八年级数学竞赛讲座奇妙的对称附答案
- 格式:doc
- 大小:919.00 KB
- 文档页数:8
八年级数学竞赛例题专题讲解:相对相称—对称分析法阅读与思考当代美国数学家赫尔曼·韦尔指出:对称尽管你可以规定其含义或宽或窄,然而从古到今都是人们用来理解和创造秩序、美妙以及尽善尽美的一种思想. 许多数学问题所涉及的对象具有对称性(不仅包括几何图形中的对称,而且泛指某些对象在某些方面如图形、关系、地位等彼此相对又相称).对称分析法就是在解题时,充分利用自身条件的某些对称性辅助解题的一种分析方法,初中阶段主要研究下面两种类型的对称:1.代数中的对称式如果把一个多项式的任意两个字母互换后,所得的多项式不变就称这个多项式为对称式,对称式的本质反应的是多元多项式中字母地位相同,任何一个复杂的二元对称式,都可以用最简单对称多项式b a +,ab 表示,一些对称式的代数问题,常用最简对称式表示将问题解决. 2.几何图形的对称几何图形的对称指的是轴对称和中心对称,一些几何问题,如果我们作出图形的对称轴,或者作出已知点关于某线(某点)的对称点,构造出轴对称图形、中心对称图形,那么就能将分散的条件集中起来,容易找到解题途径. 例题与求解【例l 】如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB ,BC 的中点,则PM +PN 的最小值是 . (荆门市中考试题)解题思路:作M 关于AC 的对称点M ',连MN 交AC 于点P ,则PM +PN 的值最小.BC【例2】已知a ,b 均为正数,且2=+b a ,求W =1422+++b a 的最小值.(北京市竞赛试题)解题思路:用代数的方法求W 的最小值较繁,22b a +的几何意义是以a ,b 为边的直角三角形的斜边长,构造图形,运用对称分析法求出W 的最小值.【例3】已知11122=-+-a b b a ,求证:122=+b a (四川省竞赛试题)解题思路:解决根式问题的基本思路是有理化,有理化的主要途径是:乘方、配方、换元和引入有理化因式,引入与已知等式地位相对相称的有理化因式,本例可获得简证.【例4】 如图,凸四边形ABCD 的对角线AC ,BD 相交于O ,且AC ⊥BD ,已知OA >OC ,OB >OD ,求证:BC +AD >AB +CD .(“祖冲之杯”邀请赛试题)解题思路:解题的关键是将有关线段集中到同一三角形中去,以便运用三角形三边关系定理,以AC 为对称轴,将部分图形翻折.DBC【例5】如图,矩形ABCD 中,AB =20厘米,BC =10厘米,若在AC 、AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值. (北京市竞赛试题)解题思路:要使BM +MN 的值最小,应该设法将折线BM +MN 拉直,不妨从作出B 点关于AC 的对称点入手.A N能力训练1.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴. 若∠AFC +∠BCF =0150,则∠AFE +∠BCD 的大小是 . (武汉市中考试题)A BO(第1题图) (第2题图) (第3题图) 2.如图,矩形纸片ABCD 中,AB =2,点E 在BC 上,且AE =EC ,若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .(济南市中考试题)3. 如图,∠AOB =045,P 是∠AOB 内一点,PO =10,Q ,P 分别是OA 、OB 上的动点,则△PQR 周长最小值是 .4. 比6)56( 大的最小整数是 . (西安交通大学少年班入学试题)5.如图,已知正方形ABCD 的边长为3,E 在BC 上,且BE =2,P 在BD 上,则PE +PC 的最小值为( ).A .32B .13C .14D .15 6. 观察下列平面图形,其中是轴对称图形的有( ) .A .1个B .2个C .3个D .4个(南京市中考试题)7.如图,一个牧童在小河南4英里处牧马,河水向正东方流去,而他正位于他的小屋西8英里北7英里处,他想把他的马牵到小河边去饮水,然后回家,他能够完成这件事情所走的最短距离是( ).A .)1854(+英里B .16英里C .17英里D .18英里(美国中学生竞赛试题)BCADPEMP(第5题图) (第7题图) (第8题图) 8.如图,等边△ABC 的边长为2,M 为AB 中点,P 为BC 上的点,设P A +PM 的最大值和最小值分别为S 和L ,则22L S -等于( )A .24B .34C .23D .339.一束光线经三块平面镜反射,反射的路线如图所示,图中字母表示相应的度数,已知c =060,求e d +与x 的值. (江苏省竞赛试题)10. 求代数式9)12(422+-++x x 的最小值.(“希望杯”邀请赛试题)11. 在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水. 方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学图1 图2图3的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)① 当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ② 当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2)对a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?(河北省中考试题)12.如图,已知平面直角坐标系中,A ,B 两点的坐标分别为A (2,-3),B (4,-1) (1)若P (x ,0)是x 轴上的一个动点,当△P AB 的周长最短时,求x 的值;(2)若C (a ,0),D (3+a ,0)是x 轴上的两个动点,当四边形ABDC 的周长最短时,求a 的值;(3)设M ,N 分别为x 轴和y 轴上的动点,问:是否存在这样的点M (m ,0)、N (0,n ),使四边形ABMN 的周长最短?若存在,求出m ,n 的值;若不存在,请说明理由.x13.在△ABC 中,∠BAC =45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M .(1)判断四边形AEMF的形状,并给予证明;(2)若BD=1,CD=2,试求四边形AEMF的面积.CB DA(宁夏中考试题)14. 阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm,现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45︒的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45︒的方向作直线运动…如图1所示,问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路线的总长是多少?小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E.请你参考小贝的思路解决下列问题:(1) P点第一次与D点重合前与边相碰次,P点从A点出发到第一次与D点重合时所经过的路径的总长是cm.(2) 进一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB:AD的值为.。
初中数学竞赛专题选讲(初三.5)对称式一、内容提要一.定义1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, yx 11+, xyzx z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式.2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式.例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )()111z y x ++, 222222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1.含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等.例如:在含x, y, z 的齐二次对称多项式中,如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数.3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式a 3(b -c)+b 3(c -a)+c 3(a -b)中,有因式a -b 一项, 必有同型式b -c 和 c -a 两项.4. 两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式). 例如:∵x+y, xy 都是对称式,∴x+y +xy , (x+y )xy , xyy x +等也都是对称式. ∵xy+yz+zx 和zy x 111++都是轮换式, ∴z y x 111+++xy+yz+z , (zy x 111++)(xy+yz+z ). 也都是轮换式.. 二、例题例1.计算:(xy+yz+zx )()111z y x ++-xyz()111222zy x ++. 分析:∵(xy+yz+zx )()111zy x ++是关于x,y,z 的轮换式,由性质2,在乘法展开时,只要用xy 分别乘以x 1,y 1,z1连同它的同型式一齐写下. 解:原式=(z xy y zx x yz ++)+(z+x +y )+(y+z+x)-(zxy y zx x yz ++) =2x+2y+2z.例2. 已知:a+b+c=0, abc ≠0.求代数式 222222222111ba c a cbc b a -++-++-+的值 分析:这是含a, b, c 的轮换式,化简第一个分式后,其余的两个分式,可直接写出它的同型式. 解:∵2221c b a -+=222)(1b a b a ---+=ab 21-, ∴222222222111b a c a c b c b a -++-++-+=-ab 21-bc 21-ca 21 = -abc b a c 2++=0. 例3. 计算:(a+b+c )3分析:展开式是含字母 a, b, c 的三次齐次的对称式,其同型式的系数相等,可用待定系数法.例4. 解:设(a+b+c )3=m(a 3+b 3+c 3)+n(a 2b+a 2c+b 2c+b 2a+c 2a+c 2b)+pabc.(m, n, p 是待定系数)令 a=1,b=0,c=0 . 比较左右两边系数得 m=1;令 a=1,b=1,c=0 比较左右两边系数得 2m+2n=8;令 a=1,b=1,c=1 比较左右两边系数得 3m+6n+p=27.解方程组⎪⎩⎪⎨⎧=++=+=27638221p n m n m m 得⎪⎩⎪⎨⎧===631p n m∴(a+b+c )3=a 3+b 3+c 3+3a 2b+3a 2c+3b 2c+3b 2a+3c 2a+3c 2b+6abc.例5. 因式分解:① a 3(b -c)+b 3(c -a)+c 3(a -b);② (x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5.解:①∵当a=b 时,a 3(b -c)+b 3(c -a)+c 3(a -b)=0.∴有因式a -b 及其同型式b -c, c -a.∵原式是四次齐次轮换式,除以三次齐次轮换式(a -b )(b -c)(c -a),可得 一次齐次的轮换式a+b+c.用待定系数法:得 a 3(b -c)+b 3(c -a)+c 3(a -b)=m(a+b+c)(a -b )(b -c)(c -a)比较左右两边a 3b 的系数,得m=-1.∴a 3(b -c)+b 3(c -a)+c 3(a -b)=-(a+b+c)(a -b )(b -c)(c -a).② x=0时,(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=0∴有因式x ,以及它的同型式y 和z.∵原式是五次齐次轮换式,除以三次轮换式xyz ,其商是二次齐次轮换式.∴用待定系数法:可设(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=xyz [m(x+y+z)+n(xy+yz+zx)].令 x=1,y=1,z=1 . 比较左右两边系数, 得 80=m+n ;令 x=1,y=1,z=2. 比较左右两边系数, 得 480=6m+n.解方程组⎩⎨⎧=+=+480680n m n m得⎩⎨⎧==080n m . ∴(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=80xyz(x+y+z).三、练习1.已知含字母x,y,z 的轮换式的三项x 3+x 2y -2xy 2,试接着写完全代数式______ 2. 已知有含字母a,b,c,d 的八项轮换式的前二项是a 3b -(a -b),试接着写完全代数式_________________________________.3. 利用对称式性质做乘法,直接写出结果:① (x 2y+y 2z+z 2x )(xy 2+yz 2+zx 2)=_____________________. ② (x+y+z )(x 2+y 2+z 2-xy -yz -zx )=___________________.4. 计算:(x+y )5.5. 求(x+y )(y+z)(z+x)+xyz 除以x+y+z 所得的商.6. 因式分解:① ab(a -b)+bc(b -c)+ca(c -a);② (x+y+z)3-(x 3+y 3+z 3);③ (ab+bc+ca )(a+b+c)-abc ;④ a(b -c)3+b(c -a)3+c(a -b)3.7. 已知:abcc b a 1111=++. 求证:a, b, c 三者中,至少有两个是互为相反数.8. 计算:bc ac ab a a +--22+ca ba bc b b +--22+abcb ca c c +--22. 9. 已知:S =21(a+b+c ). 求证:16)(416)(416)(4222222222222222b a c a c a c b c b c b a b a -+-+-+-+-+- =3S (S -a )(S -b)(S -c).10. 若x,y 满足等式 x=1+y 1和y=1+x1且xy ≠0,那么y 的值是( ) (A )x -1. (B )1-x. (C )x. (D )1+x.参考答案1. y 3+z 3+y 2z+z 2x -2y 2z -2z 2x2. b 3c+c 3d+d 3a -(b -c)-(c -d)-(d -a)3. ②x 3+y 3+z 3-3xyz4. 设(x+y)5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3), a=1, b=5, c=10.5. 设原式=(x+y+z )[a(x 2+y 2+z 2)+b(xy+yz+zx)], a=0, b=1.6 .③当a=-b 时,原式=0, 原式=m(a+b)(b+c)(c+a) m=17. 由已知等式去分母后,使右边为0, 因式分解8. 19. 一个分式化为S (S -a )(S -b)(S -c)10. 选 C。
