恰有两个子集,③A∩{x|<x<2}≠∅这三个条件中任选一个,补充在下列横线上(要求把你选的条件先写到答题纸上),并求解下列问题.已知集合A={x∈R|mx2-2x+1=0}.(1)若1∈A,求实数m的值;(2)若集合A满足_____,求实数m的取值范围.18.(★★)(12分)已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若“x∈A”是“x∈∁R B”的充分不必要条件,且A≠∅,求实数a的取值范围.19.(★)(12分)已知不等式ax2+5x-2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若,求不等式ax2-5x+a2-1>0的解集.20.(★★)(12分)已知x>0,y>0且+=2,若6x+y≥m2+6m恒成立,求实数m的取值范围.21.(★★)(12分)经调查,某产品在过去两周内的日销售量(单位:千克)与日销售单价(单位:元)均为时间t(天)的函数.其中日销售量为时间t的一次函数,且t=1时,日销售量为34千克,t=10时,日销售量为25千克.日销售单价满足函数.(1)写出该商品日销售额y关于时间t的函数(日销售额=日销售量×销售单价);(2)求过去两周内该商品日销售额的最大值.22.(★★)(12分)已知函数f(x)=ax2-(2a+1)x+c,且f(0)=2.(1)若f(x)<0的解集为{x|2<x<8},求函数的值域;(2)当a>0时,解不等式f(x)<0.。
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
上海高考数学试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 1,则f(1)的值为:A. 2B. 1C. -1D. -2答案:B2. 已知数列{an}是等差数列,且a1 = 3,公差d = 2,则a5的值为:A. 11B. 13C. 15D. 17答案:C3. 若三角形ABC的内角A、B、C满足A + B = 120°,则角C的大小为:A. 30°B. 45°C. 60°D. 90°答案:C4. 已知直线l的方程为y = 2x + 3,若点(1, 5)在直线l上,则该点与直线l的位置关系为:A. 在直线l上B. 在直线l外C. 与直线l垂直D. 与直线l平行答案:A5. 若复数z = 1 + i,则|z|的值为:A. √2B. 2C. √3D. 3答案:A二、填空题6. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值为______。
答案:-27. 计算定积分∫₀¹ (2x - 1) dx的值为______。
答案:1/28. 若向量a = (3, -1),向量b = (2, 4),则向量a与向量b的数量积为______。
答案:59. 已知双曲线的方程为x^2/9 - y^2/16 = 1,求其渐近线方程为______。
答案:y = ±(4/3)x10. 若圆的方程为(x - 2)^2 + (y + 1)^2 = 9,求圆心坐标为______。
答案:(2, -1)三、解答题11. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。
答案:f(x)的最小值为f(2) = -1。
12. 已知椭圆的方程为x^2/25 + y^2/9 = 1,求椭圆的离心率。
答案:椭圆的离心率为√6/5。
13. 已知三角形ABC的三边长分别为a = 7,b = 8,c = 9,求三角形ABC的面积。
2023年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为 (1,3) .【答案】(1,3).【解答】解:由|x﹣2|<1可得,﹣1<x﹣2<1,解得1<x<3,即不等式的解集为(1,3).故答案为:(1,3).2.(4分)已知向量=(﹣2,3),=(1,2),则•= 4 .【答案】4.【解答】解:∵向量=(﹣2,3),=(1,2),∴•=﹣2×1+3×2=4.故答案为:4.3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= 189 .【答案】189.【解答】解:∵等比数列的首项为3,公比为2,∴S6==189.故答案为:189.4.(4分)已知tanα=3,则tan2α= ﹣ .【答案】﹣.【解答】解:∵tanα=3,∴tan2α===﹣.故答案为:﹣.5.(4分)已知函数f(x)=,则函数f(x)的值域为 [1,+∞) .【答案】[1,+∞).【解答】解:当x≤0时,f(x)=1,当x>0时,f(x)=2x>1,所以函数f(x)的值域为[1,+∞).故答案为:[1,+∞).6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .【答案】.【解答】解:∵z=1﹣i,∴|1+iz|=|1+i(1﹣i)|=|2+i|=.故答案为:.7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= ﹣3 .【答案】﹣3.【解答】解:圆x2+y2﹣4x﹣m=0化为标准方程为:(x﹣2)2+y2=4+m,∵圆的面积为π,∴圆的半径为1,∴4+m=1,∴m=﹣3.故答案为:﹣3.8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A= .【答案】.【解答】解:a=4,b=5,c=6,由余弦定理得,cos A===,又∵A∈(0,π),∴sin A>0,∴sin A===.故答案为:.9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为 946(亿元) .【答案】946(亿元).【解答】解:设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,∵中位数与平均数相同,∴,∴x+y=473,∴该地一年的GDP为232+x+y+241=946(亿元).故答案为:946(亿元).10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为 49 .【答案】49.