平方根(二次根式的基础)专项训练试题
- 格式:docx
- 大小:38.88 KB
- 文档页数:5
初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.的平方根为()A.B.C.3D.【答案】B.【解析】由于=3,故其平方根是.故选B.【考点】平方根.5.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.6.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.7.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.8.大于小于的所有整数的和是 .【答案】-4.【解析】求出和的范围,求出范围内的整数解,最后相加即可.∵-5<<-4,3<<4,∴大于小于的所有整数为-4,±3,±2,±1,0,∴-4-3-2-1+0+1+2+3=-4,【考点】估算无理数的大小.9.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.10.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.11.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.【答案】9【解析】解:因为2a-1的平方根是±3,所以2a-1=9,解得因为3a+b-1的算术平方根是4,所以3a+b-1=16.又所以故a+2b=9.12.在-4,,0,π,1,,这些数中,是无理数的是.【答案】π.【解析】无理数有:π.故答案为:π.【考点】无理数.13.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.14.若(x-1)=64,则x=______。
初中数学八年级上册平方根运算专项练习题(100道题)一、选择题1. 若a为正整数,下列分数中哪个不是无理数?A. √(a+1)/√(a-1)B. √(a-1)/√(a+1)C. √(a+3)/√(a+4)D. √(a-1)/√(a-2)2. √(24+10√6)=______A. √3+√2B. √6+√2C. 2√2+√3D. 4√6-√33. √(2+√3)=_____A. √3/2+1/√2B. 1/2+√3/√2C. √3/2+√2D. 1/2+1/√24. √(5+2√6)=_____A. √3+√2B. √2+√3C. 1/√3+√2D. 1/√2+√35. √(23+16√2)=_____A. √2+4B. √2-4C. 4-√2D. 4+√2二、填空题6. 若a*b=6且a+b=5,则a和b的平方根之积为______7. 若m√n=5√3, 则m的值为______8. 若√(x-1)=2+√3, 则x的值为______9. 若√(x+1)=2-√3, 则x的值为______10. 若√(x-7)+√(x+3)=√(x+1)+√(x-5), 则x的值为______三、解答题11. 化简√[(3+√5)(3-√5)]12. 用通分法化简√(2+√3)+√(2-√3)13. 求解方程√(x+2)+√(x-1)=√x+√(x+3)14. 已知√(x+2)-√x=√2, 求x的值15. 用配方法解方程√x+√(x-3)=8...四、解析及答案请见附录部分。
五、参考资料1. 林一修,苏士悌等.《初中数学(八年级上册)》. 北京:人民教育出版社,201X.附录:解析及答案1. 答案:B。
根据有理化的方法以及无理数加法有理分母等法则,得分数√(a-1)/√(a+1) 为无理数。
2. 答案:B。
根据二次根式化简的方法,得√(24+10√6) =√6+√2。
3. 答案:A。
根据二次根式化简的方法,得√(2+√3) =√3/2+1/√2。
二次根式基础测试题含答案解析一、选择题1.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.2.把(a b -根号外的因式移到根号内的结果为( ).A B C .D .【答案】C【解析】【分析】先判断出a -b 的符号,然后解答即可.【详解】 ∵被开方数10b a≥-,分母0b a -≠,∴0b a ->,∴0a b -<,∴原式(b a =--== 故选C . 【点睛】=|a |.也考查了二次根式的成立的条件以及二次根式的乘法.3.已知352x x -+-=的结果是( ) A .4B .62x -C .4-D .26x - 【答案】A【解析】由352x x -+-=可得30{50x x -≥-≤ ,∴3≤x ≤5=x-1+5-x=4,故选A.4.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】 【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可. 【详解】=|2a-1|,∴|2a-1|=1-2a , ∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.5.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.6.计算2(3)-的结果为( ) A .±3B .-3C .3D .9【答案】C【解析】【分析】根据2a =|a|进行计算即可.【详解】 2(3)-=|-3|=3,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.7.若x 、y 都是实数,且21124x x y -+-+=,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.8.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.9.下列式子正确的是()=-A6=±B C3=-D5【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】=,故A错误.解:6B错误.=-,故C正确.3=,故D错误.D. 5故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.下列各式中,不能化简的二次根式是()A B C D【答案】C【解析】【分析】A、B选项的被开方数中含有分母或小数;D选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【详解】解:A 、1222=,被开方数含有分母,不是最简二次根式; B 、300.310=,被开方数含有小数,不是最简二次根式; D 、1832=,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C .【点睛】在判断最简二次根式的过程中要注意: (1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.11.下列运算正确的是( )A .B .C .(a ﹣3)2=a 2﹣9D .(﹣2a 2)3=﹣6a 6 【答案】B【解析】【分析】各式计算得到结果,即可做出判断. 【详解】解:A 、原式不能合并,不符合题意;B 、原式=,符合题意;C 、原式=a 2﹣6a +9,不符合题意;D 、原式=﹣8a 6,不符合题意,故选:B . 【点睛】 考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.12.下列计算正确的是( )A .4333=B 235=C .1212=D 822=【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A、43333-=,错误;B、2、3不是同类二次根式,不能合并,错误;C、122222=⨯=,错误;D、8242÷==,正确;故选:D.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.13.如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.14.362g在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】362182322==g2 1.414≈,即可解答.【详解】362182322==g2 1.414≈,∴322 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及2 1.414≈.15.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B、,此选项正确;C、=(D、=故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则. 18.下列二次根式是最简二次根式的是()A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数含开的尽的因数,故B不符合题意;C、被开方数是小数,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.19.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化【详解】 解:∵二次根式3a b -有意义, ∴-a 3b≥0∵a >b ,∴a >0,b <0∴23=a b ab a a ab --=-g ,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.20.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|,()2a a b a a b b +=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.。
二次根式基础测试题及答案一、选择题1.在下列各组根式中,是同类二次根式的是( )A .2,12B .2,12C .4ab ,4abD .1a -,1a + 【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可. 【详解】 A 、1223=,2与12不是同类二次根式;B 、1222=,2与12是同类二次根式; C 、4242,ab ab ab b a ==,4ab 与4ab 不是同类二次根式;D 、1a -与1a +不是同类二次根式;故选:B .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.下列计算正确的是( )A .+=B .﹣=﹣1C .×=6D .÷=3【答案】D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、B与不能合并,所以A 、B 选项错误; C 、原式=×=,所以C 选项错误; D 、原式==3,所以D 选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列计算中,正确的是( )A .535344=B .1a ab b b ÷=(a >0,b >0)C .5539335777⨯= D .()()22483248324832670÷⨯+-=【答案】B【解析】【分析】 根据二次根式的乘法法则:a •b =ab (a≥0,b≥0),二次根式的除法法则:a b =a b(a≥0,b >0)进行计算即可. 【详解】 A 、534=532,故原题计算错误; B 、a ab b ÷=1a b ab ⋅=1b (a >0,b >0),故原题计算正确; C 、559377⨯=368577⨯=6857,故原题计算错误; D 、()()22483248324832÷⨯+-=32×165=245,故原题计算错误; 故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.4.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .5.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2 【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.= )A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数【答案】B【解析】=∴x ≥0,x-6≥0,∴x 6≥.故选B.7.已知3y =,则2xy 的值为( )A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由3y =,得250{520x x -≥-≥,解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .8.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k【答案】D【解析】【分析】 求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.9.