初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。
(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。
(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。
猜想:S1与S2有怎样的数量关系?并证明你的猜想。
【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A.2B.3C.4D.5【答案】C.【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C.【考点】轴对称图形.3.下面四个图案中,是轴对称图形的是A. B. C. D.【答案】D.【解析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.考点: 轴对称图形.4.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】∵△和△都是等腰直角三角形,∴∠∠.又∵△绕着点沿逆时针旋转度后能够与△重合,∴旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A.5.作一直线,将下图分成面积相等的两部分(保留作图痕迹).【答案】见解析【解析】解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.6.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()A.1B.2C.3D.4【答案】C【解析】其中第一、三、四既是轴对称图形又是中心对称图形,第二个图形只是轴对称图形,故选C.7.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化8.已知点A(a,-5)与点B(-4,b)关于y轴对称,则a+b= ;【答案】-1.(-x,y),点A(a,-5)与点B(-4,b)关于y轴对【解析】P(x,y)关于y轴对称的点的坐标P1称,所以,a=4,b=-5,所以,a+b=-1.【考点】关于y轴对称的点的坐标.9.等腰三角形是轴对称图形,最多有条对称轴.【答案】3【解析】由题, 等腰三角形是轴对称图形,而等边三角形是等腰三角形,它有3条对称轴.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题, 等腰三角形是轴对称图形,而等边三角形是等腰三角形,它有3条对称轴.【考点】对称轴的定义.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.下列图形既是轴对称又是中心对称图形的是()A.平行四边形B.正三角形C.矩形D.等腰梯形【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.△ABC在平面直角坐标系中的位置如图所示。
【满分秘诀】专题06 轴对称(满分突破)1.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )A.6B.7C.8D.9【答案】C【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个(包括两个等腰直角三角形);②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.2.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反弹),那么该球最后将落入的球袋是( )A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【解答】解:根据轴对称的性质可知,台球走过的路径为:故选:B.3.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是( )A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°【答案】C【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.故选:C.4.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2B.3C.4D.5【答案】C【解答】解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选:C.5.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( )A.25°B.30°C.35°D.40°【答案】B【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为( )A.6B.8C.10D.12【答案】C【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.故选:C.7.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )A.B.C.D.不能确定【答案】B【解答】解:过P作PM∥BC,交AC于M;∵△ABC是等边三角形,且PM∥BC,∴△APM是等边三角形;又∵PE⊥AM,∴AE=EM=AM;(等边三角形三线合一)∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q;又∵PA=PM=CQ,在△PMD和△QCD中∴△PMD≌△QCD(AAS);∴CD=DM=CM;∴DE=DM+ME=(AM+MC)=AC=,故选:B.8.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( )A.50°B.60°C.70°D.80°【答案】D【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°【答案】D【解答】解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.故选:D.10.的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为 15 .【答案】15【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:1511.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 .【答案】63°或27°【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.12.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有 .(把你认为正确的序号都填上)【答案】 ①②③⑤【解答】解:①∵正△ABC和正△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.13.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN 的周长为 .【答案】6【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CDN中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.14.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管 根.【答案】8【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.15.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),又∵BE⊥AF,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).16.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.【解答】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.17.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°…(6分)(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.(7分)理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.18.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).【解答】解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=19.(烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【答案】详见解答【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.。
《奇妙的对称图形》教学实录与反思《奥妙的对称图形》教学实录与反思教学目标:1.通过拼剪对称图形,找画对称轴的过程,感知轴对称的特征;经过视察、操作、体会,初步相识轴对称现象,2.通过学生活动,开展学生的空间观念,造就学生视察实力和动手操作实力,感受对称、匀整、均衡的美感,体会身边到处有数学。
3.造就学生的合作意识,让学生在合作中沟通、学习、互动。
教学重点:感知对称现象的特征并能正确判定物体是否具有对称现象。
教学难点:能找到对称物体的对称轴教具打算:多媒体课件、剪纸图形3张、长方形、正方形、圆形纸、尺子、剪刀、彩纸等。
学具打算:长方形、正方形、圆形纸各1、剪刀、尺子、彩纸假设干。
教学过程:一、故事激趣,引入新课师:教师知道同学们都很机灵又特殊爱发言,今日就嘉奖你们,让你们听一个小故事。
想听吗?〔想〕师:好吧,那就让我们一起去看这个童话故事吧。
灯片1〔故事〕二、探究新知1、视察对称图形〔1〕师:故事里有一个惊奇问题?为什么小蝴蝶说在图形王国里它们三个是一家的呢?灯片2〔为什么小蝴蝶说在图形王国里它们三个是一家的?〕师:这节课我们就来探究这个问题。
它们是一家吗?可是小蝴蝶却说在图形王国里它们三个是一家的。
请小挚友们细致视察他们每一个图形自己的左边和右边,〔边指每个图边说〕你发觉了什么?师和生一起小结:两个翅膀的颜色是一样的、大小也是一样的、里面的图案也是一样的。
〔2〕师:请小挚友们想一想,假如我们把这3个图形分别对折起来,会发生什么状况呢?师:来,请你说……生:两边对折起来,两边就会成一模一样了。
师:还有谁来说说,对折起来的话,会发生什么状况?生:只有一半图形了。
师:那就是说,对折以后,每个图形的左边和右边完全重合了,所以你看起来就似乎只有一半了。
师:那么我们班的小挚友想得对吗?让我们一起来看一看。
〔3〕演示对折的过程灯片3〔对折过程〕师:跟我们想的一样吗?〔一样〕2、相识对称图形〔1〕师:假如我们把一个图形对折以后,他们的左边和右边就完全重合了,我们把这样的图形叫对称图形。
