绿色植被的光谱反射特征
- 格式:doc
- 大小:11.50 KB
- 文档页数:1
一、单选题【本题型共20道题】1.解析空中三角测量的三种方法中,误差方程直接对原始观测值列出,严密,但计算量大。
同时因为非常方便引入非摄影测量附加观测值,如POS数据,从而成为目前主流的空三算法是()。
A.航带法B.独立模型法C.光束法D.区域网法用户答案:[B] 得分:0.002.航测法成图的外业主要工作是()和像片测绘。
A.地形测量B.像片坐标测量C.地物高度测量D.地面控制点测量用户答案:[B] 得分:0.003.解析空中三角测量的三种方法中,所求未知数非真正的原始观测值,故彼此不独立,模型最不严密的方法是: ()A.航带法B.独立模型法C.光束法D.区域网法用户答案:[A] 得分:2.004.摄影测量共线方程是按照摄影中心、地面点和对应的()三点位于一条直线上的几何条件构建的。
A.像点B.模型点C.地面点D.定向点用户答案:[A] 得分:2.005.以一张像片组成的一束光线作为一个平差单元,以中心投影的共线方程作为平差的基础方程,通过各光线束在空间的旋转和平移,使模型之间的公共光线实现最佳交会,将整体区域最佳地纳入到控制点坐标系中,从而确定加密点的地面坐标及像片的外方位元素的空中三角测量方法称为:()A.航带法空中三角测量B.独立模型法区域网空中三角测量C.光束法区域网空中三角测量用户答案:[C] 得分:2.006.解析空中三角测量是航空摄影测量的核心步骤,其输入条件通常不包括如下哪项内容:()A.航摄影像B.相机参数C.外业像控成果D.外业调绘成果用户答案:[A] 得分:0.007.以下哪个参数不属于影像的内方位元素:()A.像主点相对于影像中心位置的分量x0B.像主点相对于影像中心位置的分量y0C.镜头中心到影像面的垂距(主距)D.焦距用户答案:[D] 得分:2.008.应根据成图比例尺选择合适的地面分辨率,1:1000成图应用时,影像的地面分辨率不低于:(B)A.5cmB.10cmC.15cmD.20cm用户答案:[B] 得分:2.009.下列哪项不属于绿色植物的光谱反射特征:()A.叶绿素吸收(0.4-0.76mm),有一个小的反射峰,位于绿色波段(0.55 mm ),两边(蓝、红)为吸收带(凹谷)B.植被叶细胞结构产生的植被特有的强反射特征(0.76-1.3 mm),高反射,在0.7 mm处反射率迅速增大,至1.1处有峰值C.水分吸收(1.3-2.5 mm),受植物含水量影响,吸收率增加,反射率下降,形成几个低谷D.在蓝绿光波段有较强的反射,在其他波段都有较强吸收,尤其是近红外波段,几乎被全部吸收用户答案:[C] 得分:0.0010.不论采用航带法、独立模型法,还是光束法平差,区域网空中三角测量的精度最弱点位于区域的:()A.区域的四周B.区域的中央C.平均分布D.与位置无关用户答案:[B] 得分:0.0011.以下常用遥感传感器中不成像的传感器是:()A.摄影机B.照相机C.多波段扫描仪D.红外辐射计用户答案:[D] 得分:2.0012.高清卫星影像可以应用于测绘领域,其中0.50米分辨率的WorldView-2影像最高可应用于:()比例尺地形图的成图。
云南大学东陆园植被景观的光谱特征曹帅强;李阳阳;张军【摘要】植被景观是我国校园生态环境建设与文化认知的重要组成部分,非成像地物光谱仪得到的植被光谱特征是植被景观分类的重要依据.以云南大学东陆园为例,采用野外光谱仪对针、阔、草三种典型绿色植被和不同颜色植被的反射光谱进行采集和处理,得到六种植被的反射光谱.通过分析三种绿色植被的反射光谱特征、一阶导数光谱和二阶导数光谱,建立了校园植被景观中针、阔、草的区分特征规律.研究结果表明:(1)特征值分别位于反射光谱的红光区(反射率从高到低依次为:草地、阔叶林、针叶林)、一阶导数光谱红边峰值(峰值从高到低次序与反射率相同)和二阶导数的四个特征波段(683 nm—703 nm(二阶导数>0)、724 nm—755 nm(二阶导数<0)、756 nm—760 nm(二阶导数>0)和760 nm—765 nm(二阶导数<0)),峰值从高到低分别对应草地、阔叶林、针叶林,且二阶导数区分性最好;(2)彩色植被由于花青素差异,红、黄、蓝青三种花在可见光波段对应颜色区域呈现较高的反射率,因此可见光区的反射特征可以用来区分不同色系的彩色植被.