下列式子正确的是( )A 6=±B C 3=- D 5=- 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. ()255-=,故D 错误. 故选:C 【点睛】 此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.下列计算正确的是( )A .1836÷=B .822-=C .2332-=D .2(5)5-=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A .1831836÷=÷=,此选项计算错误; B.822222-=-=,此选项计算正确;C.2333-=,此选项计算错误;D.2(5)5-=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.11.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .12【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式12.2a a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.13.下列计算或化简正确的是()A.=BC3==-D3【答案】D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.14.362+在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】+== 1.41436222≈,即可解答.【详解】+== 1.41436222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.下列各式成立的是()A.2-=B-=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.16.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为( )A .B .C .D . 【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D .【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.17.下列计算正确的是( )A .=B =C .=D -=【答案】B【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、-B 、,此选项正确;C 、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.18.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )A B . C + 1 D + 2【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】 解:(221m m ++1)31m m+÷ 223211m m m m m+++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.下列各式中,不能化简的二次根式是( )A B C D 【答案】C【解析】【分析】A 、B 选项的被开方数中含有分母或小数;D 选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【详解】解:A =,被开方数含有分母,不是最简二次根式;B 10=,被开方数含有小数,不是最简二次根式;D =,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C .【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.。
精品文档。
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………1欢迎下载二次根式专项练习题组卷人: 张莉第I 卷(选择题)一、选择题1.9的算术平方根是( )A .3B .﹣3C .±3D .±92.下列运算中正确的是 ( ) A 、525=± B 、552±=-C 、222=-)( D 、212414= 3.下列各式中正确的是( )A.16=±4B.3-27=-9C.2(-3)=-3D.112=1424.9的算术平方根为( )A .3B .±3C .-3D .81 5.与3是同类二次根式的是( )A .2B .9C .18D .136.若代数式12x x --有意义,则x 的取值范围是( ) A .21≠>x x 且 B .1≥x C .2≠x D .21≠≥x x 且 7.若2(1)1m m -=-,则m 的取值范围是 ( )A .m ≥1B .m ≤1C .m=1D .一切实数8.下列四个等式:①2(4)4-=;②2(4)16-=;③2(4)4=;④2(4)4-=-.正确的是( )A .①② B.③④ C.②④ D.①③ 9.二次根式23-)(的值是( )A. -3B. 3或-3C. 9D. 310.在函数y=13+x 中,x 的取值范围是( )A .x ≥﹣1B .x ≤﹣1C .x ≠﹣1D .x >﹣1试卷第2页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………11.估计7的值介于( )A .0与1之间B .1与2之间C .2与3之间D .3与4之间 12.下列各式运算正确的是( )A .164=±B .235+=C .236⨯=D .2(5)5-=- 13.下列运算错误的是( )A 、235+=B 、236⋅=C 、623÷=D 、2(2)2-=14.下列根式中,不是最简二次根式的是( )A .10B .8C .6D .215.64的算术平方根与2的相反数的倒数的积是( ) A .4- B. 16- C. 2- D. 22- 16.下列根式中,最简二次根式是( ) A .a 25 B .22b a + C .2aD .5.0 17.下列结果正确的有( )①4293=;②2733648=;③224293⨯=;④2(6)6555--=.A .1个B .2个C .3个D .4个18.已知a <b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -精品文档。
初二数学二次根式基础练习和常考题与简单题(含解析)一•选择题(共7小题)1 •若式子.有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M32 •下列二次根式中属于最简二次根式的是()A.三B.产C.上D.3•如果■、. ’•二;,那么X取值范围是()A. X<2B. x v2C. X>2D. x>24. 若1v x v 2,则|—卜:「的值为()A. 2X- 4B.- 2C. 4- 2XD. 25. 下列各式计算正确的是()A.匚+ 二二二B. 4 二-3 二=1C. 2 二X 3 二=6 二D. =十二=36. 若.T订是正整数,最小的整数门是()A. 6B. 3C. 48D. 27. 下列根式中,不能与=合并的是()二.填空题(共7小题)8. 计算"•'的结果是—.V39. _______________________________________________________ 三角形的三边长分别为3、m、5,化简{(卜™)'-心旷对星= _____________________ .10 .若实数a、b、c在数轴的位置,如图所示,则化简:.ii .- [--= ------------ . - -11. __________________________________________________ 若二次根式是最简二次根式,则最小的正整数a= _____________________________ .第2页(共24页)12. 计算:(匚+1)(二-1)= ______13 .已知x、y都是实数,且y= •- 1-' +4,则y X= ____解答题(共26小题) 计算:—_.计算:(占-1)(弋二+1) — (— ) 2+| 1 - :| —( n- 2) °+七.32 - - 先化简,再求值:-亠?亠-亠,其中a=二+1. ,-1 丁 1计算:一^+「(「- _) + -.V2-1当x=wL''」时,求代数式x 2+5x - 6的值. 化简求值::「'七,求歸的值.已知a , b , c 在数轴上如图所示,化简:“丁 - ^+卜,+ . I. I| b0 c-J ------------- 1 ----- 1—>计算3- 9.;.二+3 =(~+不)+ (九上-7)计算:匚+ (- 2013) °-(石)-1+| - 3|二二-」x r +.三.先化简,再求值:(「一+「)宁「,其中a=^+1.aT a 2-2a+La-1已知 a= (*) -1,,c= (2014- n)d=|1-走|,15. 16. 17.18. 19. 20. 21.aI22. (1) (2)23.(1) (2)24. 25.(1) (2)26. 27.14.如果厂〔+ . . — =0,那么第2页(共24页)化简这四个数;把这四个数,通过适当运算后使得结果为2.请列式并写出运算过程.先化简:(2x+1) 2+ (x+2) (x- 2) - 4x (x+1),再求值,其中x=-^p-.£先化简,再求值,其中■■- ;.x+2 x+228•若a 、b 为实数,且b 二•「•+4,求a+b 的值.a+729•计算:(二―二)2-(二+ 二)2. 30. 计算: (1)4 三一叨汁4 .:(2) (- 2.r )J(〒 +3 了 - J) 31. 计算:(1)4- ■ . : - I(2)]汁.| T _ : I ' -•-]32. 计算:(-3) °- =+| 1 -二|+ -.V3+V236. 计算与化简(1),二1_ !一 (2)_ 「 _ .37. (1) 一个正数的平方根是2a - 3与5 -a ,求这个正数.(2)已知x 、y 都是实数,且■ ■-> ■-,求y 的值.38. 若x ,y ,a ,b 满足关系式〒-+ =丄;,二〔丨心 •,试求x , y 的值.39. 已知a, b 为等腰三角形的两条边长,且 a ,b 满足b=「+仁】】+4,求此 三角形的周长. 40.已知 a , b , c ABC 的三边长,且( =+ ) 2=3 (甘二二+!汇+ ■),试说明这个三角形是什么三角形.42•计算:("-1)(甘.:■+〔)—(—一) 2+| 1 -计—(冗―2) 0+ ■:. 33.先化简,,其中x=' ,34.已知:._汁1「.二,工.41.计算:343• (1)计算:Tx - 4X ■ X(1- ") °;2 k2 k2 ’___ (2)先化简,再求值:(_:_- +「)宁,其中a, b满足-■ +|ba2-2ab+ b2a2-ab-1 =°.244•先化简,再求值:---------- ----- ,其中a= =+1.a2-l a-145 .计算:一+ (二-二)+ 匚.V2~l46•计算:5 +•不-「X ;+.〒- =初二数学二次根式基础练习和常考题与简单题(含解析)参考答案与试题解析一•选择题(共7小题)1. (2016?乐亭县一模)若式子::有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 【解答】解:根据二次根式有意义,分式有意义得:x-2>0且x- 3M 0,解得:X>2且X M 3.故选D.【点评】本题考查了二次根式有意义的条件和分式的意义. 考查的知识点为:分式有意义,分母不为0; 二次根式的被开方数是非负数.2. (2015?锦州)下列二次根式中属于最简二次根式的是()A、 B.三C. - D.【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了对最简二次根式定义的应用,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幕的指数等于或大于2,也不是最简二次根式.3. (2015?维坊模拟)如果.,那么x取值范围是()A. x<2B. x v2C. x>2D. x>2【分析】根据二次根式的被开方数是一个》0的数,可得不等式,解即可.【解答】解:T」=2- x,x—2w 0,解得x<2.故选A.【点评】本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.4. (2016?呼伦贝尔)若1v x v2,则.■.. 的值为()A. 2x —4B.—2C. 4—2xD. 2【分析】已知1v x v2,可判断x —3v0, x—1>0,根据绝对值,二次根式的性质解答. 【解答】解:••• 1vxv 2,•- x—3v 0, x —1 >0, 原式=|x-3|+ ::1'=|x—3|+| x—1|=3 —x+x —1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a>0)的代数式叫做二次根式.当a>0时,■■表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:「=| a| .5. (2015?潜江)下列各式计算正确的是()A.