猜想03轴对称(易错必刷40题13种题型专项训练)一.线段垂直平分线的性质(共4小题)二.等腰三角形的性质(共9小题)三.等腰三角形的判定(共3小题)四.等腰三角形的判定与性质(共2小题)五.等边三角形的性质(共1小题)六.等边三角形的判定与性质(共2小题)七.含30度角的直角三角形(共3小题)八.生活中的轴对称现象(共1小题)九.轴对称的性质(共2小题)十.轴对称图形(共2小题)十一.关于x轴、y轴对称的点的坐标(共8小题)十二.作图-轴对称变换(共1小题)十三.轴对称-最短路线问题(共2小题)一.线段垂直平分线的性质(共4小题)1.(2023春•定边县校级期末)如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB的度数为( )A.56°B.58°C.60°D.63°【分析】利用线段垂直平分线的性质可得EB=EC,从而可得∠EBC=∠ECB,再根据已知可得CE=AC,从而利用等腰三角形的性质以及三角形内角和定理可得∠A=∠AEC=80°,然后利用三角形的外角性质可得∠EBC=∠ECB=40°,再利用角平分线的定义∠FBC=20°,最后利用三角形的外角性质进行计算即可解答.【解答】解:∵DE垂直平分BC,∴EB=EC,∴∠EBC=∠ECB,∵BE=AC,∴CE=AC,∵∠ACE=20°,∴∠A=∠AEC=(180°﹣∠ACE)=80°,∵∠AEC=∠EBC+∠ECB=80°,∴∠EBC=∠ECB=40°,∵BF平分∠ABC,∴∠FBC=∠EBC=20°,∴∠EFB=∠FBC+∠ECB=60°,故选:C.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.2.(2022秋•涟源市期末)如图,在足球场内,A,B,C表示三个足球运动员,为做折返跑游戏,现准备在足球场内放置一个足球,使它到三个运动员的距离相等,则足球应放置在( )A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处【分析】根据线段垂直平分线性质定理的逆定理,即可解答.【解答】解:如图,在足球场内,A,B,C表示三个足球运动员,为做折返跑游戏,现准备在足球场内放置一个足球,使它到三个运动员的距离相等,则足球应放置在AC,BC两边垂直平分线的交点处,故选:C.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线性质定理的逆定理是解题的关键.3.(2022秋•吉林期末)如图,在△ABC中,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F.若∠B+∠C=70°,则∠EAF的度数是( )A.30°B.35°C.40°D.45°【分析】先利用三角形的内角和定理求出∠BAC=110°,再利用线段垂直平分线的性质可得EA=EB,FA=FC,从而可得∠B=∠BAE,∠C=∠FAC,然后利用等量代换可得∠BAE+∠FAC=70°,最后利用角的和差关系进行计算即可解答.【解答】解:∵∠B+∠C=70°,∴∠BAC=180°﹣(∠B+∠C)=110°,∵AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,∴EA=EB,FA=FC,∴∠B=∠BAE,∠C=∠FAC,∴∠BAE+∠FAC=70°,∴∠EAF=∠BAC﹣(∠BAE+∠FAC)=40°,故选:C.【点评】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4.(2022秋•怀化期末)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.【分析】(1)依据线段垂直平分线的性质,即可得到△CDE的周长=CD+DE+CE=AD+DE+BE=AB;(2)依据AD=CD,BE=CE,即可得到∠A=∠ACD,∠B=∠BCE,再根据三角形内角和定理,即可得到∠A+∠B=55°,进而得到∠ACD+∠BCE=55°,再根据∠DCE=∠ACB﹣(∠ACD+∠BCE)进行计算即可.【解答】解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.【点评】本题考查了线段的垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.二.等腰三角形的性质(共9小题)5.(2022秋•门头沟区期末)一个等腰三角形的两条边分别是2cm和5cm,则第三条边的边长是( )A.2cm B.5cm C.2cm或5cm D.不能确定【分析】分两种情况:当等腰三角形的腰长为2cm,底边长为5cm时,当等腰三角形的腰长为5cm,底边长为2cm时,然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为2cm,底边长为5cm时,∵2+2=4<5,∴不能组成三角形;当等腰三角形的腰长为5cm,底边长为2cm时,∴等腰三角形的三边长分别为5cm,5cm,2cm,综上所述:等腰三角形的第三条边的边长是5cm,故选:B.【点评】本题考查了等腰三角形的性质,三角形三边关系,分两种情况讨论是解题的关键.6.(2022秋•番禺区校级期末)等腰三角形的一条边长为6,另一边长为14,则它的周长为( )A.26B.26或34C.34D.20【分析】分两种情况:当等腰三角形的腰长为6,底边长为14时;当等腰三角形的腰长为14,底边长为6时,然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为6,底边长为14时,∵6+6=12<14,∴不能组成三角形;当等腰三角形的腰长为14,底边长为6时,∴它的周长=14+14+6=34;综上所述:它的周长为34,故选:C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况讨论是解题的关键.7.(2022秋•南开区校级期末)等腰三角形的一个外角是70°,则它的顶角的度数为( )A.70°B.70°或40°C.110°D.110°或40°【分析】利用平角定义,进行计算即可解答.【解答】解:如图:在△ABC中,AB=AC,当∠DAC=70°时,∴∠BAC=180°﹣∠DAC=110°,∴等腰三角形的顶角的度数为110°,故选:C.【点评】本题考查了等腰三角形的性质,三角形内角和定理,熟练掌握三角形内角和定理是解题的关键.8.(2022秋•聊城期末)若等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角的度数为( )A.20°B.50°或70°C.70°D.20°或70°【分析】分两种情况讨论:①若该等腰三角形为钝角三角形;②若该等腰三角形为锐角三角形;先求出顶角∠BAC,即可求出底角的度数.【解答】解:①如图1,当该等腰三角形为钝角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=(90°﹣50°)=20°,②如图2,当该等腰三角形为锐角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=[180°﹣(90°﹣50°)]=70°.故选:D.【点评】本题考查了等腰三角形的性质以及余角和邻补角的定义;注意分类讨论方法的运用,避免漏解.9.(2022秋•平谷区期末)如图,△ABC中,AB=AC,D是BA延长线上一点,且∠DAC=100°,则∠C= 50° .【分析】利用等腰三角形的性质可得∠B=∠C,再利用三角形的外角性质可得∠DAC=∠B+∠C=100°,然后进行计算即可解答.【解答】解:∵AB=AC,∴∠B=∠C,∵∠DAC是△ABC的一个外角,∴∠DAC=∠B+∠C=100°,∴∠B=∠C=50°,故答案为:50°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.10.(2022秋•衡山县期末)已知等腰三角形的两边长分别为10和4,则三角形的周长是 24 .【分析】分两种情况:当等腰三角形的腰长为10,底边长为4时,当等腰三角形的腰长为4,底边长为10时,然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的腰长为10,底边长为4时,∴这个等腰三角形的周长=10+10+4=24;当等腰三角形的腰长为4,底边长为10时,∵4+4=8<10,∴不能组成三角形;综上所述:这个等腰三角形的周长为24,故答案为:24.【点评】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况讨论是解题的关键.11.(2022秋•东昌府区校级期末)如图,在△ABC中,AB=AC,D为BC的是中点,AD=AE,∠BAD=30°,求∠EDC的度数.【分析】先利用等腰三角形的三线合一性质可得∠ADC=90°,∠BAD=∠CAD=30°,然后再利用等腰三角形的性质,以及三角形内角和定理可得∠ADE=∠AED=75°,从而利用角的和差关系进行计算即可解答.【解答】解:∵AB=AC,D为BC的是中点,∴∠ADC=90°,∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=(180°﹣∠CAD)=75°,∴∠EDC=∠ADC﹣∠ADE=15°,∴∠EDC的度数为15°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2022秋•忠县期末)如图△ABC中,点D在AB上,已知AD=BD=CD.(1)求∠ACB的大小;(2)若∠A=30°,AB=4,求△BCD的周长.【分析】(1)先利用等腰三角形的性质可得∠A=∠ACD,∠B=∠BCD,然后利用三角形的内角和定理,进行计算即可解答;(2)利用(1)的结论,在Rt△ABC中,利用含30度角的直角三角形的性质可得BC=AB=2,然后再根据已知可得AD=BD=CD=2,从而利用三角形的周长公式,进行计算即可解答.【解答】解:(1)∵AD=BD=CD,∴∠A=∠ACD,∠B=∠BCD,∵∠A+∠ACD+∠BCD+∠B=180°,∴2∠ACD+2∠BCD=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°;(2)∵∠A=30°,∠ACB=90°,AB=4,∴BC=AB=2,∵AD=BD=CD,∴AD=BD=CD=AB=2,∴△BCD的周长为6.【点评】本题考查了含30度角的直角三角形,等腰三角形的性质,熟练掌握含30度角的直角三角形的性质,以及等腰三角形的性质是解题的关键.13.(2022秋•开封期末)已知在△ABC中,AB=20,BC=8,AC=2m﹣2.(1)求m的取值范围;(2)若△ABC是等腰三角形,求△ABC的周长.【分析】(1)利用三角形的三边关系可得:20﹣8<2m﹣2<20+8,然后进行计算即可解答;(2)分两种情况:当AB=AC=20时;当BC=AC=8时,然后分别进行计算即可解答.【解答】解:(1)在△ABC中,AB=20,BC=8,AC=2m﹣2.∴20﹣8<2m﹣2<20+8,解得:7<m<15;∴m的取值范围为:7<m<15;(2)∵△ABC是等腰三角形,∴分两种情况:当AB=AC=20时,∴△ABC的周长=20+20+8=48;当BC=AC=8时,∵8+8=16<20,∴不能组成三角形;综上所述,△ABC的周长为48.【点评】本题考查了三角形三边关系,等腰三角形的性质,熟练掌握三角形三边关系,以及等腰三角形的性质是解题的关键.三.等腰三角形的判定(共3小题)14.(2022秋•平桥区校级期末)线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是( )A.4B.5C.6D.7【分析】根据题意可得,以点B为圆心,BA长为半径画圆,圆与格点的交点即为符合条件的点C.【解答】解:如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.【点评】本题考查了等腰三角形的判定,解决本题的关键是掌握等腰三角形的判定.15.(2022秋•卧龙区校级期末)如图,正方形的网格中,点A,B是小正方形的顶点,如果C点是小正方形的顶点,且使△ABC是等腰三角形,则点C的个数为( )A.6B.7C.8D.9【分析】当AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形;当AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.所以△ABC是等腰三角形,点C的个数为8个,故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.16.(2022秋•邳州市期末)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是( )A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.四.等腰三角形的判定与性质(共2小题)17.(2022秋•潢川县校级期末)如图,在△ABC中,AB=3,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )A.4B.6C.7D.8【分析】利用角平分线的定义和平行线的性质可证△MEB和△NEC是等腰三角形,从而可得MB=ME,NE=NC,然后利用等量代换可得△AMN的周长=AB+AC,进行计算即可解答.【解答】解:∵BE平分∠ABC,CE平分∠ACB,∴∠ABE=∠EBC,∠ACE=∠ECB,∵MN∥BC,∴∠MEB=∠EBC,∠NEC=∠ECB,∴∠ABE=∠MEB,∠ACE=∠NEC,∴MB=ME,NE=NC,∵AB=3,AC=4,∴△AMN的周长=AM+MN+AN=AM+ME+EN+AN=AM+MB+CN+AN=AB+AC=3+4=7,故选:C.【点评】本题考查了等腰三角形的判定与性质,熟练掌握利用角平分线的定义和平行线的性质可证等腰三角形是解题的关键.18.(2022秋•荆门期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC= 12 .【分析】根据角平分线的定义和平行线的性质可证△EBG和△DFC是等腰三角形,从而可得EB=EG,DF=DC,进而可得EB+DC=ED+FG,然后进行计算即可解答.【解答】解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵BG平分∠ABC,CF平分∠ACB,∴∠ABG=∠CBG,∠ACF=∠FCB,∴∠EBG=∠EGB,∠DFC=∠ACF,∴EB=EG,DF=DC,∵FG=4,ED=8,∴EB+DC=EG+DF=ED+FG=12,故答案为:12.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,熟练掌握利用角平分线的定义和平行线的性质可证等腰三角形是解题的关键.五.等边三角形的性质(共1小题)19.(2022秋•睢阳区期末)已知△ABC为等边三角形,AB=10,M在AB边所在直线上,点N在AC边所在直线上,且MN=MC,若AM=16,则CN的长为 4或36 .【分析】分两种情形:①当点M在AB的延长线上时,作MD⊥AC于D.②当点M在BA的延长线上时,作MD⊥CN于D.分别求解即可.【解答】解:由题意可知,BM=AN=6,①如图,当点M在AB的延长线上时,作MD⊥AC于D.在Rt△AMD中,∵∠ADM=90°,∠A=60°,AM=16,∴AD=AM=8,∴CD=AC﹣AD=2,∵MN=MC,MD⊥CN,∴DN=CD,∴CN=2CD=4.