【解答】解:二项式(1+2023x)100的通项为=•2023r•x r,r∈{0,1,2,…,100},二项式(2023﹣x)100的通项为=•2023100﹣r•(﹣1)r•x r,r∈{0,1,2,…,100},∴a k=+=[2023k+2023100﹣k•(﹣1)k],k∈{0,1,2,⋯,100},若a k<0,则k为奇数,此时a k=(2023k﹣2023100﹣k),∴2023k﹣2023100﹣k<0,∴k<100﹣k,∴k<50,又∵k为奇数,∴k的最大值为49.故答案为:49.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= arccos .【答案】arccos.【解答】解:斜坡的长度为l=,上坡所消耗的总体力y=×(1.025﹣cosθ)=,函数的导数y′==,由y′=0,得4﹣4.1cosθ=0,得cosθ=,θ=arccos,由f′(x)>0时cosθ<,即arccos<θ<时,函数单调递增,由f′(x)<0时cosθ>,即0<θ<arccos时,函数单调递减,即θ=arccos,函数取得最小值,即此时所消耗的总体力最小.故答案为:θ=arccos.12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有 9 种.【答案】9.【解答】解:如图所示,设任取2个不同的点为D、E,当△ABC为正四棱锥的侧面时,如图,平面ABC的两侧分别可以做ABDE作为圆锥的底面,有2种情况,同理以BCED、ACED为底面各有2种情况,所以共有6种情况;当△ABC为正四棱锥的截面时,如图,D、E位于AB两侧,ADBE为圆锥的底面,只有一种情况,同理以BDCE、ADCE为底面各有1种情况,所以共有3种情况;综上,共有6+3=9种情况.故答案为:9.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3}【答案】A【解答】解:∵P={1,2},Q={2,3},M={x|x∈P,x∉Q},∴M={1}.故选:A.14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关【答案】C【解答】解:根据散点图的分布可得:身高和体重成正相关.故选:C.15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0【答案】D【解答】解:由给定区间可知,a>0.区间[a,2a]与区间[2a,3a]相邻,且区间长度相同.取a=,则[a,2a]=[],区间[2a,3a]=[],可知s a>0,t a>0,故A可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a>0,t a<0,故C可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a<0,t a<0,故B可能.结合选项可得,不可能的是s a<0,t a>0.故选:D.16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立【答案】B【解答】解:∵椭圆是封闭的,总可以找到满足题意的M点,使得|MP|•|MQ|=1成立,故①正确,在双曲线中,|PM|max→+∞,而|QM|min是个固定值,则无法对任意的P∈C,都存在Q∈C,使得|PM||QM|=1,故②错误.故选:B.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.【答案】(1)证明见解答;(2)arctan.【解答】解:(1)证明:根据题意可知AB∥DC,AA1∥DD1,且AB∩AA1=A,∴可得平面A1ABB1∥平面DCC1D1,又直线A1B⊂平面A1ABB1,∴直线A1B∥平面DCC1D1;(2)设AA1=h,则根据题意可得该四棱柱的体积为=36,∴h=4,∵A1A⊥底面ABCD,在底面ABCD内过A作AE⊥BD,垂足点为E,则A1E在底面ABCD内的射影为AE,∴根据三垂线定理可得BD⊥A1E,故∠A1EA即为所求,在Rt△ABD中,AB=2,AD=3,∴BD==,∴AE===,又A1A=h=4,∴tan∠A1EA===,∴二面角A1﹣BD﹣A的大小为arctan.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.【答案】(1)a=0时,f(x)的定义域为{x|x≠0},不存在c使得f(x)是奇函数.(2)(,)∪(,+∞).【解答】解:(1)若a=0,则f(x)==x++1,要使函数有意义,则x≠0,即f(x)的定义域为{x|x≠0},∵y=x+是奇函数,y=1是偶函数,∴函数f(x)=x++1为非奇非偶函数,不可能是奇函数,故不存在实数c,使得f(x)是奇函数.(2)若函数过点(1,3),则f(1)===3,得3a+2+c=3+3a,得c=3﹣2=1,此时f(x)=,若数f(x)与x轴负半轴有两个不同交点,即f(x)==0,得x2+(3a+1)x+1=0,当x<0时,有两个不同的交点,设g(x)=x2+(3a+1)x+1,则,得,得,即a>,若x+a=0即x=﹣a是方程x2+(3a+1)x+1=0的根,则a2﹣(3a+1)a+1=0,即2a2+a﹣1=0,得a=或a=﹣1,则实数a的取值范围是a>且a≠且a≠﹣1,即(,)∪(,+∞).19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.【答案】(1)P(A)=,P(B)=.P(B|A)=.事件A和事件B不独立.(2)EX=277(元).【解答】解:(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P(A)==,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P(B)===.取到红色外观的模型同时是棕色内饰的有12个,即P(AB)=,则P(B|A)====.∵P(A)P(B)==≠,∴P(A)P(B)≠P(AB),即事件A和事件B不独立.