匚+ 二二二B. 4 二—3 二=1C. 2 7x 3 二=6 二D. =* 二=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.好[好二,无法计算,故此选项错误,B4.;t- 3化二「;,故此选项错误,C.2二x 3二=6X 3=18,故此选项错误,故选D.【点评】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.6. (2015?安徽模拟)若"E-是正整数,最小的整数门是()A. 6B. 3C. 48D. 2【分析】先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.【解答】解:.冇=4帀,由于.冇是正整数,所以n的最小正整数值是3, 故选B.【点评】此题考查二次根式的定义,解答此题的关键是能够正确的对二次根式进行化简.7. (2015?凉山州)下列根式中,不能与二合并的是()A. B ;C , D--【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、;-2_,本选项不合题意;D、」;二;'「,本选项不合题意;故选C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.二•填空题(共7小题)8. (2015?南京)计算一的结果是5 .【分析】直接利用二次根式的性质化简求出即可.【解答】解:——-=;莎X -=5.V3故答案为:5.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9. (2016?山西模拟)三角形的三边长分别为3、m、5,化简辰费-皿乔= 2m-10 .【分析】先利用三角形的三边关系求出m的取值范围,再化简求解即可.【解答】解:•••三角形的三边长分别为3、m、5,二2v m v8,•••-:_,「「;=m- 2-(8-m)=2m- 10.故答案为:2m- 10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.故答案为:-a- b.【点评】正确地根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.11. (2016?山西模拟)若二次根式沁…-是最简二次根式,则最小的正整数a=2 .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:二次根式/.;.小是最简二次根式,则最小的正整数a=2, 故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个10(2016春?惠山区期末)若实数a、b、c在数轴的位置,如图所示,贝U化简:.,| ■-〔-一= -a-b . - »【分析】先根据数轴上各点的位置判断出a,b的符号及a+c与b-c的符号,再进行计算即可.【解答】解:由数轴可知,c v b v0v a, |a| v|c|,••• a+c v 0,b- c>0,•原式=-(a+c)-(b - c)= - a - b.条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12. (2014?畐州)计算:(「+1)( _- 1)= 1 .【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(匚+1)(二-1)= :「故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.13. (2014?苏州模拟)已知x、y都是实数,且y= J 垃-3+V3-X+4,则y x= 64【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的值代入y x进行计算即可.【解答】解:Ty=.. -<+4,解得x=3,.y=4,••• y x=43=64. 故答案为:64.【点评】本题考查的是二次根式有意义的条件及有理数的乘方,能根据二次根式有意义的条件求出x的值是解答此题的关键.14. (2015春?泰兴市期末)如果除\」+ ==0,那么【分析】先由非负数的性质求得a, b的值,再代入原式化简计算可得答案.【解答】解:•••化-+『—=0,而心0, 》0;• a=1, b=2•原式=1+ _=1+ 7.故本题答案为:1+ ".【点评】本题考查了二次根式的化简,还利用了非负数的性质:若两个非负数的和为0,则这两个数均为0.三.解答题(共26小题)15. (2016?德州校级自主招生)计算:「.丄.-【分析】先根据二次根式的乘除法法则得到原式=二-- 二+2二然后利用二次根式的性质化简后合并即可.【解答】解:原式=山-:二+2 7=4 —空并+2 ■■=4+聲汇【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.16. (2014?张家界)计算:(■—1)(,+1)-(-[)—2+| 1 — : —(n—2)0+匚.【分析】根据零指数幕、负整数指数幕和平方差公式得到原式=5 —1 —9+匚—1-1+2匚,然后合并即可.【解答】解:原式=5 - 1-9+匚-1 - 1+2 -=-7+3 匚.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整数指数幕.通分和约分,本题难度不大.【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3 - 3匚+匚【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则.17. (2016?安徽三模)先化简,再求值:2-T 亠-",其中 a=「+1.【分析】首先把‘ 2节寸1写成 泌',然后约去公因式(a+1),再与后一项式子进行通分化简,最后代值计算. 【解答】解: oa +2N +1 aa 2-l 蔦孑= ___ a_=a+l _ n二-I--I【点评】本题主要考查二次根式的化简求值的知识点, 解答本题的关键是分式的18. (2015?闵行区二模)计算:V2-1卜二(二-二)+ 匚.19. (2015?湖北模拟)当x 二匸「时,求代数式X 2+5X -6的值.【分析】可直接代入求值. 【解答】解:当x 二匸〕时,2x +5x - 6=(L - ) 2+5 (也■■)- 6 =6 - 2 "+5 - - 5- 6 =2%「! ■.【点评】主要考查二次根式的混合运算,要掌握好运算顺序及各运算律.【分析】本题需先对要求的式子和已知条件进行化简,再把所得的结果代入即可 求出答案. :(a+b) (d~b)3(a+b)-+1; b= \「,./-b '=(血+1?_(竝_¥=2人卜 ::知条件进行化简是本题的关键.21 . ( 2016春?日照期中)已知a ,b ,c 在数轴上如图所示,化简: --I - - -: :,-.a b0 ciiIi =20. (2016春?潮南区期中)化简求值:2 k 2 求-的值.【解答】解:【点评】本题主要考查了二次根式的化简求值, 在解题时要能对要求的式子和已3a+3b【分析】根据数轴abc的位置推出a+bv 0,c- a>0,b+cv 0,根据二次根式的性质和绝对值进行化简得出-a+a+b+c- a- b- c,再合并即可.【解答】解:•••从数轴可知:a v b v O v c,••• a+b v0, c- a>0, b+c v0,••• r—|a+b|+ +| b+c|=-a+a+b+c - a - b - c =-a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出-a+a+b+c-a- b - c.22. (2014春?汉阳区期末)计算(1) 3 . :■: - 9.丄+3 . .:■:(2)(三+不)+ (九上一7)【分析】(1)首先对每一项二次根式进行化简,然后合并同类二次根式即可,(2)首先对每一项二次根式进行化简,然后去掉括号,进行合并同类二次根式即可.【解答】解:(1)原式=12二-3二+6二=15 「;,(2)原式=4 二+2 二+2 二--=6 '+V.:;.【点评】本题主要考查二次根式的化简,合并同类二次根式,关键在于正确的化简二次根式,正确的去括号,认真的进行计算.23. (2014春?兴业县期末)计算:(1)匚+ (-2013) 0-( 1 ) -1+| - 3|(2).丘十二-.1 x y I .•:+. =.【分析】(1)根据零指数幕和负整数指数幕的意义得到原式=3+1 - 2+3,然后进行加减运算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=3+1 - 2+3=5;(2)原式=…: 1:; -'一.•. i _+2訂」=4 —.卜+2”;.扌叭 =4+ *(i .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指 数幕.24. (2016?仙游县校级模拟)先化简,再求值:(二+)- 一,其中旷1 a -2a+la_1a= T +1.【分析】利用通分、平方差公式等将原式化简为厶,代入a 的值即可得出结论. 【解答】解:原式=(止+ 「 )^■,丹(a -l ) 2 ^-1=6+1)(旷1)+1 ? aT: ?,_ a=..当a=二+1时,原式=丄=二!a-l 3【点评】本题考查了分式的化简求值,解题的关键是将原式化简成-.本题属a -l于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据 求值是关键.(1)化简这四个数;(2)把这四个数,通过适当运算后使得结果为 2.请列式并写出运算过程.25. (2015?杭州模拟)已知a=()c= (2014— n) 0, d=| 1 — "I ,【分析】(1)根据零指数幕和负整数指数幕和分母有理化求解;(2)可列式子为a+b-3c-d,然后把a b、c、d的值代入计算.【解答】解:(1)a=d)-1=3, b= - =匚+1, c=(2014-n °=1, d=| 1 —匚| =匚3 V2-1-1,(2) a+b - 3c- d=3+ 匚+1 - 3X 1 -匚+1=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指数幕.26. (2014?焦作一模)先化简:(2x+1) 2+ (x+2) (x-2)- 4x (x+1),再求值, 其中* -.2【分析】根据整式的运算法则将式子进行化简,再代值计算.【解答】解:原式=4X+4x+1+x2- 4 - 4x2- 4x=«- 3,当厂时,【点评】本题不是很难,但是在合并同类项时要仔细.27. (2010?莱芜)先化简,再求值:二;:',其中弓.孟* u 矗T £【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x-2看作一个整体.【解答】解:原式=三',:,一—…x+2 x+2=X2-16X X+2.■ - '■ ■:=::■: - ■ ■:-=■ ■:=-(x+4),当时,原式= 一■■=_■ = :■:.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解; 第15页(共24页)除法要统一为乘法运算.28. (2016春?澄城县期末)若a、b为实数,且b二-二+4,求a+b的值.【分析】根据二次根式有意义的条件列出方程,分别求出a、b的值,计算即可. 【解答】解:由题意得,a2- 1 >0, 1-a2>0, 解得,a=± 1,则b=4,••• a+b=3或5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.29. (2016春?闵行区期末)计算:(「- -)2-(「+ _)2.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3 - 2 7+2 - 3 -2「- 2=-4 '■.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.30. (2016春?定州市期中)计算:(1) 4 ~+ . ■-口- +4 ■:(2)(- 2 .h) J (于+3」-7)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算. 【解答】解:(1)原式=4 ~+3 :-2 ~+4 -=7 +2 :;(2)原式=4X 12-(5 二+ 二-4 二)第仃页(共24页)=48宁(2 二)=8【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.31. (2015春?黔南州期末)计算:(“ ":•…ii - 〔 •丄:(2) 「汁「「T 一 〕 「一— 【分析】(1)先化简,再进一步去掉括号计算即可;(2)利用二次根式的性质化简,平方差公式计算,再进一步合并即可.【解答】解:(1)原式=2「+• - + 7 2 4=3 一-二 4(2)原式=3 - 1 - 3 - 1+ 二+1=':-1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.