1、定义域与区间
- 格式:docx
- 大小:109.74 KB
- 文档页数:6
第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。
(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。
(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
三角函数的定义域区间表达
三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
它们的定义域和区间表达如下:
1. 正弦函数(sin):
定义域,实数集合(-∞,+∞)。
区间表达,[-1, 1]
2. 余弦函数(cos):
定义域,实数集合(-∞,+∞)。
区间表达,[-1, 1]
3. 正切函数(tan):
定义域,实数集合,除去所有奇数倍π的整数倍数。
区间表达,(-∞, +∞)。
4. 余切函数(cot):
定义域,实数集合,除去所有偶数倍π的整数倍数。
区间表达,(-∞, +∞)。
5. 正割函数(sec):
定义域,实数集合,除去所有奇数倍π的整数倍数。
区间表达,(-∞, -1] ∪ [1, +∞)。
6. 余割函数(csc):
定义域,实数集合,除去所有偶数倍π的整数倍数。
区间表达,(-∞, -1] ∪ [1, +∞)。
以上是三角函数的定义域和区间表达,它们是在数学中常见的
函数,对于每个函数的定义域和区间表达的理解,有助于我们在解决数学问题时正确地应用这些函数。
函数定义及定义域一:1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 2.函数的三要素:定义域,对应关系,值域。
3.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.4.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)二.值域 :函数值的取值构成的集合( 先考虑其定义域)。
(1)观察法 (2)配方法 (3)代换法三. 函数图象知识归纳1.定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P (x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y),均在C 上 .2. 画法: A.描点法: B.图象变换法3.常用变换方法有三种 (1)平移变换 (2)伸缩变换 (3)对称变换 4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间(3)区间的数轴表示. 5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
第二节函数的定义域和值域[知识能否忆起]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =a x,y =sin x ,y =cos x ,定义域均为R.(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫xx ≠k π+π2,k ∈Z .(6)函数f (x )=x 0的定义域为{x |x ≠0}.(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R.(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b 24a . (3)y =k x(k ≠0)的值域是{y |y ≠0}. (4)y =a x(a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R. (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R.[小题能否全取]1.(教材习题改编)若f (x )=x 2-2x ,x ∈[-2,4],则f (x )的值域为( ) A .[-1,8] B .[-1,16] C .[-2,8]D .[-2,4]答案:A 2.函数y =1x 2+2的值域为( ) A .R解析:选D ∵x 2+2≥2,∴0<1x 2+2≤12.∴0<y ≤12. 3.(2012·山东高考)函数f (x )=1ln?x +1?+ 4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.4.(教材习题改编)函数f (x )=x -4|x |-5的定义域为________.解析:由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0,得x ≥4且x ≠5.答案:{x |x ≥4,且x ≠5}5.(教材习题改编)若x 有意义,则函数y =x 2+3x -5的值域是________. 解析:∵x 有意义,∴x ≥0.又y =x 2+3x -5=⎝ ⎛⎭⎪⎫x +322-94-5,∴当x =0时,y min =-5. 答案:[-5,+∞)函数的最值与值域的关系函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.[注意] 求函数的值域,不但要重视对应关系的作用,而且还要特别注意函数定义域.求函数的定义域典题导入[例1] (1)(2012·大连模拟)求函数f (x )=lg?x 2-2x ?9-x 2的定义域; (2)已知函数f (2x)的定义域是[-1,1],求f (x )的定义域.