②如图,当点M在BA的延长线上时,作MD⊥CN于D,在Rt△AMD中,∵∠ADM=90°,∠DAM=60°,AM=16,∴AD=AM=8,∴CD=AD+AC=18,∵MN=MC,MD⊥CN,∴DN=CD,∴CN=2CD=36,故答案为:4或36.【点评】本题考查等边三角形的性质,解直角三角形的应用,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线面构造直角三角形解决问题.六.等边三角形的判定与性质(共2小题)20.(2022秋•岳麓区校级期末)如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=5,DE=2,则BC= 7 .【分析】作出辅助线后根据等腰三角形的性质得出△BEM为等边三角形,得出BM=EM=BE=5,从而得出BN的长,进而求出答案.【解答】解:延长ED交BC于M,延长AD交BC于N,如图,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠DEB=60°,∴△BEM为等边三角形,∴BM=EM=BE=5,∠EMB=60°,∵DE=2,∴DM=3,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=DM=,∴BN=BM﹣MN=5﹣=,∴BC=2BN=7.故答案为:7.【点评】本题主要考查的是等腰三角形的性质,等边三角形的判定与性质,含30°直角三角形的性质等知识,根据题意构造含30°的直角三角形是解题的关键.21.(2022秋•东洲区期末)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是 400 .【分析】先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.【解答】解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.故答案为:400.【点评】本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.七.含30度角的直角三角形(共3小题)22.(2022秋•白云区校级期末)若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是( )A.75°或15°B.75°C.15°D.75°和30°【分析】分两种情况:当等腰三角形为锐角三角形时;当等腰三角形为钝角三角形时;然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形为锐角三角形时,如图:在△ABC中,AB=AC,BD⊥AC,∴∠BDA=90°,∵BD=AB,∴∠BAD=30°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=75°,∴这个等腰三角形的底角是75°;当等腰三角形为钝角三角形时,如图:在△ABC中,AB=AC,BD⊥AC,∴∠BDA=90°,∵BD=AB,∴∠BAD=30°,∴∠ABC+∠C=30°,∵AB=AC,∴∠ABC=∠C=∠BAD=15°,∴这个等腰三角形的底角是15°;综上所述:这个等腰三角形的底角是75°或15°,故选:A.【点评】本题考查了含30度角的直角三角形的性质,等腰三角形的性质,分两种情况讨论是解题的关键.23.(2022秋•洪山区校级期末)如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AD⊥BC.则下列等式成立的是( )A.BD=3DC B.AD=2DC C.AB=4DC D.BD=2AC【分析】根据在直角三角形中,30°角所对的直角边等于斜边的一半,求出BD=3DC,BD=AC,BC =4DC,AC=2DC.【解答】解:∵∠BAC=90°,∠B=30°,∴BC=2AC,∠C=60°,∵AD⊥BC,∴∠DAC=30°,∴AC=2DC,∴B不符合要求;∴BC=4DC,∴C不符合要求;∴BD=3DC,∴A符合要求;∵AC=2DC,BC=4DC∴BD=AC,∴D不符合要求;故选:A.【点评】本题考查了含30度角的直角三角形,掌握此定理,应用时,要注意找准30°的角所对的直角边,点明斜边,是解题的关键.24.(2022秋•杨浦区期末)已知,如图,在△ABC中,AD为BC边上的中线,且AD=BC,AE⊥BC.(1)求证:∠CAE=∠B;(2)若∠CAE=30°,CE=2,求AB的长.【分析】(1)根据三角形的中线定义可得BD=DC=BC,从而可得AD=DC=BD,然后利用等腰三角形的性质可得∠B=∠BAD,∠C=∠DAC,再利用三角形的内角和定理可得∠B+∠C=90°,最后根据垂直定义可得∠AEC=90°,从而可得∠CAE+∠C=90°,进而根据同角的余角相等即可解答;(2)在Rt△AEC中,利用含30度角的直角三角形的性质求出AC的长,然后在Rt△ABC中,利用含30度角的直角三角形的性质即可解答.【解答】(1)证明:∵AD为BC边上的中线,∴BD=DC=BC,∵AD=BC,∴AD=DC=BD,∴∠B=∠BAD,∠C=∠DAC,∵∠B+∠BAD+∠DAC+∠C=180°,∴2(∠B+∠C)=180°,∴∠B+∠C=90°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE+∠C=90°,∴∠CAE=∠B;(2)解:∵∠AEC=90°,∠CAE=30°,CE=2,∴AC=2CE=4,∵∠B+∠C=90°,∴∠BAC=180°﹣(∠B+∠C)=90°,∵∠B=∠CAE=30°,∴AB=AC=4,∴AB的长为4.【点评】本题考查了含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.八.生活中的轴对称现象(共1小题)25.(2022秋•高阳县校级期末)如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步,已知点A 为乙方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为( )A.2步B.3步C.4步D.5步【分析】根据题意,结合图形,由轴对称的性质判定正确选项.【解答】解:观察图形可知:先向右跳行,在向左,最后沿着对称的方法即可跳到对方那个区域,所以最少是3步.故选B.【点评】此题考查轴对称的基本性质,注意:对称轴垂直平分对应点的连线.通过对称的性质找到最短的路线是解题的关键.九.轴对称的性质(共2小题)26.(2022秋•大连期末)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有 3 个【分析】依据大正方形的对称轴,即可画出与△ABC成轴对称且也以格点为顶点的三角形.【解答】解:如图所示,与△ABC成轴对称且也以格点为顶点的三角形有3个:故答案为:3.【点评】本题考查轴对称图形的定义与判断,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.27.(2022秋•华容区期末)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD=α,则∠ACB的度数为( )A.45°B.α﹣45°C.αD.90°﹣α【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD=,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°﹣.【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=,又∵∠AEB'=∠AOB'=90°,∴四边形AOB'E中,∠EB'O=180°﹣,∴∠ACB'=∠EB'O﹣∠COB'=180°﹣﹣90°=90°﹣,∴∠ACB=∠ACB'=90°﹣,故选:D.【点评】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB'E,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.一十.轴对称图形(共2小题)28.(2022秋•海安市期末)观察如图的网络图标,其中可以看成轴对称图形的是( )A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:选项C的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项A、B、D的图形均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.29.(2023•岳麓区校级三模)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是( )A.清华大学B.北京大学C.中国人民大学D.浙江大学【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.一十一.关于x轴、y轴对称的点的坐标(共8小题)30.(2022秋•天河区校级期末)下列说法正确的是( )A.已知点M(2,﹣5),则点M到x轴的距离是2B.若点A(a﹣1,0)在x轴上,则a=0C.点A(﹣1,2)关于x轴对称的点坐标为(﹣1,﹣2)D.点C(﹣3,2)在第一象限内【分析】分别根据点的几何意义;在x轴上的点的纵坐标为零;关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;各个象限上的点的坐标符号逐一判断即可.【解答】解:A.已知点M(2,﹣5),则点M到x轴的距离是|﹣5|=5,故本选项不合题意;B.若点A(a﹣1,0)在x轴上,则a可以是全体实数,故本选项不合题意;C.点A(﹣1,2)关于x轴对称的点坐标为(﹣1,﹣2),故本选项符合题意;D.C(﹣3,2)在第二象限内,故本选项不合题意;故选:C.【点评】本题考查了关于x轴对称的点的坐标以及点的坐标,掌握平面直角坐标系中的点的坐标特点是解答本题的关键.31.(2022秋•广宗县期末)若点A(a,3),B(2,﹣b)关于y轴对称,则点M(a,b)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,即可得到结论.【解答】解:∵点A(a,3)、点B(2,﹣b)关于y轴对称,∴a=﹣2,﹣b=3,解得:a=﹣2,b=﹣3,∴点M(a,b)在第三象限,故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标以及各点所在象限的性质,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.32.(2022秋•扶沟县校级期末)已知点M(a,3)和N(4,b)关于y轴对称,则a﹣b= ﹣7 .【分析】直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而得出答案.【解答】解:∵点M(a,3)和N(4,b)关于y轴对称,∴a=﹣4,b=3,∴a﹣b=﹣4﹣3=﹣7.故答案为:﹣7.【点评】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的关系是解题关键.33.(2022秋•灵宝市期末)在平面直角坐标系中,点A(1+m,1﹣n)与点B(﹣1,2)关于y轴对称,则m+n= ﹣1 .【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(1+m,1﹣n)与点B(﹣1,2)关于y轴对称,∴m+1=1,1﹣n=2,解得:m=0,n=﹣1,∴m+n=0﹣1=﹣1.故答案为:﹣1.【点评】此题主要考查了关于y轴对称点的特征,点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).34.(2022秋•辛集市期末)规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它关于x轴作对称点,一个点作“2”变换表示将它关于y轴作对称点.由数字0,1,2组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点A(﹣2,3)按序列“012”作变换,表示点A先向右平移一个单位得到A1(﹣1,3),再将A1(﹣1,3)关于x轴对称得到A2(﹣1,﹣3),再将A2(﹣1,﹣3)关于y轴对称得到A3(1,﹣3)…依次类推.点(1,1)经过“012012012…”100次变换后得到点的坐标为( )(注:“012”算3次变换)A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(﹣1,﹣1)【分析】根据变换的定义解决问题即可.【解答】解:点B(1,1)按序列“012”作变换,表示点B先向右平移一个单位得到B1(2,1),再将A1(2,1)关于x轴对称得到B2(2,﹣1),再将B2(2,﹣1)关于y轴对称得到B3(﹣2,﹣1)…依次类推,点(1,1)经过“012”变换得到点(﹣2,﹣1),点(﹣2,﹣1)经过“012”变换得到点(1,1),说明经过6次变换回到原来的位置,100÷6=16……4,所以点(1,1)经过“012012012…”100次变换后得到点的坐标为(﹣1,﹣1).故选:D.【点评】本题考查规律型:点的坐标,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.35.(2022秋•金牛区校级期末)已知有序数对(a,b)及常数k,我们称有序数对(ka+b,a﹣b)为有序数对(a,b)的“k阶结伴数对”.如(3,2)的“1阶结伴数”对为(1×3+2,3﹣2)即(5,1).若有。