【解答】解::::- ::=1 - 3 二 + 匚-1 +=-3 ■+ ■:+ ■— ■:,=-2 =、.【点评】此题主要考查了二次根式的混合运算以及绝对值的性质, 在进行此类运 32. (2011?上海)计算: (-3) 0- =+| 1 -匚|+ 1V3+\/2【分析】观察,可以首先去绝对值以及二次根式化简,再合并同类二次根式即可.算时一般先把二次根式化为最简二次根式的形式后再运算.其中 x= , y=27. 2【分析】首先对二次根式进行化简,然后去括号、合并二次根式即可化简,然后 把x , y 的值代入求解.【解答】解:原式=(6.「+3 7T ) ;+6.「)=9 二—6 二当 x= , y=27 时, 2=---【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【分析】本题需先对a 的值和要求的式子进行化简,然后把a 的值代入化简以后 的式子即可求出结果.a v 1,33. (2015春?封开县期中)先化简,再求值 丁34. (2003?济南)已知:)-第仃页(共24页)=—2 —:.【点评】本题主要考查了二次根式的化简求值,在解题时要能灵活应用二次根式化简的方法是本题的关键.35. (2015秋?哈尔滨校级月考)计算】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.【解答】解:原式=二壯 b=2a.【点评】本题考查了二次根式的性质,二次根式的乘除的应用,主要考查学生的 计算和化简能力.36. (2012?深圳模拟)计算与化简(1) 乙〉].厂:(2) -「儿【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再合并同类二次根式即可.=「 2::;2 一岳•(2) 原式=2a 2 =+3a?5a 二x 3a 二 2 -3 一、 【解答】解:(1)原式=((2)根据二次根式的被开方数是非负数,列出关于x的不等式组,然后解得x值,从而求得y值;最后将它们代入所求的代数式求值即可.【解答】解:(1)设该正数为x.则由题可知2a- 3+5 - a=0,解得a二—2,所以2a- 3=- 7,所以x=49,即所求的正数是49;(2)根据题意,得x_3^0解得x=3,••• y=4;.•. y x=43=64,即y x=64.【点评】此题主要考查了平方根的性质,注意如果一个数的平方等于A,那么这个数就叫做A的平方根,也叫做A的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.38. 若x, y, a, b满足关系式心T+ 一-巳—m x "-:,试求x, y的值.【分析】由a+b- 2014》0, 2014-( a+b)>0,所以a+b=2014.再利用两个根式的和等于0,即每一个被开方数等于0.【解答】解:依题意,得a+b- 2014》0, 2014-( a+b)》0,解得a+b=2014.所以二一■:+、.U =0,3x- 6=0, 2y- 7=0,x=2, y=.【点评】考查了二次根式的意义和性质.概念:式子-(a》0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.39. (2014春?黄梅县校级期中)已知a, b为等腰三角形的两条边长,且a, b 第20页(共24页)满足b= - 1+ :一+4,求此二角形的周长.【分析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.【解答】解:•••.—,、.:有意义,--a=3,b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考查了二次根式有意义的条件,属于基础题,注意掌握二次根式有意义:被开方数为非负数.40. (2013秋?川汇区校级月考)已知a, b,c ABC的三边长,且(:+幕+ 一)2=3 (V込初二辰),试说明这个三角形是什么三角形.【分析】先利用完全平方公式展开后合并得到a+b+c-.亍-丁- =o,再利用配方法得到(1-”;.北)2+ (”;.北-)2+ (-I - )2=0,然后根据非负数的性质得到灵-血=0,血-讥=0,灵-叭=0,所以a=b=c.【解答】解:•(空和+心+ )2=3 (叮'),a+b+c+2、匕:+2 了:+2 丨—3 .-1- 3 : - 3 :'L ;=0,a+b+c- 1’- 心:- 门:=0,2a+2b+2c- 2 -1 ■ - 2 -■ —2门:=0,••( 1-“:「.;)2+ (',-吋二)2+ (1-悩二)2=0,•••灵-麻=0,亦-讥=0,讥-讥=0,• a=b=c,•这个三角形为等边三角形.【点评】本题考查了二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.41. (2016?德州校级自主招生)计算- "-''::.=4—遽 ci +2' -,y 1;'.=4+*(匚. 【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各 二次根式化为最简二次根式,然后进行二次根式的加减运算.42. (2014?张家界)计算:(山—1) (*二+1)-(-二)2+| 1-灯:—( n — 2) 30+ ".【分析】根据零指数幕、负整数指数幕和平方差公式得到原式 =5 — 1 — 9+匚—1 —1+2匚,然后合并即可.【解答】解:原式=5- 1 — 9+ ~— 1 — 1+2 -=—7+3 _.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整 数指数幕. 43. (2014?荆门)(1)计算: 丁X 〒-4X X ( 1—二)°;2.2 k 2 ________________________________________(2)先化简,再求值:(”+「)- ,其中a ,b 满足 +|b a -2ab+b 2 "a a -ab—二 | =0. 【分析】(1)根据二次根式的乘法法则和零指数幕的意义得到原式X - X 仁2匚-.,然后合并即可; 4(2)先把分子和分母因式分解和除法运算化为乘法运算, 再计算括号内的运算,【分析】先根据二次根式的乘除法法则得到原式 :+2 ,然后利 用二次根式的性质化简后合并即可.然后约分得到原式=「,再根据非负数的性质得到a+仁0, b—二=0,解得a=—1,b b=二,然后把a和b的值代入计算即可.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、非负 数的性质和分式的化简求值.44. (2016?安徽三模)先化简,再求值:-亠‘亠-:,其中a=「+1.a 2-l H2 2 【分析】首先把自+严+1写成 £辛) 然后约去公因式(a+1),再与后一 项式子进行通分化简,最后代值计算.2【解答】解:亠_'一 _ ,32-1 旷 1= ____ a:.I ; U.:...=曰+1 a=2匚-匚-4X - 4(2)原式=[:"''- (a-b)=(丁一: — ')?a-b a-b=\- ?oA-_i-b-」L : ? I.:a ] ?3(自-b)a-b b 2 =- 一,T .丨 +| b - ;|=0,••• a+1=0, b - =0,解得 a= - 1, b= ■:,当 a=- 1,【解答】解:(1)原式= b=「时,【点评】本题主要考查二次根式的化简求值的知识点,解答本题的关键是分式的 通分和约分,本题难度不大. 45. (2015?闵行区二模)计算: 一二(二-7) + 匚. V2-1 【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3-3匚+匚 =4 -':. 【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则. Y5 2 V4 Y5 【分析】先二次根式化为最简二次根和根据二次根式的乘除法得到原式 =:+ :- 丨+3灯.宀"=2 - - 1+3,然后合并即可.=2 _- 1+3=2 _+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后进行二次根式的加减运算.,31且【点评】本题考查了二次根式的混合运算,二次根式的化简是解此题的关键.37. (2009春?岳阳校级期末)(1) 一个正数的平方根是2a - 3与5 - a ,求这个 正数. (2)已知x 、y 都是实数,且 八门,求y "的值.【分析】(1)因为一个正数x 的平方根有两个,且互为相反数,由此即可得到关 于a 方程,解方程即可得a 的值,然后代入求x ;46. (2015春?石林县期末)计算: V4 5【解答】/。
初一数学二次根式试题1. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根2.下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3B.4C.5D.6【答案】A.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.无理数有:,,共有3个.故选A.【考点】无理数.3.如果一个数的平方根为5a-1和a+7,那么这个数是_________________。
【答案】36.【解析】根据一个正数的平方根互为相反数,可得2a-3和a-9的关系,可得a的值,根据平方,可得答案.∵一个正数的两个平方根分别是5a-1和a+7,∴(5a-1)+(a+7)=0,解得:a=-1.所以这个数为:(5a-1)2=(-5-1)2=36.【考点】平方根.4.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.A.1B.2C.3D.4【答案】C【解析】负数有立方根,(1)错误;1的立方根是1,平方根是,(2)错误;的平方根是,(3)正确;,(4)错误.故错误的有3个.5.已知a2=1,|a|=﹣a,求的值.【答案】2【解析】根据已知求出a的值,代入求出即可.解:∵a2=1,∴a=±1,∵|a|=﹣a,∴a=﹣1,∴===2.点评:本题考查了算术平方根和二次根式的化简求值的应用,主要考查学生的计算能力.6.已知一个长8m,宽5m,高4m的长方体容器的容积是一个正方体容积的2倍,求这个正方体容器的棱长(结果可保留根号)【答案】2 cm【解析】设这个正方体容器的棱长为xm,由题意得出方程2x3=8×5×4,求出即可.解:设这个正方体容器的棱长为xm,由题意得:2x3=8×5×4,x3=80,x=2答:这个正方体容器的棱长为2 cm.点评:本题考查了立方根的应用,关键是能根据题意得出方程.7.下列实数中:,0,,0.1010010001…(每两个1之间多一个0),,,-3.14,无理数有个.【答案】3【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.解:∵∴无理数有0.1010010001…(每两个1之间多一个0),,共3个.【考点】无理数点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.8. 4的算术平方根是A.2B.-2C.2D.16【答案】A【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫做它的算术平方根. 解:4的算术平方根是2,故选A.【考点】算术平方根点评:本题属于基础应用题,只需学生熟练掌握算术平方根的定义,即可完成.9.下列实数中,属于无理数的是()A.B.3.14159C.D.【答案】D【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.解:A、,B、3.14159,C、,均为有理数,故错误;D、符合无理数的定义,本选项正确.【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.10.在,-π,0,3.14,,0.3,,中,是无理数的有。
专项训练:二次根式一、耐心填一填,一锤定音!1.写出和为8的两个无理数 .22,那么a = .3.下列实数:12,π3-,|1|-0.1010010001,0中,有m 个有理数,n 个无理数,5位有效数字).4、若a 、b 都是无理数,且a +b =2,则a 、b 的值可以是 (填上一个满足条件的值即可).5、实数a 在数轴上的位置如图1所示,则|1|a -= .6.(2-3)2007(2-3)2008= .7、若一个正数的平方根是2a-1和-a+2,则a= ,这个正数是 .8、观察下列各式:311+=231,412+=341,513+=451,……,请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是 .二、精心选一选,慧眼识金!9.如果一个有理数的平方根和立方根相同,那么这个数是( )10.已知0<x <1,那么在x ,x 1,x ,x 2中最大的是( )11= )12、在Rt △ABC 中,∠C =90°,c 为斜边,a 、b 为两条直角边,则化简2||c a b --的结果为( )13、设4a ,小整数部分为b ,则1a b-的值为( ) 三、用心想一想,马到成功!14、化简并求值:221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭,其中33a b =-=. 15、已知:x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.16、如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出1352===AD AC AB 、、这样的线段.17、观察下列各式及验证过程: 式①:322322+=⨯ 验证:()()322122122122223232222233+=-+-=-+-==⨯ 式②:833833+=⨯ 验证:()()833133133133338383322233+=-+-=-+-==⨯ ⑴ 针对上述式①、式②的规律,请再写出一条按以上规律变化的式子;⑵ 请写出满足上述规律的用n (n 为任意自然数,且n ≥2)表示的等式,并加以验证18、阅读题 先阅读理解,再回答下列问题: 因为2112=+,且221<<,所以112+的整数部分为1; 因为6222=+,且362<<,所以222+的整数部分为2; 因为12332=+,且4123<<,所以332+的整数部分为3;以此类推,我们会发现n n n (2+为正整数)的整数部分为______,请说明理由。