【期刊名称】《衡阳师范学院学报》【年(卷),期】2018(039)003【总页数】7页(P116-122)【关键词】校园植被景观;反射光谱;导数光谱;云南大学【作者】曹帅强;李阳阳;张军【作者单位】湖南省古村古镇文化遗产数字化传承协同创新中心,湖南衡阳421002;云南大学资源环境与地球科学学院,云南昆明 650000;湖南省古村古镇文化遗产数字化传承协同创新中心,湖南衡阳 421002;湖南省古村古镇文化遗产数字化传承协同创新中心,湖南衡阳 421002【正文语种】中文【中图分类】Q436校园植被景观是我国重要“科—学—游”一体化为集合的文化功能、空间构景和地域特色等的总和,具有一定的地方意义。
学术界主要从校园植物景观的群落结构特征[1]、文化内涵[2]、规划设计[3]与配置[4]、质量提升改造[5]等方面做了大量研究工作,但对于充分识别校园植被景观特征仍需要深入探讨。
绿色植物反射光谱的特征及其在监测农作物生长中的应用1研究内容1.1田间尺度长势指标与遥感参数的定量关系目前大尺度的作物长势遥感技术监测中,主要使用单一的植被指数比较法;使用差值模型或等级模型,该评估模型较为单一,没根据相同空间区域、相同作物及相同生育期展开相同的等级分割。
通过对黑龙江垦区的水稻、玉米和大豆相同生育期地面量测农学数据与遥感技术反演的ndvi、evi、lai等参数的比对与分析,研究分后作物生育期的田间尺度长势指标与遥感技术参数的定量关系,特别就是对作物遭遇旱情、病害及低温雨涝等自然灾害后长势状况展开实时监测与评价,创建分后生育期的作物田间长势指标与遥感技术参数的`定量关系模型。
1.2长势综合评价指标体系目前农作物的遥感技术长势监测中长势综合评价标准分成不好、较好、正常、极差和差5个等级,其主要就是根据等序列展开分割或根据长势监测中不及常年、与常年持平及优于常年的比例赢得的一个定性评价。
这个评价指标缺少科学的统计学依据,而且评价结果无法轻易和产量预测挂勾。
利用多因子统计法和权重分析法等,创建长势综合评价指标体系,对作物遭遇旱情、病害及低温冻害等自然灾害后的作物长势状况展开综合评价。
2技术路线2.1挑选地面监测样区在黑龙江垦区某农场选择10~20个样点,对典型样点的水稻、玉米不同生育期(苗期、孕穗期、开花期、乳熟期等)地面实测农学数据进行整理、统计、分析。
2.2创建模型处理研究区遥感数据,反演遥感参数(ndvi、evi、lai等)。
研究、分析不同作物田间长势指标(如单位面积茎数、分蘖数、单位面积穗数等)与遥感参数的定量关系,建立基于作物光谱特征和作物农学参数机理相联系的、分作物生育期的作物田间长势指标与遥感参数的定量关系和模型。
2.3创建长势综合评价指标体系及其分级标准以研究区长时间序列不同作物历史长势遥感监测数据,特别是作物遭受干旱、病害及低温冷害等自然灾害后的监测数据为样本进行统计学分析,综合应用数理统计学方法和权重分析法等,建立长势综合评价指标体系,进行长势综合评价研究,根据作物产量数据和长势分级指标,进行长势评价标准与产量关系的研究,将长势综合评价分级指标与产量预测的趋势值有机结合。
土壤,水体,植被的光谱反射曲线特征
自然状态下土壤表面的反射率没有明显的峰值和谷值。
土壤的反射光谱特征主要受到土壤中的原生矿物和次生矿物、土壤水分含量、土壤有机质、铁含量、土壤质地等因素的影响。
水的光谱特征主要是由水本身的物质组成决定,同时又受到各种水状态的影响。
地表较纯洁的自然水体对0.4~2.5μm 波段的电磁波吸收明显高于绝大多数其它地物。
在光谱的可见光波段内,水体中的能量-物质相互作用比较复杂,光谱反射特性概括起来有一下特点:
(1)光谱反射特性可能包括来自三方面的贡献:水的表面反射、水体底部物质的反射和水中悬浮物质的反射。
(2)光谱吸收和透射特性不仅与水体本身的性质有关,而且还明显地受到水中各种类型和大小的物质--有机物和无机物的影响。
(3)在光谱的近红外和中红外波段,水几乎吸收了其全部的能量,即纯净的自然水体在近红外波段更近似于一个“黑体”,因此,在 1.1~2.5μm 波段,较纯净的自然水体的反射率很低,几乎趋近于零。
植物的光谱特征可使其在遥感影像上有效地与其他地物相区别。