[自主解答] (1)要使该函数有意义,需要⎩⎪⎨⎪⎧x 2-2x >0,9-x 2>0,则有⎩⎪⎨⎪⎧x <0或x >2,-3<x <3,解得-3<x <0或2<x <3,所以所求函数的定义域为(-3,0)∪(2,3). (2)∵f (2x)的定义域为[-1,1], 即-1≤x ≤1,∴12≤2x≤2,故f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.若本例(2)条件变为:函数f (x )的定义域是[-1,1],求f (log 2x )的定义域. 解:∵函数f (x )的定义域是[-1,1], ∴-1≤x ≤1,∴-1≤log 2x ≤1,∴12≤x ≤2.故f (log 2x )的定义域为⎣⎢⎡⎦⎥⎤12,2. 由题悟法简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.以题试法1.(1)函数y =2x -x2ln?2x -1?的定义域是________.(2)(2013·沈阳质检)若函数y =f (x )的定义域为[-3,5],则函数g (x )=f (x +1)+f (x -2)的定义域是( )A .[-2,3]B .[-1,3]C .[-1,4]D .[-3,5]解析:(1)由⎩⎪⎨⎪⎧2x -x 2≥0,ln?2x -1?≠0,2x -1>0,得⎩⎪⎨⎪⎧0≤x ≤2,x ≠1,x >12.所以函数的定义域为⎝ ⎛⎭⎪⎫12,1∪(1,2].(2)由题意可得⎩⎪⎨⎪⎧-3≤x +1≤5,-3≤x -2≤5,解不等式组可得-1≤x ≤4. 所以函数g (x )的定义域为[-1,4].答案:(1)⎝ ⎛⎭⎪⎫12,1∪(1,2] (2)C 求已知函数的值域典题导入[例2] 求下列函数的值域. (1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2;(3)y =x +4x(x <0);(4)f (x )=x -1-2x . [自主解答] (1)(配方法)y =x 2+2x =(x +1)2-1,∵y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)y =1-x 21+x 2=21+x 2-1,∵1+x 2≥1,∴0<21+x2≤2.∴-1<21+x 2-1≤1.即y ∈(-1,1].∴函数的值域为(-1,1].(3)∵x <0,∴x +4x=-⎝ ⎛⎭⎪⎫-x -4x ≤-4,当且仅当x =-2时等号成立. ∴y ∈(-∞,-4].∴函数的值域为(-∞,-4].(4)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎝⎛⎦⎥⎤-∞,12.法二:(单调性法)f (x )的定义域为⎝ ⎛⎦⎥⎤-∞,12容易判断f (x )为增函数,所以f (x )≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎝⎛⎦⎥⎤-∞,12.由题悟法求函数值域常用的方法(1)配方法,多适用于二次型或可转化为二次型的函数(例(1)). (2)换元法(例(4)). (3)基本不等式法(例(3)). (4)单调性法(例(4)). (5)分离常数法(例(2)).[注意] 求值域时一定要注意定义域的使用,同时求值域的方法多种多样,要适当选择.以题试法2.(1)函数y =x -3x +1的值域为________. (2)(2012·海口模拟)在实数的原有运算中,我们定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:(1)y =x -3x +1=x +1-4x +1=1-4x +1, 因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}.(2)由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈?1,2],当x ∈[-2,1]时,f (x )∈[-4,-1]; 当x ∈(1,2]时,f (x )∈(-1,6], 即当x ∈[-2,2]时,f (x )∈[-4,6].答案:(1){y |y ∈R ,y ≠1} (2)[-4,6]与函数定义域、值域有关的参数问题典题导入[例3] (2012·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.[自主解答] 函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. [答案] [-1,0]由题悟法求解定义域为R 或值域为R 的函数问题时,都是依据题意,对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.以题试法3.(2012·烟台模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足整数数对的有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.答案:5函数的值域由函数的定义域和对应关系完全 确定,但因函数千变万化,形式各异,值域的求 法也各式各样,因此求函数的值域就存在一定的 困难,解题时,若方法适当,能起到事半功倍的 作用.求函数值域的常用方法有配方法、换元法、 分离常数法、基本不等式法、单调性法(以上例2 都已讲解)、判别式法、数形结合法等.1.