(2)由题意知X=600,300,150,则外观和内饰均为同色的概率P===,外观和内饰都异色的概率P==,仅外观或仅内饰同色的概率P=1﹣﹣=,∵>>,∴P(X=150)=,P(X=300)==,P(X=600)=,则X的分布列为:X150300600P则EX=150×+300×+600×=277(元).20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a >0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,P是第一象限内Γ上异于A的动点,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.【答案】(1);(2);(3)(0,2].【解答】解:(1)抛物线Γ:y2=4x的准线为x=﹣1,由于A到抛物线Γ准线的距离为3,则点A的横坐标为2,则a2=4×2=8(a>0),解得;(2)当a=4时,点A的横坐标为,则A(4,4),设B(b,0),则AB的中点为,由题意可得,解得b=﹣2,所以B(﹣2,0),则,由点斜式可得,直线AB的方程为,即2x﹣3y+4=0,所以原点O到直线AB的距离为;(3)如图,设,则,故直线AP的方程为,令x=﹣3,可得,即,则,依题意,恒成立,又,则最小值为,即,即,则a2+12>a2+4a+4,解得0<a<2,又当a=2时,,当且仅当t=2时等号成立,而a≠t,即当a=2时,也符合题意.故实数a的取值范围为(0,2].21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.【答案】(1)证明过程见解答;(2)a m≤a m﹣1﹣2;(3)k=3.【解答】解:(1)证明:,则过点(a m﹣1,f(a m﹣1))的切线的斜率为,由点斜式可得,此时切线方程为,即,令x=0,可得y=lna m﹣1﹣1,根据题意可知,a m=lna m﹣1﹣1,即得证;(2)先证明不等式lnx≤x﹣1(x>0),设F(x)=lnx﹣x+1(x>0),则,易知当0<x<1时,F′(x)>0,F(x)单调递增,当x>1时,F′(x)<0,F(x)单调递减,则F(x)≤F(1)=0,即lnx≤x﹣1(x>0),结合(1)可知,a m=lna m﹣1﹣1≤a m﹣1﹣1﹣1=a m﹣1﹣2;(3)假设存在这样的k符合要求,由(2)可知,数列{a n}为严格的递减数列,n=1,2,3,…,k,由(1)可知,公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,先考察函数g(x)=lnx﹣x﹣1,则,易知当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,则g(x)=d至多只有两个解,即至多存在两个a n﹣1,使得g(a n﹣1)=d,若k≥4,则g(a1)=g(a2)=g(a3)=d,矛盾,则k=3,当k=3时,设函数h(x)=ln(lnx﹣1)﹣2lnx+x+1,由于h(e1.1)=ln0.1﹣2.2+e1.1+1=e1.1﹣ln10﹣1.2<0,h(e2)=﹣3+e2>0,则存在,使得h(x0)=0,于是取a1=x0,a2=lna1﹣1,a3=lna2﹣1,它们构成等差数列.综上,k=3.。
2024年上海市高考数学试卷(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000道题,C题库有3000道题.小申已完成所有题,他A题库的正确率是0.92,B题库的正确率是答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],a n a n q n -1a n a n +1a 1q n -1a 1q nA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n +1a n a 2a 1q n -1a 21q n -21q n -2(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:AA.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )D.存在f(x)在x=-1处取到极小值答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,√2所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√A -A P 2O 2V圆锥131332√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;x 2y 2b2(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.2√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,√3√2√3√33解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A 1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b2Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2m 210b2m 210b 210310310√3√33(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n a n q n -1a n a n +1a 1q n -1a 1q n a n +1a n a 2a 1q n -1a 21q n -21q n -2A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:A解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数D.存在f(x)在x=-1处取到极小值(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,√2√A -A P 2O 2V圆锥131332因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.x 2y 2b22√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,].