一、选择题1.下列说法:①带根号的数是无理数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a=2b=2a、b是互为倒数.其中错误的个数有()A.1个B.2个C.3个D.4个B解析:B【分析】对五个命题进行判断,即可求解.【详解】解:①带根号的数是无理数,判断错误;③实数与数轴上的点是一一对应的关系,判断正确;④两个无理数的和一定是无理数,判断错误;⑤已知a=2b=2a、b是互为倒数,判断正确.所以错误的有两个命题.故选:B【点睛】本题考查了无理数的定义,算术平方根、立方根的定义,实数与数轴的关系,实数的运算,二次根式的乘法,熟知相关知识点是解题关键.2.下列式子中正确的是()=-A=B.a b=-C.(a bD2== C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A、不是同类二次根式,不能合并,故错误,不符合题意;B、计算错误,不符合题意;C、符合合并同类二次根式的法则,正确,符合题意.D、计算错误,不符合题意;故选:C.【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.3.是同类二次根式的是()A B C D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A不符合题意;B不符合题意;,因此选项C不符合题意;是同类二次根式,因此选项D符合题意;故选:D.【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.4.下列计算正确的是()A=±B.=C=D2= B解析:B【分析】根据二次根式的性质进行化简和计算,然后进行判断即可.【详解】解:A=,所以此选项错误;===B,3C-D,故选:B.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.5.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A 1B 1C .D .1-解析:C【分析】 根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.6.2a =-,那么下列叙述正确的是( )A .2aB .2a <C .2a >D .2a A 解析:A【分析】根据二次根式的性质可得a-2≤0,求出a 的取值范围,即可得出答案.【详解】解:|2|2=-=-a a ,20a ∴-,2a ∴,故选:A .【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.7.下列运算正确的有( )个.①6-==7==2=④=⑤=5==A.1 B.2 C.3 D.4A 解析:A【分析】根据二次根式的运算法则分别进行计算,计算出正确结果即可作出判断.【详解】①-===①错误.②21122===②错误.=22=-2=,故③错误.④==④错误.⑤12=⨯122=⨯24=,故⑤错误.==5=,故⑥正确.∴①②③④⑤⑥中只有⑥1个正确.故选A..【点睛】本题主要考查二次根式的运算,解题的关键是能熟练运用二次根式的性质和运算法则进行计算.8.下列计算正确的是()A7=±B7=-C112=D2= D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C==D==【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键. 9.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b C 解析:C【分析】由数轴可得a 、b 和a-b 的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a 、b 在数轴上的位置得知:-1<a <0<b <1,∴a-b <0,则原式=b-a-(b-a )=b-a-b+a=0.故选:C .【点睛】 考查了数轴及二次根式的化简,解题关键是由数轴得出a 、b 和a-b 的正负情况. 10.已知,22a a 那么a 应满足什么条件 ( ) A .a >0B .a≥0C .a =0D .a 任何实数B 解析:B【分析】 a 与2a a 的取值范围即可得到答案.【详解】∵a a 的取值范围是0a ≥2a a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件.二、填空题11.计算((2323⨯+的结果是_____.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.12.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2-※=2=2-=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.13.已知最简根式a =________,b =________.【分析】根据同类二次根式的定义得到解方程组即可【详解】由题得:解得:故答案为:1【点睛】此题考查最简二次根式同类二次根式的定义解二元一次方程组正确理解最简二次根式同类二次根式的定义列出方程组是解题的 解析:72根据同类二次根式的定义得到122531ba b+=⎧⎨-=-⎩,解方程组即可.【详解】由题得:122531ba b+=⎧⎨-=-⎩,解得:721ab⎧=⎪⎨⎪=⎩.故答案为:72,1.【点睛】此题考查最简二次根式、同类二次根式的定义,解二元一次方程组,正确理解最简二次根式、同类二次根式的定义列出方程组是解题的关键.14.计算:=_________.【分析】根据二次根式的除法法则运算即可【详解】解:解法一===-4解法二==-4故答案为:-4【点睛】本题考查了二次根式的除法可以直接被开方数相除也可以先化简两个二次根式再相除解析:4-【分析】根据二次根式的除法法则运算即可.【详解】解:解法一,===-4.解法二,=2-,=-4.故答案为:-4.【点睛】本题考查了二次根式的除法,可以直接被开方数相除,也可以先化简两个二次根式再相除.15.若3,m,5________.【分析】先根据三角形三边的关系判断2-m和m-8的正负然后根据二次根式的性质化简即可【详解】解:∵3m5为三角形的三边长∴5-3<m<5+3∴2<m<8∴2-m<0m-8<0∴=-(2-m)+(m-m-解析:210【分析】先根据三角形三边的关系判断2-m和m-8的正负,然后根据二次根式的性质化简即可.【详解】解:∵3,m,5为三角形的三边长,∴5-3<m<5+3,∴2<m<8,∴2-m<0,m-8<0,∴=-(2-m)+(m-8)=-2+m+m-8=2m-10.故答案为:2m-10.【点睛】本题考查了三角形三条边的关系,以及二次根式的性质,熟练掌握二次根式的性质是解答本题的关键.+的平方根为_________.±5【分析】先根据二16.已知17y=,则x y次根式有意义的条件求得x的值然后再求得y的值最后再求x+y的平方根即可解答【详解】解:∵x-8≥08-x≥0∴x=8∴∴x+y的平方根为故答案为±5【点睛】本题考查了二次根式的意解析:±5【分析】先根据二次根式有意义的条件求得x的值,然后再求得y的值,最后再求x+y的平方根即可解答.【详解】解:∵x-8≥0,8-x≥0∴x=8∴1717y===±.∴x+y的平方根为5故答案为±5.【点睛】本题考查了二次根式的意义和代数式求值,根据二次根式的意义求得x的值成为解答本题的关键.a>=______.-b【分析】先确定b的取值范围再利用二次根17.)0式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.18.已知2160x x-=,则x 的值为________.4或2【分析】先求出x 的取值范围然后分或求解即可;【详解】解:由题意得x≠0且x-2≥0∴x≥2且x≠0∵∴或当时则x2-16=0解得x=4或x=-4(舍去);当时则x-2=0解得x=2;∴x 的值是解析:4或2【分析】先求出x 的取值范围,然后分2160x x-=0=求解即可; 【详解】解:由题意得x≠0,且x-2≥0,∴x≥2,且x≠0,∵2160x x-=, ∴2160x x-=0=, 当2160x x-=时, 则x 2-16=0,解得x=4,或x=-4(舍去);0=时,则x-2=0,解得x=2;∴x 的值是4或2,故答案为:4或2.【点睛】本题考查了二次根式有意义的条件,分式的值为零的条件,以及分类讨论的数学思想,分类讨论是解答本题的关键.19.(1015293-⎛⎫-++= ⎪⎝⎭__________.5【分析】根据零指数幂负整指数幂绝对值二次根式化简的运算法则化简然后根据实数的运算法则计算即可【详解】==5答案为:5【点睛】本题考查实数的综合运算能力是各地中考题中常见的计算题型解决此类题目的关键解析:5【分析】根据零指数幂、负整指数幂、绝对值、二次根式化简的运算法则化简,然后根据实数的运算法则计算即可.【详解】(1015293-⎛⎫++ ⎪⎝⎭52314=-++-,=544--=5,答案为:5.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.20y =,则x y +=________.2【分析】先根据非负数的性质得出关于xy 的方程求出xy 的值代入x+y 进行计算即可【详解】解得故答案为:2【点睛】本题考查的是非负数的性质解题的关键是掌握非负数的性质即几个非负数的和为0时这几个非负数解析:2【分析】先根据非负数的性质得出关于x 、y 的方程,求出x 、y 的值,代入x+y 进行计算即可.【详解】220x y -+=,20x ∴-=,0y =,解得2x =,202x y +=+=.故答案为:2.【点睛】本题考查的是非负数的性质.解题的关键是掌握非负数的性质,即几个非负数的和为0时,这几个非负数都为0.三、解答题21.先化简再求值:2211,211a a a a a ----+-其中a = 解析:()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+- =1111a a --+ =()()(1)(1)11a a a a +---+=()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.|1.解析:1.【分析】 根据二次根式的性质、绝对值的性质、立方根的性质依次化简再计算加减法.【详解】解:原式12=+1=.【点睛】此题考查实数的混合运算,二次根式的加减运算,掌握二次根式的性质、绝对值的性质、立方根的性质是解题的关键.23.计算:(101122-⎛⎫- ⎪⎝⎭解析:3-【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.24.解答下列各题:(1)计算:2(1-. (2)解方程组:125x y x y +=⎧⎨-=⎩①②. (3)解不等式组331213(1)8x x x x -⎧+>+⎪⎨⎪---⎩①②,并把解集在数轴上表示出来.解析:(1)4;(2)21x y =⎧⎨=-⎩;(3)21x -<,画图见解析. 【分析】(1)先用完全平方公式运算括号里的,再进行根式乘法运算,最后计算加减; (2)运用加减消元法运算求解即可;(3)先分别计算两个不等式,画出数轴可判断出解集.【详解】(1)2(1+13=++4=+(2)125x y x y +=⎧⎨-=⎩①②, ①+②得36,2x x ==,把2x =代入①, 21,1y y +==-,∴方程组的解为21x y =⎧⎨=-⎩. (3)()33121318x x x x -⎧+>+⎪⎨⎪---⎩①②, 由①得6232x x +>+-2236x x ->+- 1x ->-1x <;由②得1338x x -+-1383x x +--24x -2x -,∴不等式组解集为21x -<,∴数轴表示如下:【点睛】本题考查实数的混合运算,二元一次方程组的求解,一元一次不等式组的求解,属于基础题,需要有一定的运算求解能力,熟练掌握运算法则是解决本题的关键.25.