数形结合法利用函数所表示的几何意义,借助于图象的直观性来求函数的值域,是一种常见的方法,如何将给定函数转化为我们熟悉的模型是解答此类问题的关键.[典例1] 对a ,b ∈R ,记max|a ,b |=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b .函数f (x )=max||x +1|,|x -2||(x ∈R)的值域是________.[解析] f (x )=⎩⎪⎨⎪⎧|x +1|,x ≥12,|x -2|,x <12,由图象知函数的值域为⎣⎢⎡⎭⎪⎫32,+∞.[答案] ⎣⎢⎡⎭⎪⎫32,+∞[题后悟道] 利用函数所表示的几何意义求值域(最值),通常转化为以下两种类型: (1)直线的斜率:yx 可看作点(x ,y )与(0,0)连线的斜率;y -bx -a可看作点(x ,y )与点(a ,b )连线的斜率. (2)两点间的距离: ?x -x 1?2+?y -y 1?2可看作点(x ,y )与点(x 1,y 1)之间的距离. 针对训练1.函数y =?x +3?2+16+?x -5?2+4的值域为________. 解析:函数y =f (x )的几何意义为:平面内一点P (x,0)到两点A (-3,4)和B (5,2)距离之和.由平面几何知识,找出B 关于x 轴的对称点B ′(5,-2).连接AB ′交x 轴于一点P 即为所求的点,最小值y =|AB ′|=82+62=10.即函数的值域为[10,+∞). 答案:[10,+∞) 2.判别式法对于形如y =a 1x 2+b 1x +c 1a 2x 2+b 2x +c 2(a 1,a 2不同时为零)的函数求值域,通常把其转化成关于x 的一元二次方程,由判别式Δ≥0,求得y 的取值范围,即为原函数的值域.[典例2] 函数y =x 2-xx 2-x +1的值域为________.[解析] 法一:(配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1.∴函数的值域为⎣⎢⎡⎭⎪⎫-13,1.法二:(判别式法)由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0. ∵y =1时,x ∈?,∴y ≠1.又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0, ∴-13≤y <1.∴函数的值域为⎣⎢⎡⎭⎪⎫-13,1. [答案] ⎣⎢⎡⎭⎪⎫-13,1 [题后悟道] 本题解法二利用了判别式法,利用判别式法首先把函数转化为一个系数含有y 的二次方程a (y )x 2+b (y )x +c (y )=0,则在a (y )≠0时,若x ∈R ,则Δ≥0,从而确定函数的最值;再检验a (y )=0时对应的x 的值是否在函数定义域内,以决定a (y )=0时y 的值的取舍.针对训练2.已知函数y =mx 2+43x +nx 2+1的最大值为7,最小值为-1,则m +n 的值为( )A .-1B .4C .6D .7解析:选C 函数式可变形为(y -m )x 2-43x +(y -n )=0,x ∈R ,由已知得y -m ≠0,所以Δ=(-43)2-4(y -m )·(y -n )≥0,即y 2-(m +n )y +(mn -12)≤0,①由题意,知不等式①的解集为[-1,7],则-1、7是方程y 2-(m +n )y +(mn -12)=0的两根,代入得⎩⎪⎨⎪⎧1+?m +n ?+mn -12=0,49-7?m +n ?+mn -12=0,解得⎩⎪⎨⎪⎧m =5,n =1或⎩⎪⎨⎪⎧m =1,n =5.所以m +n =6.求解函数的值域要根据函数解析式的特点选择恰当的方法,准确记忆常见函数的值域,熟练掌握各种类型函数值域的求法,除前面介绍的几种方法外,还有单调性法、导数法(以后还要讲解).1.函数y =13x -2+lg(2x -1)的定义域是( )解析:选C 由⎩⎪⎨⎪⎧3x -2>0,2x -1>0得x >23.2.(2012·汕头一测)已知集合A 是函数f (x )=1-x 2+x 2-1x的定义域,集合B 是其值域,则A ∪B的子集的个数为( )A .4B .6C .8D .16解析:选C 要使函数f (x )的解析式有意义,则需⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0,x ≠0,解得x =1或x =-1,所以函数的定义域A ={-1,1}.而f (1)=f (-1)=0,故函数的值域B ={0},所以A ∪B ={1,-1,0},其子集的个数为23=8.3.下列图形中可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的图象是( )解析:选C 由题意知,自变量的取值范围是[0,1],函数值的取值范围也是[0,1],故可排除A 、B ;再结合函数的定义,可知对于集合M 中的任意x ,N 中都有唯一的元素与之对应,故排除D.4.(2013·长沙模拟)下列函数中,值域是(0,+∞)的是( ) A .y =x 2-2x +1 B .y =x +2x +1(x ∈(0,+∞)) C .y =1x 2+2x +1(x ∈N)D .y =1|x +1|解析:选D 选项A 中y 可等于零;选项B 中y 显然大于1;选项C 中x ∈N ,值域不是(0,+∞);选项D 中|x +1|>0,故y >0.5.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( ) A .RB .{x |x >0}C .