√3√2√3√3√303解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b24m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,m 210b2m 210b 210310310√3√33(2024•上海)对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)2+(f(x)-b)2,若存在P(x 0,f(x 0)),使s(x 0)是s(x)的最小值,则称点P是函数f(x)到点M的“最近点”.(1)对于f (x )=(x>0),求证:对于点M(0,0),存在点P,使得点P是f(x)到点M的“最近点”;(2)对于f(x)=e x ,M(1,0),请判断是否存在一个点P,它是f(x)到点M的“最近点”,且直线MP与f(x)在点P处的切线垂直;(3)已知f(x)存在导函数f′(x),函数g(x)恒大于零,对于点M 1(t-1,f(t)-g(t)),点M 2(t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是f(x)到点M 1与点M 2的“最近点”,试判断f(x)的单调性.1x答案:(1)证明过程见解析;(2)存在,P(0,1);(3)f(x)严格单调递减.解析:(1)代入M(0,0),利用基本不等式即可;(2)由题得s(x)=(x-1)2+e 2x ,利用导函数得到其最小值,则得到P,再证明直线MP与切线垂直即可;(3)根据题意得到s 1'(x 0)=s 2'(x 0)=0,对两等式化简得f ′()=-,再利用“最近点”的定义得到不等式组,即可证明x 0=t,最后得到函数单调性.x 01g (t )解答:解:(1)当M(0,0)时,s (x )=(x -0+(-0=+≥22,当且仅当=即x=1时取等号,故对于点M(0,0),存在点P(1,1),使得该点是M(0,0)在f(x)的“最近点”;(2)由题设可得s(x)=(x-1)2+(e x -0)2=(x-1)2+e 2x ,则s'(x)=2(x-1)+2e 2x ,因为y=2(x-1),y=2e 2x 均为R上单调递增函数,则s'(x)=2(x-1)+2e 2x 在R上为严格增函数,而s'(0)=0,故当x<0时,s'(x)<0,当x>0时,s'(x)>0,故s(x)min =s(0)=2,此时P(0,1),而f'(x)=e x ,k=f'(0)=1,故f(x)在点P处的切线方程为y=x+1,而==-1,故k MP •k=-1,故直线MP与y=f(x)在点P处的切线垂直.(3)设(x )=(x -t +1+(f (x )-f (t )+g (t ),(x )=(x -t -1+(f (x )-f (t )-g (t ),而s 1'(x)=2(x-t+1)+2(f(x)-f(t)+g(t))f'(x),s 2'(x)=2(x-t-1)+2(f(x)-f(t)-g(t))f'(x),若对任意的t∈R,存在点P同时是M 1,M 2在f(x)的“最近点”,设P(x 0,y 0),则x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,因为两函数的定义域均为R,则x 0也是两函数的极小值点,则存在x 0,使得s 1'(x 0)=s 2'(x 0)=0,即s 1'(x 0)=2(x 0-t+1)+2f′(x 0)[f(x 0)-f(t)+g(t)]=0,①s 2'(x 0)=2(x 0-t-1)+2f′(x 0)[f(x 0)-f(t)-g(t)]=0,②由①②相等得4+4g(t)•f'(x 0)=0,即1+f'(x 0)g(t)=0,即f ′()=-,又因为函数g(x)在定义域R上恒正,则f ′()=-<0恒成立,接下来证明x 0=t,因为x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,则s 1(x 0)≤s(t),s 2(x 0)≤s(t),即 (-t +1+(f ()-f (t )+g (t )≤1+(g (t ),③(-t -1+(f ()-f (t )-g (t )≤1+(g (t ),④③+④得2(-t +2+2[f ()-f (t )+2(t )≤2+2(t ),即(-t +(f ()-f (t )≤0,因为(-t ≥0,(f ()-f (t )≥0)21x )2x 21x 2x 21x 2k MP 0-11-0s 1)2)2s 2)2)2x 01g (t )x 01g (t )x 0)2x 0)2)2x 0)2x 0)2)2x 0)2x 0]2g 2g 2x 0)2x 0)2x 0)2x 0)2则,解得x 0=t,则f ′(t )=-<0恒成立,因为t的任意性,则f(x)严格单调递减.{-t =0f ()-f (t )=0x 0x 01g (t )。
2023上海三校生高考数学试题2023年上海市三校生高考数学试题2023年上海市三校生高考数学试题是上海市三所著名高中(复旦附中、上海中学、交大附中)联合出题的高考数学试题。
这套试题涵盖了高中数学各个领域的知识点,旨在考查学生对数学知识的掌握和运用能力。
以下是试卷中的部分题目及解析:一、选择题部分:1. 已知函数$f(x)=3x^2-5x+2$,求$f(-1)$的值。
解析:将$x=-1$代入$f(x)$,得到$f(-1)=3(-1)^2-5(-1)+2=10$。
2. 若$\log_a b=2$,$\log_b c=3$,求$\log_a c$的值。
解析:根据对数的性质,$\log_a c = \frac{\log_b c}{\log_b a} = \frac{3}{2}$。
二、填空题部分:1. 若$a+b=3$,$a-b=1$,则$a^2-b^2$的值为$\underline{\hspace{2cm}}$。
解析:$a^2-b^2=(a+b)(a-b)=3\times1=3$。
2. 解方程组$\begin{cases} 2x+y=5 \\ x+3y=10 \end{cases}$,得到$x=\underline{\hspace{2cm}}$,$y=\underline{\hspace{2cm}}$。
解析:解方程组可使用消元法或代入法,最终得到$x=2$,$y=1$。
三、解答题部分:1. 已知等差数列的前$n$项和$S_n=3n^2$,且$a_1=1$,$a_n=4$,求该等差数列的公差$d$。