初二数学图形的对称平移与旋转试题答案及解析1.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选C.【考点】轴对称图形和中心对称图形.3.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.4.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.正确的有()A.1个B.2个C.3个D.4个【答案】A【解析】①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误;③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A.5.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形6.如图,已知△ABC和△DCE是等边三角形,则△ACE绕着点按逆时针方向旋转度可得到△.【答案】,60,【解析】因为△和△是等边三角形,故∠,则∠.要由△通过旋转得到△,只需要将△绕着点按逆时针方向旋转60°即可得到.7.点P(-3,5)关于y轴的对称点的坐标是()A.(-3,-5)B.(3,-5)C.(5,-3)D.(3,5)【答案】D.【解析】根据关于y轴对称的点的坐标规律:纵坐标相同,横坐标互为相反数可直接得到答案.∵P(-3,5),∴关于y轴的对称点P′的坐标是(3,5),故选D.考点: 关于x轴、y轴对称的点的坐标.8.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.【答案】130°.【解析】依题意有∠AOB=2(∠A+∠ACO)=2(∠A+∠BCO)=130°.【考点】轴对称的性质.9.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.【答案】答案见试题解析.【解析】作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.试题解析:如图所示:【考点】1.利用轴对称设计图案;2.网格型.10.点P(-3,2)关于x轴对称的点P′的坐标是.【答案】(3,2).【解析】点P(m,n)关于x轴对称点的坐标P′(m,-n),然后将题目已经点的坐标代入即可求得解.根据轴对称的性质,得点P(3,-2)关于x轴对称的点的坐标为(3,2).【考点】关于x轴、y轴对称的点的坐标.11.下列是我国几家银行的标志图象,其中哪一个不是轴对称图形?()【答案】D【解析】由题,ABC选项是轴对称图形,而D图形找不到这样的直线,所以D选项不是轴对称图形,选D.轴对称图形的定义是图形按照某条直线对折后,图形重合,由题,ABC选项是轴对称图形,而D 图形找不到这样的直线,所以D选项不是轴对称图形,选D.【考点】轴对称图形.12.如图,△ABC是格点三角形,且A(-3,-2),B(-2,-3),C(1,-1).(1)请在图中画出△ABC关于y轴的对称△A’B’C’.(2)写出△A’B’C’各点坐标,并计算△A’B’C’的面积.【答案】(1)作图见解析;(2) △A’B’C’的面积=2.5.【解析】(1)要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’; (2)将要求三角形放在一个矩形里面,三角形的面积等于矩形的面积减去三个直角三角形的面积,如图,作矩形FEC’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.试题解析:(1)如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y 轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y 轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’.(2)如图,作矩形FE C’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.【考点】三角形关于直线对称的作图和格点三角形面积的求法.13.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.14.如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出△ABC关于y轴对称图形△A1B1C1.【答案】作图见解析.【解析】要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G,点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I,点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH=C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.试题解析:如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G, 点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I, 点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH= C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.【考点】轴对称图形的作图.15.画出将左图绕点O逆时针旋转90°后的图形,画出将右图以直线MN为对称轴翻折后的图形.【答案】作图详见解析【解析】(1)根据图形旋转的方法,把三角形左边的两条边绕左边的顶点逆时针旋转90°,再把第三条边连接起来,即可得出旋转后的三角形.(2)根据轴对称的性质,先找出6个顶点关于直线MN的对称点,再依次连接起来即可得出图形.试题解析:作图如下:考点: 1.网格问题;2.作图(旋转变换和轴对称变换).16.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.17.如图,将△沿着射线的方向平移到△的位置,若cm,则平移的距离是 cm.【答案】7【解析】由于BC平移得到CE,即,由于cm,所以cm,即平移7cm【考点】图形的平移,中点的定义点评:此题难度不大,关键在于C为BE中点18.下列图案中,是轴对称图形的有A.4个B.3个C.2个D.1个【答案】C【解析】如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫轴对称图形.根据轴对称图形的定义可得第二个图形和第三个图形都不是轴对称图形,故选C.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.19.下面的图形中,既是轴对称图形又是中心对称图形的是()【答案】B【解析】根据轴对称图形与中心对称图形的定义依次分析各选项即可判断.A、D只是轴对称图形,C只是中心对称图形,B既是轴对称图形又是中心对称图形,故选B.【考点】轴对称图形,中心对称图形点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.20.下列图形中,既是轴对称图形又是中心对称图形有()A.1个B.2个C.3个D.4个【答案】B【解析】中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
图形的对称-翻折变换(折叠问题)一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2 C.2D.122.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:213.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:85.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.68.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.2411.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+515.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.616.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.1918.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.220.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.623.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.1226.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.1227.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.529.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③S△DGF=120;④S△BEF=.其中所有正确结论的个数是()A.4 B.3 C.2 D.130.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1图形的对称-翻折变换(折叠问题)参考答案与试题解析一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2C.2D.12【考点】翻折变换(折叠问题);勾股定理的应用;菱形的性质;矩形的性质.【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解答】解:∵菱形AECF,AB=6,∴假设BE=x,∴AE=6﹣x,∴CE=6﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,利用勾股定理得出:BC2+BE2=EC2,BC===2,故选:C.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.2.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=:=14:25.故选B.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理.3.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】在Rt△ABC中,设AB=2a,已知∠ACB=90°,∠CAB=30°,即可求得AB、AC的值,由折叠的性质知:DE=CE,可设出DE、CE的长,然后表示出AE的长,进而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可求∠ACE 的正弦值.【解答】解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:8【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先求出△BDP的面积,进而求出△DPC的面积;借助三角形的面积公式求出的值;由旋转变换的性质得到AB=PB,即可解决问题.【解答】解:如图,过点D作DE⊥BC于点E;由题意得:S△ABD=S△PBD=30,∴S△DPC=80﹣30﹣30=20,∴=,由题意得:AB=BP,∴AB:PC=3:2,故选A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的方法是作高线,表示出三角形的面积;解题的关键是灵活运用翻折变换的性质来分析、判断、推理或解答.5.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,则∠AEF=90°,即∠2=90°,①正确;由图形可知,∠1<∠AEC,②错误;∵∠2=90°,∴∠1+∠3=90°,又∠1+∠BAE=90°,∴∠BAE=∠3,④正确;∵∠BAE=∠3,∠B=∠C=90°,∴△ABE∽△ECF,③正确.故选:C.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°【考点】翻折变换(折叠问题).【分析】根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.【解答】解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故选:A.【点评】此题考查了翻折变换的知识,解答本题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.6【考点】翻折变换(折叠问题).【分析】由矩形的性质得到∠1=∠CFE=60°,由折叠可得∠2=60°,从而求得∠4的度数,得到AE=EC,在Rt△CDE中利用勾股定理可求得EC的长度,即可得到答案.【解答】解:∵矩形ABCD,∴BC∥AD,∴∠1=∠CFE=60°,∵EF为折痕,∴∠2=∠1=60°,AE=EC,∴∠3=180°﹣60°﹣60°=60°,Rt△CDE中,∠4=90°﹣60°=30°,∴EC=2×DE=2×1=2,∴BC=AE+ED=EC+ED=2+1=3.故选:A.【点评】本题考查了翻折问题;由折叠得到角相等,得到AE=EC利用勾股定理求解是正确解答本题的关键.8.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】由四边形ABCD是矩形与△AEC由△ABC翻折得到,AD=CE,∠ADF=∠CEF,由AAS证得△ADF≌△CEF,的长FA=FC,设DF=x,则FA=4﹣x,由勾股定理得:DA2+DF2=AF2,即可求出DF的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AB=DC=4,∠ADF=90°,∵△AEC由△ABC翻折得到,∴BC=EC,∠CEF=∠ABC=90°,∴AD=CE,∠ADF=∠CEF,在△ADF与△CEF中,,∴△ADF≌△CEF(AAS),∴FA=FC,设DF=x,则FA=FC=DC﹣DF=4﹣x,在Rt△DFA中,由勾股定理得:DA2+DF2=AF2,即32+x2=(4﹣x)2,解得:x=,即DF的长是.