{x |0<x <5}解析:选C 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,即0<x <5.6.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2B .(-∞,2]∪[2,+∞)D .(0,+∞)解析:选A ∵x ∈(-∞,1)∪[2,5), 故x -1∈(-∞,0)∪[1,4), ∴2x -1∈(-∞,0)∪⎝ ⎛⎦⎥⎤12,2. 7.(2013·安阳4月模拟)函数y =x +1+x -1?0lg?2-x ?的定义域是________.解析:由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1得⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,则⎩⎪⎨⎪⎧-1≤x <2,x ≠1,所以定义域是{x |-1≤x <1,或1<x <2}.答案:{x |-1≤x <1,或1<x <2}8.函数y =x -x (x ≥0)的最大值为________. 解析:y =x -x =-(x )2+x =-⎝ ⎛⎭⎪⎫x -122+14,即y max =14.答案:149.(2012·太原模考)已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为____________,值域为__________.解析:由已知可得x +2∈[0,1],故x ∈[-2,-1],所以函数f (x +2)的定义域为[-2,-1].函数f (x )的图象向左平移2个单位得到函数f (x +2)的图象,所以值域不发生变化,所以函数f (x +2)的值域仍为[1,2].答案:[-2,-1] [1,2] 10.求下列函数的值域.(1)y =1-x2x +5;(2)y =2x -1-13-4x .解:(1)y =1-x2x +5=-12?2x +5?+722x +5=-12+722x +5, 因为722x +5≠0,所以y ≠-12, 所以函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12. (2)法一:(换元法)设13-4x =t ,则t ≥0,x =13-t 24, 于是y =g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6, 显然函数g (t )在[0,+∞)上是单调递减函数,所以g (t )≤g (0)=112, 因此函数的值域是⎝⎛⎦⎥⎤-∞,112. 法二:(单调性法)函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134, 当自变量x 增大时,2x -1增大,13-4x 减小,所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是单调递增函数,所以当x =134时,函数取得最大值f ⎝ ⎛⎭⎪⎫134=112, 故函数的值域是⎝⎛⎦⎥⎤-∞,112. 11.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值. 解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1. 即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b ②由①②解得⎩⎪⎨⎪⎧ a =32,b =3. 12.(2013·宝鸡模拟)已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域;(2)当a =14时,求函数f (x )的值域. 解:(1)f (x )=x +1x +3,x ∈[0,a ](a >0). (2)函数f (x )的定义域为⎣⎢⎡⎦⎥⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎢⎡⎦⎥⎤1,32, f (x )=F (t )=t t 2-2t +4=1t +4t-2, 当t =4t 时,t =±2?⎣⎢⎡⎦⎥⎤1,32,又t ∈⎣⎢⎡⎦⎥⎤1,32时,t +4t 单调递减,F (t )单调递增,F (t )∈⎣⎢⎡⎦⎥⎤13,613. 即函数f (x )的值域为⎣⎢⎡⎦⎥⎤13,613.1.函数y =2--x 2+4x 的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2] 解析:选C -x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,0≤2--x 2+4x ≤2,所以0≤y ≤2.2.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数f (x )=|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值与最小值的差为________.解析:由函数f (x )=|log 12x |的图象和值域为[0,2]知,当a =14时,b ∈[1,4];当b =4时,a ∈⎣⎢⎡⎦⎥⎤14,1,所以区间[a ,b ]的长度的最大值为4-14=154,最小值为1-14=34.所以区间长度的最大值与最小值的差为154-34=3. 答案:3 3.