解析:根据等差数列的性质,$S_n=\frac{n}{2}(a_1+a_n)$,代入已知条件,得到$3n^2=\frac{n}{2}(1+4n)$,解方程得到$n=2$,$d=2$。
2. 计算不定积分$\int (2x^2+3x+1)dx$。
解析:根据不定积分的性质,$\int (2x^2+3x+1)dx =\frac{2}{3}x^3+\frac{3}{2}x^2+x$。
2021年上海市高考数学试卷参考答案与试题解析一、填空题〔本大题共有12题,总分值54分,第1~6题每题4分,第7~12题每题5分〕考生应在答题纸的相应位置直接填写结果. 1.〔4分〕〔2021•上海〕行列式的值为18 .【考点】:二阶行列式的定义.菁优网版权所有【专题】11 :计算题;49 :综合法;5R :矩阵与变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】此题考察行列式的定义,运算法那么的应用,是根本知识的考察.2.〔4分〕〔2021•上海〕双曲线﹣y2=1的渐近线方程为±.【考点】:双曲线的性质.菁优网版权所有【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长与虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的2,1,焦点在x轴上而双曲线的渐近线方程为±∴双曲线的渐近线方程为±故答案为:±【点评】此题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.〔4分〕〔2021•上海〕在〔1〕7的二项展开式中,x2项的系数为21 〔结果用数值表示〕.【考点】:二项式定理.菁优网版权所有【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式〔1〕7展开式的通项公式为=•,1令2,得展开式中x2的系数为=21.故答案为:21.【点评】此题考察了二项展开式的通项公式的应用问题,是根底题.4.〔4分〕〔2021•上海〕设常数a∈R,函数f〔x〕=12〔〕.假设f 〔x〕的反函数的图象经过点〔3,1〕,那么7 .【考点】4R:反函数.菁优网版权所有【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f〔x〕=12〔〕的图象经过点〔1,3〕,由此能求出a.【解答】解:∵常数a∈R,函数f〔x〕=12〔〕.f〔x〕的反函数的图象经过点〔3,1〕,∴函数f〔x〕=12〔〕的图象经过点〔1,3〕,∴2〔1〕=3,解得7.故答案为:7.【点评】此题考察实数值的求法,考察函数的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.5.〔4分〕〔2021•上海〕复数z满足〔1〕1﹣7i〔i是虚数单位〕,那么 5 .【考点】A8:复数的模.菁优网版权所有【专题】38 :对应思想;4A :数学模型法;5N :数系的扩大与复数.【分析】把等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由〔1〕1﹣7i,得,那么.故答案为:5.【点评】此题考察了复数代数形式的乘除运算,考察了复数模的求法,是根底题.6.〔4分〕〔2021•上海〕记等差数列{}的前n项与为,假设a3=0,a67=14,那么S7= 14 .【考点】85:等差数列的前n项与.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,2,由此能求出S7.【解答】解:∵等差数列{}的前n项与为,a3=0,a67=14,解得a1=﹣4,2,∴S7=7a1﹣28+42=14.故答案为:14.【点评】此题考察等差数列的前7项与的求法,考察等差数列的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.7.〔5分〕〔2021•上海〕α∈{﹣2,﹣1,﹣,1,2,3},假设幂函数f〔x〕α为奇函数,且在〔0,+∞〕上递减,那么α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f〔x〕α为奇函数,且在〔0,+∞〕上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f〔x〕α为奇函数,且在〔0,+∞〕上递减,∴a是奇数,且a<0,∴﹣1.故答案为:﹣1.【点评】此题考察实数值的求法,考察幂函数的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.8.〔5分〕〔2021•上海〕在平面直角坐标系中,点A〔﹣1,0〕、B 〔2,0〕,E、F是y轴上的两个动点,且2,那么的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E〔0,a〕,F〔0,b〕,从而得出﹣2,即2,或2,并可求得,将2带入上式即可求出的最小值,同理将2带入,也可求出的最小值.【解答】解:根据题意,设E〔0,a〕,F〔0,b〕;∴2,或2;且;当2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出2时,的最小值为﹣3.故答案为:﹣3.【点评】考察根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.〔5分〕〔2021•上海〕有编号互不一样的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,那么这三个砝码的总质量为9克的概率是〔结果用最简分数表示〕.【考点】:古典概型及其概率计算公式.菁优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不一样的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】此题考察古典概型的概率的求法,是根本知识的考察.10.〔5分〕〔2021•上海〕设等比数列{}的通项公式为﹣1〔n∈N*〕,前n项与为.假设=,那么 3 .【考点】8J:数列的极限.菁优网版权所有【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{}的通项公式为﹣1〔n∈N*〕,可得a1=1,因为=,所以数列的公比不是1,,1.