同时,不同的植物各有其自身的波谱特征,从而成为区分植被类型、长势及估算生物量的依据。
健康的绿色植被的光谱反射特征地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。
在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。
健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。
例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。
植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。
除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。
如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。
这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。
从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。
在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。
健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。
植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。
在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。
在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。
许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。
同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。
中国科学院遥感应用研究所2012年博士研究生入学考试试卷遥感地学分析总分:100分时间:180分钟(注意:答案一律写在答题纸上)一、论述土壤、植被、岩石、冰雪、水体等典型地物的反射波谱特性、红外辐射特性、微波辐射与散射特性,分别说明它们在可见光/近红外、热红外和微波遥感图像上表现出什么特征?如何通过遥感图像增强处理和融合,提高典型地物的遥感识别能力?(20分)答:(一)土壤、植被、岩石、冰雪、水体等典型地物的反射波谱特性(1)关于土壤(a)可见光与近红外波段的反射波谱特性以及散射特性:土壤本身是一种复杂的混合物,它是由物理和化学性质各不相同的物质所组成,这些物理和化学性质不同的物质可能会影响土壤的反射和吸收光谱特征。
土壤的许多性状都源于土壤母质。
一般土壤中含有的原生矿物主要有石英、白云母、赤铁矿、黄铁矿等。
土壤水分是土壤的重要组成部分,也是评价土壤资源优劣的主要指标之一。
当土壤含水量增加时,土壤的反射率就会下降。
作为土壤的重要组成部分,土壤有机质是指土壤中那些来源于生物的物质。
有机质的影响主要是在可见光和近红外波段。
一般来说,随着土壤有机质的增加,土壤的光谱反射率减小。
铁在土壤中主要以氧化铁的形式存在,氧化铁是影响土壤光谱反射特性的重要土壤成分,其含量的增加会使反射率减小。
土壤质地是指土壤中各种粒径的颗粒所占的相对比例。
它对土壤光谱反射特性的影响主要表现在两方面,一是影响土壤持水能力,进而影响土壤光谱反射率;二是土壤颗粒大小本身也对土壤的反射率有很大影响。
一般来说,在近红外光谱范围,如果土壤的物理化学性质没有发生变化,则土壤或矿物的光谱反射率随土壤颗粒尺寸的减小而减小。
(b)红外辐射特性:白天受太阳辐射影响,温度高、呈暖色调;夜间物质散射,温度低,呈冷色调。
(c)微波辐射特性:土壤的介电常数随土壤含水量的变化十分明显,它可以使雷达后向散射回波有较为明显的变化,两者呈线性关系。
土壤的后向散射系数,除受含水量影响外,还同时受土壤表面粗糙度、土壤结构、土壤化学组成等影响以及与雷达系统参数有关。