故选C.【点评】本题主要考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握折叠的性质,得到相等的线段与角是解决问题的关键.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确【考点】翻折变换(折叠问题).【分析】在图1中,由BM=2BF推出∠BMF=30°,所以∠MBF=60°,再根据等边三角形的判定方法即可证明.在图2中,证明方法类似.【解答】解:图1中,∵四边形ABCD是正方形,∴AB=AD=BC∵AE=ED=BF=FC,AB=BM,∴BM=2BF,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC,∴△MBC是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC∴△MBC是等边三角形,∴小平的作法正确.故选D.【点评】本题考查正方形的性质、翻折不变性、直角三角形的性质,解题的关键是在一个直角三角形中如果斜边是直角边的两倍那么这条直角边所对的锐角是30度.10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.24【考点】翻折变换(折叠问题).【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,易得△CEF的周长.【解答】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC﹣BF=10﹣6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=12.故选A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理,利用勾股定理得CF的长是解答此题的关键.11.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF中根据勾股定理列出关于x的方程,即可解决问题.【解答】解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=.故选B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求出BC,由折叠的性质可得∠BED=∠C=90°,BE=BC=3cm,得出AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得出方程,解方程即可.【解答】解:∵∠C=90°,AB=5cm,AC=4cm,∴BC==3cm,∵将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,∴△BED≌△BCD,∴∠BED=∠C=90°,BE=BC=3cm,∴AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得:AE2+DE2=AD2,即22+x2=(4﹣x)2,解得:x=.故选:B.【点评】本题主要考查翻折变换的性质,全等三角形的性质,勾股定理;熟练掌握翻折变换的性质,由勾股定理得出方程是解决问题的关键.13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.【点评】此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+5【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】首先在RT△ABE中,求出EB,再在RT△CDE中利用勾股定理即可解决问题.【解答】解:∵△ADE是由△ADO翻折,∴DE=DO,AO=AE=10,∵四边形OABC是矩形,∴OC=AB=8,AO=BC=10,∠B=∠BCO=∠BAO=90°,在RT△ABE中,∵AE=10,AB=8,∴EB===6,∴EC=4,设DO=DE=x,在RT△DCE中,∵CD2+CE2=DE2,∴(8﹣a)2+42=a2,∴a=5,∴点D(0,5),点E(4,8),设直线DE为y=kx+b,∴解得,∴直线DE为:y=+5.故选A.【点评】本题考查翻折变换、待定系数法确定一次函数的解析式,解题的关键是巧妙利用勾股定理,用方程的思想去思考问题,属于中考常考题型.15.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】首先由DE∥BC与折叠的性质,可证得DE是△ABC的中位线,继而求得答案.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,由折叠的性质可得:∠ADE=∠EDF,AD=DF,∴∠B=∠BFD,∴BD=DF,∴AD=BD,同理:AE=EC,∴DE=BC,即BC=2DE=4.故选B.【点评】此题考查了折叠的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.16.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,等量代换得到AE=CD,AD=CE,推出四边形ACDE是平行四边形,于是得到AF=BC,四边形ACDE是矩形,故A,B 正确;根据平行四边形和矩形的性质得到△ACD≌△ACE≌△CDE≌△ADE≌△ABC,于是得到图中与△ABC全等的三角形有4个,故C正确;推出△BCE是等腰三角形,△AEF,△ACF,△CDF,△DEF是等腰三角形,于是得到图中有5个等腰三角形,故D错误.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,∴AE=CD,AD=CE,∵点B、A、E在同一条直线上,∴AE∥CD,∴四边形ACDE是平行四边形,∴AF=BC,四边形ACDE是矩形,故A,B正确;∵四边形ABCD是平行四边形,四边形ACDE是矩形,∴△ACD≌△ACE≌△CDE≌△ADE≌△ABC,∴图中与△ABC全等的三角形有4个,故C正确;∵BC=CE,∴△BCE是等腰三角形,∵四边形ACDE是矩形,∴AF=EF=CF=DF,∴△AEF,△ACF,△CDF,△DEF是等腰三角形,∴图中有5个等腰三角形,故D错误;故选D.【点评】本题考查了平行四边形的性质、折叠的性质以及等腰三角形的判定和性质,解题的关键是熟记等腰三角形和矩形的判定方法.17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.19【考点】翻折变换(折叠问题).【分析】根据勾股定理得到BC=8,由折叠的性质得到BD=CD=BC=4,DE⊥BC,根据三角形的中位线的性质得到DE=AB=3,AE=AC=5,于是得到结论.【解答】解:∵AB=6,AC=10,∠ABC=90°,∴BC=8,∵将该直角三角形纸片沿DE折叠,使点C与点B重合,∴BD=CD=BC=4,DE⊥BC,∵∠ABC=90°,∴DE∥AB,∴DE=AB=3,AE=AC=5,∴四边形ABDE的周长=AB+AE+DE+BD=6+5+3+4=18,故选C.【点评】此题考查了折叠的性质,勾股定理,三角形的中位线的性质,注意掌握折叠前后图形的对应关系.18.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】根据对称的性质得到△BFE≌△DFE,得到DE=BE.根据已知条件得到∠DEB=90°,设AD=1,BC=4,过A作AG⊥BC于G,根据矩形的性质得到GE=AD=1,根据全等三角形的性质得到BG=EC=1.5,根据勾股定理得到AB=CD==5,通过△BDC∽△DEF,得到,求出BF=,于是得到结论.【解答】解:∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.∵在△BDE中,DE=BE,∠DBE=45°,∴∠BDE=∠DBE=45°.∴∠DEB=90°,∴DE⊥BC.在等腰梯形ABCD中,∵,∴设AD=1,BC=4,过A作AG⊥BC于G,∴四边形AGED是矩形.∴GE=AD=1,∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,∴AG=DE=BE=2.5∴AB=CD==5,∵∠ABC=∠C=∠FDE,∵∠CDE+∠C=90°,∴∠FDE+∠CDE=90°∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,∴,∴DF=,∴BF=,∴AF=AB﹣BF=,∴=.故选B.【点评】此题考查等腰梯形的性质,翻折的性质,三角形全等的判定与性质,等腰直角三角形的性质,相似三角形的判定和性质等知识,注意结合图形,作出常用辅助线解决问题.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.2【考点】翻折变换(折叠问题).【分析】利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG 即可;【解答】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12﹣x,GE=x+6,∵GE2=CG2+CE2∴(x+6)2=(12﹣x)2+62,解得x=4∴BG=4.故选B.【点评】此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】根据关于y轴对称的点的特点找到B',结合直角坐标系可得出点B′的坐标.【解答】解:∵将△ABC沿y轴翻折得到△A′B′C′,∴点B与点B′关于y轴对称,∴B′(2,3),故选B.【点评】本题考查了翻折变换﹣折叠问题,坐标与图形的关系,熟记关于y轴对称的点的特点是解答本题的关键.21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得AE=EC,AD=CD,然后求出△ABD的周长=AB+BC,代入数据计算即可得解.【解答】解:∵△ABC的边AC对折顶点C和点A重合,∴AE=EC,AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=6cm,∴AC=AE+EC=6+6=12,∵△ABC的周长为36cm,∴AB+BC=36﹣12=24cm,∴△ABD的周长是24cm.故选A.【点评】本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的边是解题的关键.22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.【点评】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.23.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.【考点】翻折变换(折叠问题).【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=5÷=cm,在Rt△BDE中,DE=BD•tan30°=×=cm.故选:D.【点评】本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.26.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=AE+DE=AE+BE=9.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:A.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.27.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.【考点】翻折变换(折叠问题).【分析】由有一块直角三角形纸片,∠C=90°,AC=2,BC=,利用勾股定理即可求得AB的长,然后由折叠的性质,求得AE的长,继而求得答案.【解答】解:∵∠C=90°,AC=2,BC=,∴AB==,由折叠的性质可得:AE=AB=,∴CE=AE﹣AC=.故选A.【点评】此题考查了折叠的性质以及勾股定理.注意掌握折叠前后图形的对应关系是解此题的关键.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.5【考点】翻折变换(折叠问题).【分析】利用平行四边形的对边相等得到AD=BC=4,DC=AB=6,再由折叠的性质得到DE=AD,由DC﹣DE求出EC的长即可.【解答】解:由折叠及平行四边形的性质得:AE=AD=BC=4,DC=AB=6,则EC=DC﹣DE=6﹣4=2,故选B.【点评】此题考查了翻折变换(折叠问题),以及平行四边形的性质,熟练掌握折叠的性质是解本题的关键.29.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:。