可得,可得3.故答案为:3.【点评】此题考察数列的极限的运算法那么的应用,等比数列求与以及等比数列的简单性质的应用,是根本知识的考察.11.〔5分〕〔2021•上海〕常数a>0,函数f〔x〕=的图象经过点P〔p,〕,Q〔q,〕.假设236,那么 6 .【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f〔x〕=的图象经过点P〔p,〕,Q〔q,〕.那么:,整理得:=1,解得:22,由于:236,所以:a2=36,由于a>0,故:6.故答案为:6【点评】此题考察的知识要点:函数的性质的应用,代数式的变换问题的应用.12.〔5分〕〔2021•上海〕实数x1、x2、y1、y2满足:x1212=1,x2222=1,x1x21y2=,那么+的最大值为+.【考点】7F:根本不等式及其应用;:点到直线的距离公式.菁优网版权所有【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A〔x1,y1〕,B〔x2,y2〕,=〔x1,y1〕,=〔x2,y2〕,由圆的方程与向量数量积的定义、坐标表示,可得三角形为等边三角形,1,+的几何意义为点A,B两点到直线﹣1=0的距离d1与d2之与,由两平行线的距离可得所求最大值.【解答】解:设A〔x1,y1〕,B〔x2,y2〕,=〔x1,y1〕,=〔x2,y2〕,由x1212=1,x2222=1,x1x21y2=,可得A,B两点在圆x22=1上,且•=1×1×∠,即有∠60°,即三角形为等边三角形,1,+的几何意义为点A,B两点到直线﹣1=0的距离d1与d2之与,显然A,B在第三象限,所在直线与直线1平行,可设:0,〔t>0〕,由圆心O到直线的距离,可得2=1,解得,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】此题考察向量数量积的坐标表示与定义,以及圆的方程与运用,考察点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题〔本大题共有4题,总分值20分,每题5分〕每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.〔5分〕〔2021•上海〕设P是椭圆=1上的动点,那么P 到该椭圆的两个焦点的距离之与为〔〕A.2B.2C.2D.4【考点】K4:椭圆的性质.菁优网版权所有【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴〔焦点坐标〕所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,,P是椭圆=1上的动点,由椭圆的定义可知:那么P到该椭圆的两个焦点的距离之与为22.应选:C.【点评】此题考察椭圆的简单性质的应用,椭圆的定义的应用,是根本知识的考察.14.〔5分〕〔2021•上海〕a∈R,那么“a>1〞是“<1〞的〔〕A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1〞⇒“〞,“〞⇒“a>1或a<0〞,由此能求出结果.【解答】解:a∈R,那么“a>1〞⇒“〞,“〞⇒“a>1或a<0〞,∴“a>1〞是“〞的充分非必要条件.应选:A.【点评】此题考察充分条件、必要条件的判断,考察不等式的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.15.〔5分〕〔2021•上海〕?九章算术?中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1是正六棱柱的一条侧棱,如图,假设阳马以该正六棱柱的顶点为顶点、以1为底面矩形的一边,那么这样的阳马的个数是〔〕A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义与正六边形的性质可得答案.【解答】解:根据正六边形的性质,那么D1﹣A11,D1﹣A11满足题意,而C1,E1,C,D,E,与D1一样,有2×6=12,当A11为底面矩形,有2个满足题意,当A11为底面矩形,有2个满足题意,故有12+2+2=16应选:D.【点评】此题考察了新定义,以及排除组合的问题,考察了棱柱的特征,属于中档题.16.〔5分〕〔2021•上海〕设D是含数1的有限实数集,f〔x〕是定义在D上的函数,假设f〔x〕的图象绕原点逆时针旋转后与原图象重合,那么在以下各项中,f〔1〕的可能取值只能是〔〕A. B.C.D.0【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入与赋值的方法当f〔1〕=,,0时,此时得到的圆心角为,,0,然而此时0或者1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.应选:B.【点评】此题考察的知识要点:定义性函数的应用.三、解答题〔本大题共有5题,总分值76分〕解答以下各题必须在答题纸的相应位置写出必要的步骤.17.〔14分〕〔2021•上海〕圆锥的顶点为P,底面圆心为O,半径为2.〔1〕设圆锥的母线长为4,求圆锥的体积;〔2〕设4,、是底面半径,且∠90°,M为线段的中点,如图.求异面直线与所成的角的大小.【考点】:异面直线及其所成的角;L5:旋转体〔圆柱、圆锥、圆台〕;:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】〔1〕由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.〔2〕以O为原点,为x轴,为y轴,为z轴,建立空间直角坐标系,利用向量法能求出异面直线与所成的角.【解答】解:〔1〕∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积〔2〕∵4,,是底面半径,且∠90°,M为线段的中点,∴以O为原点,为x轴,为y轴,为z轴,建立空间直角坐标系,P〔0,0,4〕,A〔2,0,0〕,B〔0,2,0〕,M〔1,1,0〕,O〔0,0,0〕,=〔1,1,﹣4〕,=〔0,2,0〕,设异面直线与所成的角为θ,那么θ.∴θ.∴异面直线与所成的角的为.