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解:(1)行车所用时间为t =130x (h), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100]. (2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x , 即x =1810时,上述不等式中等号成立.当x =1810时,这次行车的总费用最低,最低费用为2610元.1.已知函数f (x )=2x +4-x ,则函数f (x )的值域为( )A .[2,4]B .[0,2 5 ]C .[4,2 5 ]D .[2,2 5 ] 解析:选D ∵x ∈[0,4],∴可令x =4cos 2θ,θ∈⎣⎢⎡⎦⎥⎤0,π2, 则y =2·2cos θ+2sin θ=25sin(θ+φ),tan φ=2.又0≤θ≤π2,φ≤θ+φ≤π2+φ, 故cos φ≤sin(θ+φ)≤1,而cos φ=15, ∴2≤y ≤2 5.2.若函数f (x )= ?a 2-1?x 2+?a -1?x +2a +1的定义域为R ,求实数a 的取值范围. 解:由函数的定义域为R ,可知对x ∈R ,f (x )恒有意义,即对x ∈R ,(a 2-1)x 2+(a -1)x +2a +1≥0恒成立.①当a 2-1=0,即a =1(a =-1舍去)时,有1≥0,对x ∈R 恒成立,故a =1符合题意; ②当a 2-1≠0,即a ≠±1时,则有 ⎩⎪⎨⎪⎧ a 2-1>0,Δ=?a -1?2-4?a 2-1?×2a +1≤0,解得1<a ≤9.综上,可得实数a 的取值范围是[1,9].。
1、函数定义域、值域求法总结函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。
2、在同一对应法则作用下,括号内整体的取值范围相同。
一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。
因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。
一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。
定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。
()的定义域求的定义域已知练习)2(],9,3[log :313-x f x f():f (x),f[g(x)]题型一已知的定义域求的定义域()():f g x ,f (x)⎡⎤⎣⎦题型二已知的定义域求的定义域()[]():f g x ,f h(x)⎡⎤⎣⎦题型三已知的定义域求的定义域()[]()[])x (h f x f x g f →→一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
函数的概念与定义域学生姓名年级科目任课老师日期时段教学目标1.了解函数的的基本概念,并能熟练的应用2.理解函数的三种表示方法,了解分段函数,并能够简单的应用3.会求函数的定义域重点、难点1.函数的定义的理解;2.求简单函数的定义域考点及考试要求1.了解函数的概念;2.理解函数的三种表示方法;3.了解简单的分段函数教学内容知识点一、区间的概念【内容概述】设ba Rb a <∈且,,区间是集合的另一种形式.对于区间的理解应注意:1、区间的左端点必须小于右端点,有时我们将b -a 成为区间的长度,对于只有一个元素的集合我们仍然用集合来表示,如{}a ;2、注意开区间),(b a 与点),(b a 在具体情景中的区别.若表示点),(b a 的集合应为{}),(b a ;3、用数轴来表示区间时,要特别注意实心点与空心点的区别;4、对于一个不等式的解集,我们既可以用集合形式来表示,也可用区间形式来表示;5、要注意区间表示实数集的几条原则,数集是连续的,左小,右大,开或闭不能混淆.【典型例题】例1.把下列数集用区间表示:(1)}1|{-≥x x ;(2)}0|{<x x ;(3)}11|{<<-x x ;(4)}4210|{≤≤<<x x x 或知识点二、函数的定义【内容概述】一般地,设A,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 值相对应的y 值叫做函数值,函数值的集合}|)({A x x f ∈叫做函数的值域.显然:B A x x f ⊆∈}|)({【典型例题】例2.下列式子能否确定y 是x 的函数?(1)422=+y x ;(2)111=-+-y x ;(3)xx y -+-=12变式1:判断下列对应是否为集合A 到集合B 的函数.○1||:},0|{,x y x f x x B R A =→>==○22:,,x y x f Z B Z A =→==○3xy x f Z B Z A =→==:,,○40:},0{},11|{=→=≤≤-=y x f B x x A知识点三、函数的三要素【内容概述】1.函数的定义域函数的定义域是构成函数的重要组成部分,如果没有标明定义域,则认为定义域是使解析式有意义的或使实际问题有意义的x 的取值范围.2.求函数定义域的一般法则:(1)若)(x f 为整式,则其定义域为实数集R ;(2)若)(x f 为分式,则其定义域是使分母不为0的实数的集合;(3)若)(x f 为偶次根式,则其定义域是使根号内的式子大于或等于0的实数的集合;(4)若)(x f 是由几个部分的数学式子构成的,那么函数的定义域是使各部分都有意义的实数的集合,即交集;(5)0)(x x f =的定义域是}0|{≠x x ;由实际问题确定的函数,其定义域要受实际问题的约束.【典型例题】例3.求下列函数的定义域,结果用区间表示.