北师大版八年级数学上册 轴对称解答题(培优篇)(Word 版 含解析)一、八年级数学 轴对称解答题压轴题(难)1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP时,△APQ为等边三角形∴2t=20-2t,解得t=5②当P于B重合,Q与C重合,则所用时间为:4÷2=20综上,当△APQ为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键. 3.再读教材:宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB22AC BC+2212+55(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE ,矩形MNDE .∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1.∵BC =2,∴CD BC =51-,∴矩形BCDE 是黄金矩形. ∵MN DN =15+=512-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH 51,宽HE =35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.4.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠ BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.5.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC 中,AB =AC ,点D 在AC 边上,且AD =BD =BC ,求∠A 的大小; (2)在图1中过点C 作一条线段CE ,使BD ,CE 是△ABC 的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC 中,∠B =30°,AD 和DE 是△ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD =BD ,DE =CE ,请直接写出∠C 所有可能的值.【答案】(1)∠A =36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C 为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.6.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA ≌△QBD ,根据全等三角形的性质得到∠BDQ =∠BAC =60°,求出 CD ,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示:(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.=. 9.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=时,AD是ABC的中线吗?请说明(1)如图1,当点E在AC的延长线上且CD CE理由;AB BD AE之间的数量关系,请说明理(2)如图2,当点E在AC的延长线上时,写出,,由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出,,AB BD AE的数量关系.+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF=∠DAF,∵DF=DF,AF=EF,在△AFD和△EFD中,AD DEDF DFAF EF=⎧⎪=⎨⎪=⎩,∴△AFD≌△EFD(SSS)∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.10.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【答案】(1)见解析(2) ∠AEB=15°(3) 见解析【解析】试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC,∴∠AEB=∠ACD,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE≌△ADC,∴∠AEB=∠ACD,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC,∴AC∥BE.点睛:本题主要考查了等边三角形的性质、全等三角形的判定及性质,证得△ABE≌△ADC 是解决本题的关键.。
第二十七讲图形的折叠、剪拼与分割一页普通的纸,童年时我们用稚气的双手把它折成有趣的动物,民间艺人可以把它剪成美丽的图案.折纸与剪纸是最富于自然情趣而又形象生动的实验,是丰富想象力与心灵手巧的结合.对图形进行折叠与剪拼,是学习几何不可或缺的重要一环,通过折叠与剪拼图形,我们可以发现一些几何结论并知晓这些结论是怎样被证明的.把图形或部分沿某直线翻折叫图形的折叠,对图形通过有限次的剪裁再重新拼接成新的图形叫图形的剪拼.解与图形折叠或剪拼相关的问题,利用不变量解题是关键,在折叠过程中,线段的长度、角的度数保持不变;在剪拼过程中,新图形与原图形的面积一般保持不变.例题求解【例1】如图,有一块直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于.(南通市中考题)思路点拨设CD=x,由折叠的性质实现等量转换,将条件集中到Rt△BDE中,建立x的方程.注图形折叠与剪拼问题可考壹我们的动手操作能力和分析推理能力,解题时需要把计算、推理与合情想象结合起来.折叠问题可以对称观点认识:(1)折痕两边是全等的;(2)对应点连线被折痕垂直平分.解折叠问题常用到勾股定理、相似形、方程思想等知识与方法.【例2】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为( ) A.12 D10 C.8 D.6 (2004年武汉市选拔赛试题)思路点拨只需求出AF长即可.【例3】取一张矩形的纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图1;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB'E,如图2;第三步:沿EB'线折叠得折痕EF,如图3.利用展开图4探究:(1)△AEF是什么三角形?证明你的结论.(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.(山西省中考题)思路点拨本例没有现成的结论,需经历实验、观察、猜想、证明等数学活动,从而探究得到结论.【例4】如图,是从边长为40cm、宽为30cm的矩形钢板的左上角截取一块长为20cm、宽为10cm的矩形后,剩下的一块下脚料.工人师傅要将它作适当地切割,重新拼接后焊成一个面积与原下脚料的面积相等,接缝尽可能短的正方形工件.(1)请根据上述要求,设计出将这块下脚料适当分割成三块或三块以上的两种不同的拼接方案(在图2和图3中分别画出切割时所沿的虚线,以及拼接后所得到的正方形,保留拼接的痕迹);(2)比较(1)中的两种方案,哪种更好一些?说说你的看法和理由.(山东省中考题)思路点拨 拼接后正方形的边长为221030 ㎝,它恰是以30cm 和10cm 为两直角边的直角三角形的斜边的长,为此可考虑设法在原钢板上构造两直角边长分别为30㎝和l0cm 的直角三角形,这是解本例的关键. 注 有效的数学学习过程不能单纯地依赖模仿与记忆,应该通过观察、实验、操作、猜测、验证、推理等数学活动,形成自己对数学知识的理解和有效的学习策略,从而使知识得到内化,形成能力. 近年中考中涌现的设计新颖、富有创意的折叠、剪拼与分割等问题,注重对动手实践操作、应用意识、学习潜能的考查.【例5】 用10个边长分别为3,5,6,11,17,19,22,23,24,25的正方形,可以拼接成一个矩形.(1)求这个矩形的长和宽; (2)请画出拼接图.思路点拨 利用拼接前后图形面积不变求矩形的长和宽;运用矩形对边相等这一性质画拼接图. 【例6】 如图,已知△ABC 中,∠B=∠C=30°,请设计三种不同的分法,将△ABC 分割成四个三角形,使得其中两个是全等三角形,而另外两个是相似但不全等的直角三角形.请画出分割线段,标出能够说明分法的所得三角形的顶点和内角度数(或记号).(画图工具不限,不要求证明,不要求写出画法) (温州市中考题)思路点拨 充分运用几何计算、推理和作图,综合运用动手操作、空间想象、解决问题.学力训练1. 将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.(2002年南宁市中考题)2.一张直角三角形的纸片,像图中那样折叠,使两个锐角顶点A 、B 重合,若∠B=30°,AC=3,则折痕DE 的长等于 . (三明市中考题)3.如图,将一块长为12的正方形纸片ABCD 的顶点A 折至DC 边上的点E ,使DE =5,折痕为PQ ,则线段PM= .4.在△ABC 中,已知AB=20,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小三角形ACD 与三角形BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的41,有如下结论:①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于223a ;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等,其中,正确结论有 个. (天津市中考题)5.将四个相同的矩形(长是宽的3倍),用不同的方式拼成一个大矩形,设拼得大矩形的面积是四个小矩形的面积和,则大矩形周长的值只可能有( )A .1种B .2种C .3种D .4种 (2003年南昌市中考题)6.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A .∠A=∠1+∠2 B .2∠A =∠1+∠2 C .3∠A =2∠1+∠2 D .3∠A=2(∠l+∠2) (北京市海淀区中考题)7.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分.将①展开后得到的平面图形是( )A .矩形B .三角形C .梯形D .菱形 (陕西省中考题)8.如图1,小强拿一张正方形的纸,沿虚线对折一次得图2,再对折一次得图3,然后用剪刀沿图3中的虚线剪去一个角,再打开后的形状是( ) (济南市中考题)9.如图,东风汽车公司冲压厂冲压汽车零件的废料都是等腰三角形的小钢板,其中AB=AC,该冲压厂为了降低汽车零件成本,变废为宝,把这些废料再加工成红星农业机械厂粉碎机上的零件,销售给红星农业机械厂,这些零件的形状都是矩形.现在要把如图所示的等腰三角形钢板切割后再焊接成两种不同规格的矩形,每种矩形的面积正好等于该三角形的面积,每次切割的次数最多两次(切割的损失可忽略不计).(1)请你设计两种不同的切割焊接方案,并用简要的文字加以说明;(2)若要把该三角形废料切割后焊接成正方形零件(只切割一次),则该三角形需满足什么条件? (十堰市中考题)10.如图,ABCD是矩形纸片,E是AB上一点,且BE:EA=5:3,EC=155,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,求AB、BC的长.11.如图,在△ABC中,AB=3,AC=4,BC=5,现将它折叠,使点B与点C重合,则折痕的长是. (四川省竞赛题)12.如图,一张矩形纸片沿BC折叠,顶点A落在点A,处,第二次过A,再折叠,使折痕DE∥BC,若AB=2,AC=3,则梯形BDEC的面积为.( “宇振杯”上海市竞赛题)13.如图,将矩形ABCD的四个角向内折起,恰好拼成既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于. ( “希望杯”邀请赛试题)14.要剪切如图l(尺寸单位mm)所示的两种直角梯形零件,且使两种零件的数量相等.有两种面积相等的矩形铝板,第一种长500mm,宽300mm(如图2);第二种长600mm,宽250mm(如图3);可供选用.(1)填空:为了充分利用材料,应选用第种铝板,这时一块铝板最多能剪甲、乙两种零件共个,剪出这些零件后,剩余的边角料的面积是 mm2.(2)画图,从图2或图3中选出你要用的铝板示意图,在上面画出剪切线,并把边角余料用阴影表示出来.15.如图,EF为正方形ABCD的对折线,将∠A沿DK折叠使它的顶点A落在EF上的G点,则∠DKG为( ) A.15° B.30° C.55° D.75°16.某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图,在Rt△ABC的长都不小于5cm ,则每张直角三角形彩纸能裁成的矩形纸条的总数是( )A .24B .25C . 26D .27 (山东省济南市中考题)17.如图,若将左边正方形剪成四块,恰能拼成右边的矩形,设a =1,则这个正方形的面积为( )A .2537+ B .253+ C .251+ D .2)21(+ (2003年山东省竞赛题)18.如图,已知Rt △ABC 中,∠C =90°,沿过点月的一条直线BE 折叠这个三角形,使点C 落在AB 边上的点为D ,要使点D 恰为AB 的中点,问在图中还需添加什么条件? (1)写出两个满足边的条件; (2)写出两个满足角的条件;(3)写出一个满足除边角以外的其他条件. (黄冈市竞赛题)19.如图,正方形纸片ABCD 中,E 为BC 的中点,折叠正方形,使点A 与点E 重合,压平后,得折痕MN ,设梯形ADMN 的面积为S 1,梯形BCMN 的面积为S 2,求21S S 的值20.已知一个三角形纸片ABC ,面积为25,BC 的长为l0,∠B 、∠C 都为锐角,M 为AB 边上的一动点(M 与A 、B 不重合),过点M 作MN ∥BC 交AC 于点N ,设MN=x . (1)用x 表示△AMN 的面积;(2)△AMN 沿MN 折叠,使△AMN 紧贴四边形BCNM(边AM 、AN 落在四边形BCNM 所在的平面内),设点A 落在平面BCNM 内的点A ′,△A ′MN 与四边形BCNM 重叠部分的面积为y . ①用的代数式表示y ,并写出x 的取值范围.②当x 为何值时,重叠部分的面积y 最大,最大为多少?。
第二十八讲奇妙的对称
对称是一种客观存在,一朵红花、一片绿叶、一只色彩魔斓的蝴蝶等,最令人惊奇的就是它们外形的几何对称性,自然界的对称性可以在从亚原子粒子的结构到整个宇宙的结构的每一个尺度上找到.对称是一种美的标准,人类心智中的某种东西受对称的吸引,对称对我们的视觉有感染力,影响我们对美的感受,建筑、绘画广泛地应用对称.