【点评】此题考察圆锥的体积的求法,考察异面直线所成角的正切值的求法,考察空间中线线、线面、面面间的位置关系等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.18.〔14分〕〔2021•上海〕设常数a∈R,函数f〔x〕222x.〔1〕假设f〔x〕为偶函数,求a的值;〔2〕假设f〔〕1,求方程f〔x〕=1﹣在区间[﹣π,π]上的解.【考点】:两角与与差的三角函数;:二倍角的三角函数.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】〔1〕根据函数的奇偶性与三角形的函数的性质即可求出,〔2〕先求出a的值,再根据三角形函数的性质即可求出.【解答】解:〔1〕∵f〔x〕222x,∴f〔﹣x〕=﹣222x,∵f〔x〕为偶函数,∴f〔﹣x〕〔x〕,∴﹣222222x,∴220,∴0;〔2〕∵f〔〕1,∴22〔〕11,∴f〔x〕222221=2〔2〕+1,∵f〔x〕=1﹣,∴2〔2〕+1=1﹣,∴〔2〕=﹣,∴2﹣+2kπ,或2π+2kπ,k∈Z,∴﹣ππ,或ππ,k∈Z,∵x∈[﹣π,π],∴或或﹣或﹣【点评】此题考察了三角函数的化简与求值,以及三角函数的性质,属于根底题.19.〔14分〕〔2021•上海〕某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中〔0<x<100〕的成员自驾时,自驾群体的人均通勤时间为f〔x〕=〔单位:分钟〕,而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果答复以下问题:〔1〕当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?〔2〕求该地上班族S的人均通勤时间g〔x〕的表达式;讨论g〔x〕的单调性,并说明其实际意义.【考点】5B:分段函数的应用.菁优网版权所有【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】〔1〕由题意知求出f〔x〕>40时x的取值范围即可;〔2〕分段求出g〔x〕的解析式,判断g〔x〕的单调性,再说明其实际意义.【解答】解;〔1〕由题意知,当30<x<100时,f〔x〕=2﹣90>40,即x2﹣65900>0,解得x<20或x>45,∴x∈〔45,100〕时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;〔2〕当0<x≤30时,g〔x〕=30•40〔1﹣〕=40﹣;当30<x<100时,g〔x〕=〔2﹣90〕•40〔1﹣〕=﹣58;∴g〔x〕=;当0<x<32.5时,g〔x〕单调递减;<x<100时,g〔x〕单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】此题考察了分段函数的应用问题,也考察了分类讨论与分析问题、解决问题的能力.20.〔16分〕〔2021•上海〕设常数t>2.在平面直角坐标系中,点F〔2,0〕,直线l:,曲线Γ:y2=8x〔0≤x≤t,y≥0〕.l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段上的动点.〔1〕用t表示点B到点F的距离;〔2〕设3,2,线段的中点在直线上,求△的面积;〔3〕设8,是否存在以、为邻边的矩形,使得点E在Γ上?假设存在,求点P的坐标;假设不存在,说明理由.【考点】:直线与抛物线的位置关系.菁优网版权所有【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】〔1〕方法一:设B点坐标,根据两点之间的距离公式,即可求得;方法二:根据抛物线的定义,即可求得;〔2〕根据抛物线的性质,求得Q点坐标,即可求得的中点坐标,即可求得直线的方程,代入抛物线方程,即可求得P点坐标,即可求得△的面积;〔3〕设P及E点坐标,根据直线•﹣1,求得直线的方程,求得Q 点坐标,根据,求得E点坐标,那么〔〕2=8〔+6〕,即可求得P点坐标.【解答】解:〔1〕方法一:由题意可知:设B〔t,2t〕,那么2,∴2;方法二:由题意可知:设B〔t,2t〕,由抛物线的性质可知:2,∴2;〔2〕F〔2,0〕,2,3,那么1,∴,∴Q〔3,〕,设的中点D,D〔,〕,﹣,那么直线方程:﹣〔x﹣2〕,联立,整理得:3x2﹣2021=0,解得:,6〔舍去〕,∴△的面积××=;〔3〕存在,设P〔,y〕,E〔,m〕,那么,,直线方程为〔x﹣2〕,∴〔8﹣2〕=,Q〔8,〕,根据,那么E〔+6,〕,∴〔〕2=8〔+6〕,解得:y2=,∴存在以、为邻边的矩形,使得点E在Γ上,且P〔,〕.【点评】此题考察抛物线的性质,直线与抛物线的位置关系,考察转化思想,计算能力,属于中档题.21.〔18分〕〔2021•上海〕给定无穷数列{},假设无穷数列{}满足:对任意n∈N*,都有﹣≤1,那么称{}与{}“接近〞.〔1〕设{}是首项为1,公比为的等比数列,1+1,n∈N*,判断数列{}是否与{}接近,并说明理由;〔2〕设数列{}的前四项为:a1=1,a2=2,a3=4,a4=8,{}是一个与{}接近的数列,记集合{,1,2,3,4},求M中元素的个数m;〔3〕{}是公差为d的等差数列,假设存在数列{}满足:{}与{}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d 的取值范围.【考点】8M:等差数列与等比数列的综合.菁优网版权所有【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】〔1〕运用等比数列的通项公式与新定义“接近〞,即可判断;〔2〕由新定义可得﹣1≤≤1,求得,1,2,3,4的范围,即可得到所求个数;〔3〕运用等差数列的通项公式可得,讨论公差d>0,0,﹣2<d<0,d≤﹣2,结合新定义“接近〞,推理与运算,即可得到所求范围.【解答】解:〔1〕数列{}与{}接近.