(1)6122--++=x x x y ;(2)xx x y -+=||)1(0;(3)91552-----=x x x y .例4.已知四组函数:(1)2)(,)(x x g x x f ==;(2)33)(,)(x x g x x f ==;(3))(12)(),(12)(N n n n g N n n n f ∈+=∈-=;(4)tt t g x x x f 2)(,2)(22-=-=其中表示同一函数的是________________.变式1:下列各组式子是否为同一函数?为什么?(1)2)(|,|)(t t g x x f ==;(2)22)(,x y x y ==;(3)21,11x y x x y -=-⋅+=;(4)3,)3(2-=-=x y x y 例5.高为h ,底面半径为R 的圆柱形容器内,以单位时间内体积为a 的速度灌水.试求水面高y 用时间t 表示的函数式,并求其定义域.例6.已知函数32341++-=ax ax ax y 的定义域为R,求实数a 的取值范围.例7.设}20|{},20|{≤≤=≤≤=y y N x x M ,下图中的四个图形,其中能表示从集合M 到集合N 的函数关系的有()知识点四、抽象函数的定义域【拓展】【内容概述】(1)函数)(x f 的定义域是指x 的取值范围;(2)函数))((x g f 的定义域是指x 的取值范围,而不是)(x g 的取值范围;(3)已知))((x g f 的定义域为B,求)(x f 的定义域,其实质是已知))((x g f 中x 的取值范围为B,求出)(x g 的范围(值域),此范围就是)(x f 的定义域.【典型例题】例8.已知函数)(x f 的定义域为]9,0[,求)12(+x f 的定义域.变式1:已知函数)(x f 的定义域为]13,5[,求)(2x f 的定义域.变式2:已知函数)(x f 的定义域为]3,3[-,求)12(2+x f 的定义域.例9.已知函数)(x f 的定义域为]5,21[,)1()1()(++-=x f x f x g 求)(x g 的定义域.变式1:已知函数)(x f 的定义域为]4,31[,)1()()(xf x f xg +=求)(x g 的定义域.变式2:已知函数)(x f 的定义域为]4,1[,)()()(2x f x f x g +=求)(x g 的定义域.知识点五、检验图形是否为函数图像的方法【典型例题】例10.设}20|{},22|{≤≤=≤≤-=y y N x x M ,函数)(x f 的定义域为M ,值域为N ,则)(x f 的图象可以是()A BC D课后作业1.下列各组函数表示相等函数的是()A、⎩⎨⎧<->=0,,0,)(x x x x f 与||)(x x g =B、12)(+=x x f 与xxx x g +=22)(C、|1|)(2-=x x f 与22)1()(-=t t g D、2)(x x f =与xx g =)(2.函数xx y 1+=的定义域为_______________.3.函数12)(22-+-=a ax x x f 的定义域为A,若A ∉2,则a 的取值范围是____.4.已知函数)(x f y =的定义域为]4,1[,求函数)(2x f y =的定义域.5.已知)(x f 的定义域为]2,0(,求函数)()12(2x f x f +-的定义域.。
定义区间和定义域区别的例子区间和定义域是数学中常用的概念,它们在函数、集合和数列等方面有着重要的应用。
区间是指数轴上的一段连续的区域,而定义域是函数能够接受的输入值的集合。
下面将分别通过具体的例子来解释区间和定义域的概念。
1. 区间的例子:考虑一个线段AB上的点集合,假设A和B是实数轴上的两个点,区间[AB]表示从点A到点B之间所有的点的集合。
例如,[0,1]表示0到1之间的所有实数,包括0和1;(0,1)表示0到1之间的所有实数,但不包括0和1;[0,1)表示0到1之间的所有实数,包括0但不包括1。
2. 定义域的例子:考虑一个函数f(x)=1/x,其中x是实数。
这个函数的定义域为所有非零实数的集合,因为在这个函数中,除数不能为零。
因此,定义域为R-{0},其中R表示实数集合。
3. 区间的例子:考虑一个数列{an}=1/n,其中n是正整数。
这个数列的前n项和可以表示为Sn=1+1/2+1/3+...+1/n。
这里的区间是指数列的有限项的和,例如,S3=1+1/2+1/3=1.8333...,S4=1+1/2+1/3+1/4=2.0833...。
4. 定义域的例子:考虑一个函数g(x)=√x,其中x是实数。
这个函数的定义域为所有非负实数的集合,因为在这个函数中,被开方的数不能为负数。
因此,定义域为[0,+∞),其中+∞表示正无穷大。
5. 区间的例子:考虑一个集合S={x | -1 ≤ x ≤ 1},其中x是实数。
这个集合表示了实数轴上的一个闭区间[-1, 1],包括-1和1。
也可以表示为[-1, 1] = {-1, -0.9, -0.8, ..., 0, 0.1, 0.2, ..., 1}。
6. 定义域的例子:考虑一个函数h(x)=log(x),其中x是实数。
这个函数的定义域为所有正实数的集合,因为在这个函数中,对数的底不能为零或负数。
因此,定义域为(0,+∞),其中+∞表示正无穷大。
7. 区间的例子:考虑一个集合T={x | x > -2},其中x是实数。
函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。
授课教案
学员姓名:__ _授课教师:_ 所授科目:数学
1、区间及写法
新知:设a 、b 是两个实数,且a <b ,则:
叫闭区间;
叫开区间;
,都叫半开半闭区间.