计算 (1)38232182)(325)(325)解析:(122)-17【分析】(1)先化简二次根式,再合并即可;(2)利用平方差计算即可.【详解】解:(1)3823218628232=(683)2=-+=(2)22=-320=-17=-【点睛】本题考查了二次根式的运算、平方差公式,准确掌握运算法则,合理利用公式是解题关键.26.已知1,1x y ==,求下列代数式的值:(1)22xy +; (2)y x x y+. 解析:(1)8;(2)4.【分析】(1)先计算出x y +和xy 的值,再利用完全平方公式求解即可;(2)通分后利用(1)的结论求解即可.【详解】(1)∵11x y ==,,∴1)2x y xy +===,∴22x y +2()2x y xy =+-222=-⨯124=-8=;(2)∵22118x y x y ==+=,,,2xy =, ∴y x x y+ 22x y xy+= 82= 4=.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.注意整体代入的方法的运用.27.计算:(1)(2)0|1(3)1)π+--.解析:(1)6-2)2-【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【详解】(1)原式33=⨯23=⨯-6=;(2)原式116(31)2=+-⨯--2=2=-.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,另外有理数的运算律在实数范围内仍然适用.28.先化简,再求值:21()111x x x x -÷---,其中x +1.解析:2x +.【分析】先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可.【详解】 解:原式=2(1)11x x x x ⎛⎫+⨯- ⎪--⎝⎭=2(1)1x x x +⨯-- =x +2.把x .【点睛】本题主要考查分式的混合运算,二次根式的加法,掌握分式的混合运算顺序和运算法则是解答本题的关键.。
平方根(二次根式的基础)专项训练试题平方根(二次根式的基础)专项训练试题2021年7月5日一、填空1.如果x的平方等于a,那么x就是a的,所以的a平方根是2.非负数a的平方根表示为3.因为没有一个数的平方会相等,负数没有平方根,所以平方的平方根必须是4.16或5.16。
非负数的平方根称为平方根6.9的算术平方根是()a.-3b.3c.±3d.817.以下计算是正确的:(a.4=±2B.(-9)2?81=9摄氏度。
?36? 6d。
?92?? 九8.下列说法中正确的是()a、 9的平方根是3B。
16的算术平方根为±2C,16的算术平方根为4D,16的平方根为±29.64,a的平方根为±8b。
±4C。
±2D。
±210.4,以及()a.4b倒数的算术平方根。
18C.-114d。
4.11.计算:(1)-9=(2)9=(3)116=(4)±0.25=12.求下列数字的平方根。
(1) 100; (2)0;(3)925;(4)1;(5)11549;(6)0.0913.1681的平方根是_______;9的平方根是_______.四、能力训练14.如果一个自然数的算术平方根是x,那么下列数字的算术平方根是()a.x+1b。
X2+1C。
X+1D。
X2?一15.若2m-4与3m-1是同一个数的平方根,则m的值是()a.-3b.1c.-3或1d.-116.已知X和y是实数,而3x?4+(Y-3)2=0,那么XY的值是()a.4b。
-4C94d.-9417.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0;(2)4(3x+1)2-1=01四、强化训练1、25的平方根是()a、5b、?5c、?5d、?52.36的平方根是()a、6b、?6c、3.当m?0时,m表示()a.m的平方根4.用数学式子表示“6d、?六b.一个有理数c.m的算术平方根d.一个正数93的平方根是多少?“应该是()16493a→b→c→d→一亿六千四百万元一亿六千四百万元一亿六万四千一百六十四元。
二次根式专项训练一、选择题1.1x =-,那么x 的取值范围是( )A .x≥1B .x>1C .x≤1D .x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x 的取值范围.2.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .4.已知n 135n 是整数,则n 的最小值是( ).A .3B .5C .15D .25 【答案】C【解析】【分析】【详解】 解:135315n n =135n 15n 也是整数,∴n 的最小正整数值是15,故选C .5.下列计算结果正确的是( )A ()23-3B 36±6C 325D .3+3=3【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式=|-3|=3,正确;B 、原式=6,错误;C 、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.6.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.7.有意义,则实数x的取值范围是()A.x≥1B.x≥2C.x>1 D.x>2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.【详解】由题意得200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.8.已知3y =,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由3y =,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .9.下列式子正确的是( )A 6=±B C 3=- D 5=- 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.a的取值范围是()A.a≥-1 B.a≤1且a≠-2 C.a≥1且a≠2D.a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】有意义,则1-a≥0且a+2≠0,式子a+2解得:a≤1且a≠-2.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.11.下列二次根式中是最简二次根式的是()DA B C【答案】B【解析】【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【详解】解:A,故本选项错误;BCD,故本选项错误.故选:B.【点睛】本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.12.下列各式中,是最简二次根式的是( )A B C D【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.14.下列计算错误的是( )A . BC D【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2222÷=; 选项C ,原式=236⨯=; 选项D ,原式=2222-=. 故选A.15.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .16.若二次根式1a -在实数范围内有意义,则a 的取值范围是( )A .a >1B .a ≥1C .a =1D .a ≤1 【答案】B【解析】【分析】根据二次根式有意义的条件可得a ﹣1≥0,再解不等式即可.【详解】由题意得:a ﹣1≥0,解得:a≥1,故选:B .【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.17.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】利用2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可. 【详解】 解:0,,a b a b <<> 0,a b ∴+<22||a a b b a a b b ∴+++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.18.下列各式中,属于同类二次根式的是( )A .xy 与2xy B . 2x 与2x C . 3a a 与1a D . a 与3a【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A 、xy 与2=xy y x 的被开方数不同,所以它们不是同类二次根式;故本选项错误;B 、2x 与2x 的被开方数不同,所以它们不是同类二次根式;故本选项错误;C 、3a a 与1=a a a 的被开方数相同,所以它们是同类二次根式;故本选项正确;D 、3a 是三次根式;故本选项错误.故选:C .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.19.下列运算正确的是( )A .B .C .(a ﹣3)2=a 2﹣9D .(﹣2a 2)3=﹣6a 6 【答案】B【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B、原式=,符合题意;C、原式=a2﹣6a+9,不符合题意;D、原式=﹣8a6,不符合题意,故选:B.【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.20.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】-55先化简原式得4545【详解】-原式=45<<3,由于25-<2.∴1<45故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。
数学专题 第六讲:二次根式【基础知识回顾】一、 二次根式式子a ( )叫做二次根式提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o ②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式 二、 二次根式的性质:①(a )2= (a ≥0)③= (a ≥0 ,b ≥0)④= (a ≥0, b ≥0)提醒:二次根式的性质注意其逆用:如比较23和可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化去这一方法进行:如:= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 重点考点例析考点一:二次根式有意义的条件A .x ≠3B .x <3 C .x >3 D .x ≥3(a ≥o )(a <o )思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练 1.使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12C .x≥0且x≠12 D .一切实数 解:由题意得:2x-1≠0,x≥0,解得:x≥0,且x≠12,故选:C .考点二:二次根式的性质例2 实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b .故选C .点评:二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练2.实数a ,b 在数轴上的位置如图所示,则2()a b a ++的化简结果为 .解:∵由数轴可知:b <0<a ,|b|>|a|, ∴2()a b a ++=|a+b|+a =-a-b+a=-b , 故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3.二次根式的混合运算以及负整数指数幂的性质,将各式进行化简是解题关键. 对应训练=4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0, 1+, (1)11)44x x x+=考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .80分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可. 解:2221146450-- =2(11464)(11464)50+-- =1785050⨯- =50(17850)⨯- =50128⨯=222582⨯⨯⨯=2×5×8,=80, 故选D .考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算 【聚焦中考】1.下列运算正确的是( )B .A 2(5)5-=- B .21()164--= C .x 6÷x 3=x 2 D .(x 3)2=x 52.计算:182= .0 3.计算:0(3)123-+⨯= .7【备考真题过关】 一、选择题1.