理由:{}是首项为1,公比为的等比数列,可得,1+11,那么﹣1﹣1﹣<1,n∈N*,可得数列{}与{}接近;〔2〕{}是一个与{}接近的数列,可得﹣1≤≤1,数列{}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合{,1,2,3,4},M中元素的个数3或4;〔3〕{}是公差为d的等差数列,假设存在数列{}满足:{}与{}接近,可得1+〔n﹣1〕d,①假设d>0,取,可得1﹣1﹣>0,那么b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②假设0,取1﹣,那么﹣1﹣﹣a1<1,n∈N*,可得1﹣﹣>0,那么b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③假设﹣2<d<0,可令b2n﹣12n﹣1﹣1,b221,那么b2n﹣b2n﹣121﹣〔a2n﹣1﹣1〕=2>0,那么b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④假设d≤﹣2,假设存在数列{}满足:{}与{}接近,即为﹣1≤≤1,1﹣1≤1≤1+1,可得1﹣≤1+1﹣〔﹣1〕=2≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是〔﹣2,+∞〕.【点评】此题考察新定义“接近〞的理解与运用,考察等差数列与等比数列的定义与通项公式的运用,考察分类讨论思想方法,以及运算能力与推理能力,属于难题.第21 页。
2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =I 2. 若排列数6654mP =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该 双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB uuu u r 的坐标为(4,3,2),则1AC u u u u r的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2fx -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 605414. 在数列{}n a 中,1()2nn a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅u u u r u u u r的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=u u u r u u u r,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =u u u r u u u r ,4PQ PM =u u u r u u u u r,求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =I 【解析】{3,4}A B =I2. 若排列数6654mP =⨯⨯,则m = 【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞4. 已知球的体积为36π,则该球主视图的面积等于【解析】3436393r r S πππ=⇒=⇒= 5. 已知复数z 满足30z z+=,则||z =【解析】23||z z z =-⇒=⇒=6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB uuu u r 的坐标为(4,3,2),则1AC u u u u r的坐标为【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-u u u u r8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2fx -=的解为【解析】()31(2)918xf x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =【解析】222149161491612341234lg()()2lg()n n a b n n b b b b b a b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++, 即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 6054【解析】C14. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+= 【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅u u u r u u u r的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=u u u r u u u r,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅=(2)tanθ== 18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A == 19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【解析】(1)12341234()()96530935a a a a b b b b +++-+++=-= (2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =u u u r u u u r ,4PQ PM =u u u r u u u u r,求直线AQ 的方程.【解析】(1)联立22:14x y Γ+=与222x y +=,可得P (2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=u u u r u u u r 或1m =(3)设00(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =u u u r u u u u r ,∴003(,3)2Q x y --,∵2AQ AC =u u u r u u u r ,∴00133(,)42y C x --,代入并联立椭圆方程,解得0x =,019y =-,∴1()3Q ,∴直线AQ 的方程为1y =+ 21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”. 【解析】(1)0a ≥;(2)略;(3)略.。