对称是一个数学概念,我们熟悉的有代数中的对称式、几何中的轴对称、中心对称等,更一般情况是,许多数学问题所涉及的对象具有对称性,不仅包括几何图形中的对称,而且泛指某些对象在有些方面如图形、关系、地位等同彼此相对又相称.
对称是一种解题方法,即解题时充分利用问题自身条件的某些对称性分析问题,在探求几何最值、代数式的化简求值等方面有广泛的应用.
例题求解
【例1】如图,△ABC中,AC=BC=5,∠ACB=80°,O为△AB C中一点,∠OAB=10°,∠OBA=30°,
则线段AO的长是.
( “希望杯”邀请赛试题)
思路点拨△OAB是一般三角形,作∠ACB的平分线,与BO延长线交于D,连AD,OC,通过全等寻找与AO相等的线段,促使问题的解决.
注物理学家皮埃尔·居里曾说,“结果与其原因一样对称.”
大干世界,许多事物都具有某种对称性.许多化学分子是对称的,细胞结构是对称的,病毒往往也是对称的,……对称给人们以和谐均衡的羌感,完全的对称是重复性的可预言的,
人类在漫长的岁月里,体验着对称,享受着对称.
求几何量的最值问题常用方法有:
(1)应用几何中的不等式性质,定理;
(2)对称分析;
(3)代数法.即着眼于揭示问题中变动元素的代数关系.
【例2】如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为( )
A.23 B.13 C.14 D.15 (“新蕾杯”数学竞赛题)
思路点拨 C 、E 两点位置固定,从对称性考虑,确定P 点位置.
【例3】现有一块形如母子正方形的板材,木工师傅想先把它割成几块,然后适当拼接,制成某种特殊形状的板面(要求板材不能有剩余,拼接时不重叠、无空隙),请你按下列要求帮助木工师傅分别设计一种方案:
(1)板面形状为非正方形的中心对称图形; (2)板面形状为等腰梯形; (3)板面形状为正方形.
思路点拨 问题(1),由“中心对称的四边形是平行四边形”想象出中心对称的多边形的大致形状;问题(2),先计算等腰梯形面积为5,猜想等腰梯形的高,可能为2,因此,上、下底的和应为5;问题(3),由正方形的面积为5,计算出它的边长应为5.
【例4】 已知11122=-+-a b b a ,试确定a 、b 的关系. (江苏省竞赛题)
思路点拨 有理化是解根式问题的基本思路,乘方、配方、换元、引入有理化因式等是有理化的常用方法.本例是一道脍炙人口的名题,引入与已知等式地位相对相称的有理化因式,本例可获得简解. 注 数学中的对称,不仅指几何图形中的对称,代数表示式中,若各个宇母互相替代,表示式不变,也称这个表示式关于这些字母是对称的,一个复杂的二元对称式.都可以用最简单对称式b a +,ab 表示. 许多数学问题有着和谐的对称美.对原题匹配一个与之相对的数学式,然后一起参与运算,这就是常说的“对称性地处理具有对称性的问题”,是数学解题中的一个一般性原则. 用对称法解几何题的常见的方式有:
(1)作出常见轴对称图形的对称轴,或利用题设条件中的垂线、角平分线翻折造全等;
(2)利用中点构造中心对称图形.
【例5】 如图,凸四边形ABCD 的对角线AC 、BD 相交于O ,且AC ⊥BD ,已知OA >OC ,OB >~OD ,比较BC+AD 与AB+CD 的大小. (“祖冲之杯”邀请赛试题)
思路点拨 以AC 为对称轴,将部分图形翻折,把相关线段集中到同一个三角形中去,以便运用三角形三边关系定理,这是解本例的关键.
【例6】如图,在△ABC 中,AD 是BC 边的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN=90°,
如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=)(4
1
22AC AB +.
(北京市竞赛题)
思路点拨 易想到勾股定理,需要把分散的条件加以集中,利用中点,构造中心对称全等三角形.
学力训练
1.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.
答:图形 ;理由是: . (吉林省中考题)
2.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD =4,P 在直线MN 上运动,则PB PA -的最大值等于 . ( “希望杯”邀请赛试题)
3.如图,在等腰三角形ABC 中,∠C=90°,BC=2㎝,如果以AC 的中点O 为旋转中心,将这个三角形旋转180°,点B 落在点B ′处,那么B ′点与B 点的原来位置相距 cm .
4.如图,∠AOB=45°,角内有点P ,PO=10,在角的两边上有两点Q ,R(均不同于O 点),则△PQR 的周长的最小值为 . (黄冈市中考题)
5.设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )
(2003平龙岩市中考题)
6.如图,一牧童在A处牧马,牧童家在B处,A、B处距河岸的距离AC、BD的长分别为500m和700m,且C、D两地的距离为500m,天黑前牧童从A点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( ) A.10029m B.1200m C .1300m D.1700m
7.如图,在菱形ABCD中,AB=4a,E在BC上,BE=2 a ,∠BAD=120°,P点在BD上,则PE+PC的最小值为( )
A.6 a0 B.5 a C.4 a D. 23 a
8.如图,一辆汽车在直线形的公路AB上由A向B行驶,M、N分别是位于公路AB两侧的村庄.
(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近,请在图中的公路AB上分别画出点P、Q的位置(保留画图痕迹).
(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M、N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M却越来越远?(分别用文字表述你的结论,不必证明)
(3)在公路AB上是否存在这样一点H,使汽车行驶到该点时,与村庄M、N的距离相等?如果存在,请在图中的AB上画出这一点(保留画图痕迹,不必证明):如果不存在,请简要说明理由. (2001年浙江省嘉兴市中考题)
9.(1)用四块如图I所示的黑白两色正方形瓷砖拼成一个新的正方形,使之形成轴对称图案,请至少给出三种不同的拼法(在①②③中操作);
(2)请你任意改变图I瓷砖中黑色部分的图案,然后再用四块改变图案后的正方形瓷砖拼出一个中心对称图案(在④中操作). (仙桃、潜江、天门、江汉油田中考题)
10.如图,在△ABC 中,AD 平分∠BAC ,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:FD 2
=FB ×FC .
11.如图,设L l 和L 2,是镜面平行且镜面相对的两面镜子,把一个小球放在之间,小球放在镜L l 中的像为A ′,A ′在镜L 2中的像为A ″,若L l 、L 2的距离为7,则AA ″ .
(江苏省竞赛题)
12.如图,设M 是△ABC 的重心,且AM=3,BM=4,CM=5,则△ABC 的面积为 .
13.如图,ABCD —A'B'C'D'为长方体,AA'=50cm ,AB=40cm ,AD=30cm ,把上、下底面都等分成3× 4个小正方形,其边长均为l0cm ,得到点E 、F 、G 、H 和E',、F',、G',、H',假设一只蚂蚁每秒爬行2cm ,则它从下底面E 点沿表面爬行至上底面G',点至少要花时间 秒.
14.无理数4)21(+的整数部分是 . ( “希望杯”邀请赛试题)
15.当x 等于19931,19921,…,21,1,2,…,1992,1993时,计算代数式2
21x x +的值,再将所得的结
果全部加起来,总和等于 .
16.一束光线经3块平面镜反射,反射的路线如图所示,图中字母表示相应的度数,已知c=60°,求d+e 与x 的值.
17.如图,在△ABC 中,AD ∥BC ,已知∠ABC>∠ACB ,P 是AD 上的任一点,求证:AC+BP <AB+PC .
18.如图,矩形ABCD中,AB=20cm,BC=l0cm,若在AC、AB上各取一点M、N,使BM+MN的值最小,求这个最小值.
19.如图,在△ABC中,D、E分别为BC、AC的中点,AD、BE相交于P,若∠BPD=∠C,求证:以△ABC三条中线为边构成的三角形与△ABC相似. (2004年武汉市选拔赛试题)。