植被的光谱特征
植被的光谱特征主要包括吸收和反射光谱特征。
在可见光波段,叶绿素吸收峰主要在中心波长为0.45μm(蓝色)和0.65μm(红色)的两个谱带内,而在0.54μm(绿色)附近有一个反射峰。
在光谱的中红外阶段,植被的光谱响应主要被1.4μm、1.9μm和2.7μm附近的水的强烈吸收带所支配。
不同植物由于叶子的组织结构和所含色素不同,具有不同的光谱特征。
在近红外光区,草本植物的反射高于阔叶树,阔叶树高于针叶树。
此外,根据植物的物候期差异和生态条件,也可以区分不同植物类型的光谱特征。
利用植被的光谱特征可以反演植被的生长状况。
健康的绿色植物具有典型的光谱特征,而遭受病虫害的植物其反射光谱曲线的波状特征被拉平。
此外,土壤的光谱特征也与植被的光谱特征密切相关。
地表植被稀少的情况下,土壤的光谱曲线与其机械组成和颜色密切相关。
植被与土壤的光谱反射率
植被和土壤的光谱反射率是指它们在不同波长的光线照射下所反射出的光线的比例。
植被和土壤的光谱反射率是由它们的物理和化学属性决定的。
植被的光谱反射率受植被类型、植被覆盖度以及植被的健康状况等因素的影响。
一般来说,健康的植被在红色和近红外波段有较高的反射率,而在绿色波段有较低的反射率。
这是因为植被的叶绿素吸收了蓝光和红光,而反射了绿光和近红外光。
土壤的光谱反射率受土壤类型、土壤含水量、土壤质地和土壤颜色等因素的影响。
一般来说,干燥的土壤在红外波段有较高的反射率,而湿润的土壤在可见光波段有较高的反射率。
土壤的颜色也会对光谱反射率产生影响,比如较浅的土壤反射率较高,而较深的土壤反射率较低。
光谱反射率可以通过使用遥感技术来获取,如使用光谱仪器对地表进行遥感观测。
通过分析植被和土壤的光谱反射率,可以获得有关其生长状态、植被类型、土壤湿度和质地等信息,对环境和农业等领域的研究具有重要意义。
2019年航测遥感试卷及答案【试卷总题量: 50,总分: 100.00分】用户得分:48.0分,用时3260秒,未通过一、48分试卷一、单选题【本题型共20道题】1.解析空中三角测量的三种方法中,误差方程直接对原始观测值列出,严密,但计算量大。
同时因为非常方便引入非摄影测量附加观测值,如POS数据,从而成为目前主流的空三算法是(C)。
A.航带法B.独立模型法C.光束法D.区域网法用户答案:[B] 得分:0.002.航测法成图的外业主要工作是(D )和像片测绘。
A.地形测量B.像片坐标测量C.地物高度测量D.地面控制点测量用户答案:[B] 得分:0.003.解析空中三角测量的三种方法中,所求未知数非真正的原始观测值,故彼此不独立,模型最不严密的方法是: ()A.航带法B.独立模型法C.光束法D.区域网法用户答案:[A] 得分:2.004.摄影测量共线方程是按照摄影中心、地面点和对应的()三点位于一条直线上的几何条件构建的。
A.像点B.模型点C.地面点D.定向点用户答案:[A] 得分:2.005.以一张像片组成的一束光线作为一个平差单元,以中心投影的共线方程作为平差的基础方程,通过各光线束在空间的旋转和平移,使模型之间的公共光线实现最佳交会,将整体区域最佳地纳入到控制点坐标系中,从而确定加密点的地面坐标及像片的外方位元素的空中三角测量方法称为:()A.航带法空中三角测量B.独立模型法区域网空中三角测量C.光束法区域网空中三角测量用户答案:[C] 得分:2.006.解析空中三角测量是航空摄影测量的核心步骤,其输入条件通常不包括如下哪项内容:(B)A.航摄影像B.相机参数C.外业像控成果D.外业调绘成果用户答案:[A] 得分:0.007.以下哪个参数不属于影像的内方位元素:()A.像主点相对于影像中心位置的分量x0B.像主点相对于影像中心位置的分量y0C.镜头中心到影像面的垂距(主距)D.焦距用户答案:[D] 得分:2.008.应根据成图比例尺选择合适的地面分辨率,1:1000成图应用时,影像的地面分辨率不低于:(B)A.5cmB.10cmC.15cmD.20cm用户答案:[B] 得分:2.009.下列哪项不属于绿色植物的光谱反射特征:(D )A.叶绿素吸收(0.4-0.76mm),有一个小的反射峰,位于绿色波段(0.55 mm ),两边(蓝、红)为吸收带(凹谷)B.