要使式子2x -有意义,则x 的取值范围是( D )A .x >0B .x≥-2C .x≥2 D.x≤2 2.计算102÷=( A )A 5B .5C .52D .1023.计算:322-=( )4.已知3()(221)3m =-⨯-,则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-5 解:3()(221)3m =-⨯- 23213=⨯ 2373=⨯ 2728==,∵252836<<,∴5286<<,即5<m <6, 故选A .5.下列计算正确的是( D ) A .x 3+x 3=x 6B .m 2•m 3=m 6C .3223-=D .14772⨯=6.下列等式一定成立的是( B )A .945-=B .5315⨯=C .93=±D .2(9)9--=7.使式子有意义的x 的取值范围是( ) A . x≥﹣1 B . ﹣1≤x≤2C . x≤2D . ﹣1<x <2解:根据题意,得,解得,﹣1≤x≤2; 故选B .8.在下列各式中,二次根式的有理化因式是( )A .B .C .D .解:∵×=a ﹣b ,∴二次根式的有理化因式是:.故选:C .主要考查了二次根式的有理化因式的概念,熟练利用定义得出是解题关键. 9.下列计算错误的是( )A.B.C.D.分析:根据二次根式的乘法对A、B进行判断;根据二次根式的除法对C进行判断;根据二次根式的性质对D进行判断.解:A、=,所以A选项的计算正确;B、与不是同类二次根式,不能合并,所以B选项的计算错误;C、÷===2,所以C选项的计算正确;D、==×=2,所以D选项的计算正确.故选B.10.下列计算正确的是()A.B.C.D.分析:根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D 进行判断.解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.11.下列计算或化简正确的是()A.a2+a3=a5B.C.D.分析:A、根据合并同类项的法则计算;B、化简成最简二次根式即可;C、计算的是算术平方根,不是平方根;D、利用分式的性质计算.解:A、a2+a3=a2+a3,此选项错误;B、+3=+,此选项错误;C、=3,此选项错误;D、=,此选项正确.故选D.考查了合并同类项、二次根式的加减法、算术平方根、分式的性质,解题的关键是灵活掌握有关运算法则,并注意区分算术平方根、平方根.12.下列计算正确的是()A.B.C.D.分析:根据二次根式的乘除法则,及二次根式的化简结合选项即可得出答案.解:A、•=1,故本选项正确;B、﹣≠1,故本选项错误;C、=,故本选项错误;D、=2,故本选项错误;故选A.二、填空题解:∵20n=22×5n. ∴整数n 的最小值为5. 故答案是:5.∴222a <-<,即22b <<.故答案为:22b <<.1205的结果是22的结果是2)222+⨯⨯1。
一.解答题(共30小题)1.一个正数x的平方根是2a﹣3与5﹣a,则a是多少?2.已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.3.x2=49,求x.4.求下列各式中的x(1)x2=17;(2)x2﹣=0.5.若2m﹣4与3m﹣1是同一个数的两个平方根,求m 的值.6.求下列各式中的x的值:(1)25x2=36(2)(x+1)3=87.已知x2﹣169=0,求x.8.已知一个正数的两个平方根是m、n,且3m+2n=2,求这个数.9.已知的整数部分为a,b是25的平方根,求ab 的值.10.11.计算:12.计算:(1);(2)++4﹣(精确到0.01).13.(x﹣2)2=414.若一个正数的两个平方根分别为a+2与3a﹣1,试求出a的值.(提示:正数的两个平方根互为相反数)15.(1)X2﹣7=0(2)X3+27=0(3)(x﹣3)2=64 (4)(2x﹣1)3=﹣816.已知(a2+b2+1)2=4,求a2+b2的值.17.求下列各式的x.(1)4x2=64 (2)(x+1)2=81(3)(x+5)3=﹣216 (4)3(2x﹣3)3+81=0(5)4(2x﹣1)2﹣16=018.(1)若一个正数的平方根是2a﹣1和﹣a+2,求a的值.(2)已知a,b互为相反数,m,n互为倒数,x绝对值等于2,求﹣2mn+﹣x的值.19.若=0,求的平方根.20.求下列各式中的x:①(x+1)2+8=72;②3(2x﹣1)2﹣27=0.21.求x的值:2(x+1)2=9822..23.求下列各式中x的值.(1)4x2=9 (2)(x﹣1)2=25.24.已知a﹣1与5﹣2a是m的平方根,求a和m的值.25.求下列各式中的x(2)(x﹣2)3=3.26.求正数x的值:3(2x﹣1)2=27.27.已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.28.已知一个正数的平方根是a﹣3与2a﹣9,求这个正数的值.29.求下列各式中的实数x(1)(x﹣2)2=36 (2)(2x﹣1)3=﹣125.30.16x2﹣25=0.平方根运算专项测试题参考答案与试题解析一.解答题(共30小题)1.一个正数x的平方根是2a﹣3与5﹣a,则a是多少?考点:平方根。
二次根式基础测试题附答案解析一、选择题1.一次函数y mx n =-+结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.2.下列计算中,正确的是( )A .=B 1b =(a >0,b >0)C =D .=【答案】B【解析】 【分析】a≥0,b≥0a≥0,b >0)进行计算即可.A 、534=532,故原题计算错误;B 、a ab b ÷=1a b ab ⋅=1b (a >0,b >0),故原题计算正确; C 、559377⨯=368577⨯=6857,故原题计算错误; D 、()()22483248324832÷⨯+-=32×165=245,故原题计算错误; 故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.3.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .4.下列各式计算正确的是( )A .2+b =2bB 523=C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 52不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .5.已知n 45n n 的最小值是( )A .3B .5C .15D .45【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.6.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.7.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m = 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.8.+在实数范围内有意义的整数x 有( ) A .5个B .3个C .4个D .2个【答案】C【解析】∴30430x x +>⎧⎨-≥⎩ ,解得:433x -<≤, 又∵x 要取整数值,∴x 的值为:-2、-1、0、1.即符合条件的x 的值有4个.故选C.9.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,∴20072006a -=,∴a-2007=20062, ∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.10.5x +有意义,那么x 的取值范围是( )A .x≥5B .x>-5C .x≥-5D .x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】 Q 式子5x +有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.11.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .2 【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式12.2(1)1x x -=-,那么x 的取值范围是( )A .x≥1B .x>1C .x≤1D .x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x的取值范围.13.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;=是同类二次根式;B2C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.14.下列计算或化简正确的是()A.=BC3==-D3【答案】D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D.27327393÷=÷==,正确.故选D.15.若二次根式1a-在实数范围内有意义,则a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.下列根式中是最简二次根式的是()A.B.C.D.【答案】D【解析】【分析】A、B、C三项均可化简.【详解】解:,,,故A、B、C均不是最简二次根式,为最简二次根式,故选择D.【点睛】本题考查了最简二次根式的概念.17.下列二次根式中,属于最简二次根式的是()A 12B0.8C5D4【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】12B. 0.8,根号内含有小数,故不是最简二次根式;C. 5,是最简二次根式;D. 4=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.18.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2 B.6C.236223+--D.23225+-【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.19.下列二次根式是最简二次根式的是()A 57B12C 6.4D37【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数含开的尽的因数,故B不符合题意;C、被开方数是小数,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.20.有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。
二次根式 专项训练 对于二次根式a ,有两个“非负”:第一个是a ≥0,第二个是a ≥0,这两个“非负”在解二次根式的有关题目中经常用到.二次根式的被开方数和值均为非负数,是常见的隐含条件.一、利用被开方数a ≥0及二次根式的性质解决有关问题1.若式子x +1在实数范围内有意义,则x 的取值范围是________.2.若3x -4-4-3x =⎝⎛⎭⎪⎫x -13y 2,则3x -12y 的值为________. 3.实数a 在数轴上对应点的位置如图,化简(a -1)2+a =________.(第3题)4.若x 、y 为实数,且y>x -2+2-x +2,化简: 12-yy 2-4y +4+2x.5.已知x ,y 为实数,且x -5+5-x =(x +y)2,求x -y 的值.二、利用a ≥0求代数式的值或平方根6.若a +b +5+|2a -b +1|=0,则(b -a)2 015=( )A .-1B .1C .52 015D .-52 0157.若x -3与y +2互为相反数,求6x +y 的平方根.三、利用a ≥0求最值8.当x 取何值时,9x +1+3的值最小,最小值是多少?四、利用二次根式的非负性解决代数式化简求值问题9.设等式a (x -a )+a (y -a )=x -a -a -y =0成立,且x ,y ,a 互不相等,求3x 2+xy -y 2x 2-xy +y 2的值.五、利用被开方数的非负性解与三角形有关的问题10.已知实数x ,y ,a 满足:x +y -8+8-x -y =3x -y -a +x -2y +a +3,试问长度分别为x ,y ,a 的三条线段能否组成一个三角形?如果能,请求出该三角形的周长;如果不能,请说明理由.。
平方根(二次根式的基础)专项训练试题
平方根(二次根式的基础)专项训练试题2021年7月5日
一、填空题
1.如果x的平方等于a,那么x就是a的,所以的a平方根是
2.非负数a的平方根表示为
3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一
定是或者 4.16的平方根是 5.非负的平方根叫
平方根二、选择题
6. 9的算术平方根是() A.-3 B.3 C.±3 D.81
7.下列计算正确的是()A.4=±2 B.(?9)2?81=9 C.?36?6 D.?92??9
8.下列说法中正确的是()
A.9的平方根是3 B.16的算术平方根是±2 C. 16的算术平方根是4 D.