植被叶细胞结构产生的植被特有的强反射特征(0.76-1.3 mm),高反射,在0.7 mm处反射率迅速增大,至1.1处有峰值C.水分吸收(1.3-2.5 mm),受植物含水量影响,吸收率增加,反射率下降,形成几个低谷D.在蓝绿光波段有较强的反射,在其他波段都有较强吸收,尤其是近红外波段,几乎被全部吸收用户答案:[C] 得分:0.0010.不论采用航带法、独立模型法,还是光束法平差,区域网空中三角测量的精度最弱点位于区域的:(A )A.区域的四周B.区域的中央C.平均分布D.与位置无关用户答案:[B] 得分:0.0011.以下常用遥感传感器中不成像的传感器是:()A.摄影机B.照相机C.多波段扫描仪D.红外辐射计用户答案:[D] 得分:2.0012.高清卫星影像可以应用于测绘领域,其中0.50米分辨率的WorldView-2影像最高可应用于:()比例尺地形图的成图。
典型地物波谱特征1. 植被:植被在可见光波段(400-700nm)有较高的反射率,特别是在绿光波段(500-600nm)具有最高的反射率。
这是由于植物叶片中的叶绿素所致。
而在红外波段(近红外和中红外)植被的反射率较低,由于叶片中的水分和植被构架的散射。
这些反射特征使得植被在光谱上呈现出独特的红光和近红外反射的“红边”特征,可以用来检测植被的类型、生长状况和叶绿素含量。
2.土壤:土壤具有较低的反射率,特别是在可见光波段和红外波段。
土壤的光谱特征主要由其物理和化学特性决定,如含水量、粒度和有机质含量。
不同土壤类型具有不同的光谱特征,可以通过光谱分析来进行区分。
例如,矿物质丰富的土壤在可见光波段和红外波段具有较高的反射率;有机质含量高的土壤在红外波段具有较高的吸收率。
3.水体:水体在可见光波段有较低的反射率,特别是蓝光波段。
这是由于水分子的吸收作用。
在红外波段,水体的吸收率较高,特别是在中红外波段。
这些反射和吸收特征使得水体在光谱上呈现出低反射的“蓝窗口”和高吸收的“红窗口”特征,可以用来进行水体的识别和水质监测。
4.建筑物:建筑物在可见光波段和红外波段具有较高的反射率。
不同类型的建筑物具有不同的光谱特征,可以通过光谱分析进行分类。
例如,玻璃和金属材料具有很高的反射率,并在短波红外波段具有很高的吸收率;混凝土和瓦片具有适中的反射率和较低的吸收率。
5.云和雪:云和雪在可见光波段具有较高的反射率,特别是在蓝光波段。
在红外波段,云和雪的反射率较低,并具有较高的吸收率。
这些反射和吸收特征使得云和雪在光谱上具有明显的特征,可以用来进行云和雪的遥感监测。
以上是一些典型地物的波谱特征的例子,不同地物在不同波段上的反射和吸收特征是由其物理、化学和结构特性所决定的。
通过利用这些特征,可以对地物进行识别和定量化,为环境监测、资源调查和灾害监测等应用提供重要的信息。
绿色植被的光谱反射特征与植物的叶片色素、结构以及植物状态有关。
下面是绿色植被的光谱反射特征的一些常见情况:
1.可见光区域:
绿色植被在可见光区域(400到700纳米波长范围内)对绿光的吸收较强,因此植物呈现出绿色。
叶绿素是植物中最重要的色素,其吸收峰值位于绿光波段,使植物对绿光反射较高。
2.红边特征:
在红外光谱区域,有一个称为“红边”的特征区域,大约位于680到750纳米之间。
绿色植被的红边特征是由于叶片的吸收和散射产生的,通常在植物叶片处于健康状态下观察到。
3.光谱吸收特征:
叶绿素不仅在可见光区域吸收,还在红外区域(700到1,000纳米)吸收。
这些光谱吸收特征对于识别不同植物类型、生长阶段和健康状态非常重要。
4.水分和叶片结构:
植物的水分含量和叶片结构也会影响其光谱反射特征。
水分越多,反射率可能较高,而干燥的植物可能具有较低的反射率。
5.氮含量:
叶片中的氮含量对光谱反射也有影响。
较高的氮含量通常与较低的反射率相关,因为氮是叶绿素等色素的重要组成部分。
6.病害和应激:
叶片病害、虫害、环境应激等因素可能导致植物的光谱反射特征发生变化。
这些变化可以通过遥感技术来检测,帮助监测植物的健康状况。
通过遥感技术,如植被指数(如NDVI、EVI等)的计算,可以利用植物的光谱反射特征来评估植被的生长状况、覆盖度和健康状态。
这对于农业、林业、环境监测等领域具有重要意义。