16的平方根是±2 9. 64的平方根是() A.±8 B.±4 C.±2 D.±2 10. 4的平方的倒数的算术平方根是() A.4 B.18 C.-114 D.4 三计算题
11.计算:(1)-9= (2)9= (3)116 = (4)±0.25=
12.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09
13.1681的平方根是_______;9的平方根是_______.四、能力训练
14.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()
A.x+1 B.x2+1 C.x+1 D.x2?1
15.若2m-4与3m-1是同一个数的平方根,则m的值是() A.-3
B.1 C.-3或1 D.-1
16.已知x,y是实数,且3x?4+(y-3)2=0,则xy的值是() A.4 B.-4 C.
94 D.-94 17.利用平方根、立方根来解下列方程.
(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;
1
四、强化练习
1、25的平方根是()A、5 B、?5 C、?5 D、?5 2.36
的平方根是()A、6 B、?6 C、 3.当m?0时,m表示()
A.m的平方根 4.用数学式子表示“
6 D、 ?6
B.一个有理数 C.m的算术平方根 D.一个正数
93的平方根是?”应是() 16493939393 A.?? B.??? C.?
D.???164164164164
5.算术平方根等于它本身的数是()A、 1和0 B、0 C、1 D、 ?1和0 6.0.0196的算术平方根是() A、0.14 B、0.014
C、?0.14
D、?0.014
7.(?6)2的平方根是()A、-6 B、36 C、±6 D、
±6 8. 若规定误差小于1, 那么60的估算值为() A. 3 B. 7 C. 8
D. 7或8
9.估算56的值应在()。
A7.0~7.5之间B6.5~7.0之间C7.5~8.0之间
D8.0~8.5之间 10、满足?3?x?5的整数x是()
A、?2,?1,0,1,2,3
B、?1,0,1,2,3
C、?2,?1,0,1,2,3
D、?1,0,1,2
11.下列各数有平方根的个数是()(1)5;(2)(-4);(3)-2;(4)
0;(5)-a;(6)π;(7)-a-1 A.3个 B.4个 C.5个 D.6个 12. 下列说法错
误的是()
A. 1的平方根是1
B. �C1的立方根是-1
C. 13.下列命题正确的是()A.0.49的平方根是0.7
B.0.7是0.49的平方根
C.0.7是0.49的算术平方根 D.0.7是0.49的运算结果 14. 以下语句及写成式子
正确的是()
2A7是49的算术平方根,即49??7 B7是(?7)2的平方根,即(?7)?7
2
2
2
2
2是2的平方根 D. �C3是(?3)2的平方根
C.?7是49的平方根,即?49?7
D.?7是49的平方根,即49??7
15.下列语句中正确的是()
A、?9的平方根是?3
B、9的平方根是3
C、 9的算术平方根是?3
D、9的算术平方根是3
16.下列说法:(1)?3是9的平方根;(2)9的平方根是?3;(3)3是9的平方根;(4)9的平方根是3,其中正确的有() A.3个 B.2个 C.1个 D.4个 17.下列语句中正确的是()
A、任意算术平方根是正数
B、只有正数才有算术平方根
C、∵3的平方是9,∴9的平方根是3
D、?1是1的平方根 18.下列说法正确的是() A.任何数的平方根都有两个 B.只有正数才有平方根 C.一个正数的平方根的平方仍是这个数 D.a的平方根是?a 19.下列叙述中正确的是()
2
A.(-11)的算术平方根是±11 B.大于零而小于1的数的算术平方根比原数大C.大于零而小于1的数的平方根比原数大 D.任何一个非负数的平方根都是非负数
2
2
20.(?5)2的平方根是()A、 ?5 B、 5 C、?5 D、?5
21.下列各式中,正确的是()A. (?2)2??2 B. (?3)2?9 C. ?9??3 D.
3?9??3
22.下列各式中正确的是()
A.(?12)2??122
B.18?2?6 C.(?12)??12
D.?(?12)2?12
23、下列各组数中互为相反数的是()
A、?2与(?2)2
B、?2与3?8
C、2与(?2)2
D、?2与2
24.已知一个正方形的边长为a,面积为S,则() A.S?a B.S的平方根是a C.a是S的算术平方根 D.a??S
25. 若a和?a都有意义,则a的值是()A.a?0 B.a?0 C.a?0 D.a?0 26.若数a在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是()
A.a
B.?a
C.?a2
D.a3
27.(x2?4)2的算术平方根是()
A、 (x2?4)4
B、(x2?4)2
C、x2?4
D、x2?4 28.一个自然数的算
术平方根是a,则下一个自然数的算术平方根是() A.?a?1? B.??a?1? C.a2?1 D.?a2?1
29.x2?289361,那么x的值为() A.x??1719B.x?171717
19C.x?D.x?? 18 18 30.(?8)2= ,
(8)2= 。
31.9的算术平方根是,16的算术平方根是;
32.10?2的算术平方根是,(?5)0的平方根是; 33.一个
正数有个平方根,0有个平方根,负数平方根. 34.一个数的平方等于49,则这个数是 35.16的算术平方根是,平方根是 36.一个负数的平方
等于81,则这个负数是
37.如果一个数的算术平方根是5,则这个数是,它的平方根是
38.25的平方根是;(-4)2
的平方根是。
39.9的算术平方根是;3-2
的算术平方根是。
40.若a的平方根是±5,则a= 。
41.如果a的平方根等于?2,那么a?_____;42.当x_______时,x?3有意义;
43.当x_______时,2x?3有意义;44.当x_______时,
11?x有意义;
3
45.当x________时,式子
x?1有意义;46. 若4a?1有意义,则a能取的最小整数为 x?2247.若(a?2)?2?a,则a的取值范围是;48.若一正数的平方根是2a-1与-a+2,则a=
249、化简:(3??)? 。
*50.若7.16?2.676,则a的值等
于。
a?26.76,
51. 下列结论正确的是()
2A?(?6)2??6 B(?3)2?9 C(?16)2??16 D???16?????16 ?25??2552.下列运算中,错误
的是()①125144?1512,②(?4)2??4,③?22??22??2,
④116?125?1194?5?20 (A) 1个 ( B) 2个 (C) 3个 (D) 4个 53.若
m?1m?5,则m?1m的平方根是()(A) ?2 (B) ?1 (C) 1 (D) 2 54.若a、b为实数,且b?a2?1?1?a2a?7?4,则a?b的值为()
(A) ?1 (B) 4 (C) 3或5 (D) 5
55、若a2?4,b2?9,且ab?0,则a?b的值为()
(A) ?2 (B) ?5 (C) 5 (D) ?5
感谢您的阅读,祝您生活愉快。