实数集R 用区间表示,其中“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”.
试试:用区间表示.
(1){x |x ≥a }=、{x |x >a }=、
{x |x ≤b }=、{x |x <b }=.
(2)=.
2、函数定义域的求法:
(1)由函数的解析式确定函数的定义域;
① 分式:,则; ② 偶次根式:,则;
③ 零次幂式:,则.
(2)由实际问题确定的函数的定义域;
(3)不给出函数的解析式,而由)(x f 的定义域确定函数)]([x g f 的定义域。
[预习自测]
例1.求下列函数的定义域:
(1
)()f x x =(2))(x f =x x -1
(3)1()21f x x =
+(4))(x f =+-x 5x -21
分析:如果()f x 是整式,那么函数的定义域是实数集R ;如果()f x 是分式,那么函数的定义域是使分母0≠的实数的集合;如果()f x 是二次根式,那么函数的定义域是使根号内的表达式≥0的实数的集合。
★注意定义域的表示可以是集合或区间。
例3.若函数=y )(x f 的定义域为[]1,1-
(1)求函数(1)f x +的定义域;
{|}[,]x a x b a b ≤≤={|}(,)x a x b a b <<={|}[,)x a x b a b ≤<={|}(,]x a x b a b <≤=(,)-∞+∞{|01}x x x <>或()()
f x y
g x =()0g x
≠*)y n N =∈()0f x ≥0[()]y f x =()0f x ≠
(2)求函数=
y )41()41(-++x f x f 的定义域。
[课内练习]
1.函数
()1f x x x =
-的定义域是―――――――――――――――――() A.(),0-∞ B.()0,+∞ C.[0,)+∞ D.R
2.函数f(x)的定义域是[1
2,1],则y=f(3-x)的定义域是―――――――――()
A [0,1]
B [2,52]
C [0,52] D
(),3-∞ 3.函数()f x =(
)0
1x -的定义域是:
4.函数)5lg()(-=x x f 的定义域是
5.函数()()1log 143++--=x x x x f 的定义域是
[归纳反思]
1.函数定义域是指受限制条件下的自变量的取值;
2.求函数的定义域常常是归结为解不等式和不等式组;
[巩固提高]
1.函数y =21x -+12
-x 的定义域是----------------------------[ ]
A .[1-,1]
B .(),1[]1,+∞-∞-
C .[0,1]
D .{1,1-}
2.已知)(x f 的定义域为[2,2-],则)21(x f -的定义域为------------[ ] A .[2,2-] B .[]23,21- C .[]3,1- D .[,2-]23
3.函数
01x y +=
------------------------------------[ ] A .{}0x x > B .{}0x x < C .{}0,1x x x <≠- D .{}0,1x x x ≠≠-
4.函数y =x x 1
+的定义域是
5.函数)(x f =1+x 的定义域是;
6.函数11y x =
-的定义域是:。
7.求下列函数的定义域
(1) y =32+x ;(2)y =)1)(21(1+-x x ;(3)
51+-=x x y
8.若函数
()f x 的定义域为[]3,1x ∈-,则()()()F x f x f x =+-的定义域.
10.已知函数)(x f =c bx ax ++2,若1)()1(,0)0(++=+=x x f x f f ,求)(x f 的表达式.
63-x (x ≥0)
11、已知函数=)(x f 求)1(f 及)]1([f f
5+x (x 0<),
4.设=)(x f 1,11±≠-+x x x ,则)(x f -等于--------------------------------[ ]
A.
)
(
1
x
f B.)
(x
f
-C.)
(
1
x
f
-
D.
)
(x
f
5.已知
)
(x
f=1
2+
x,则)2(f= ,)1
(+
x
f=
6.已知
)
(x
f=1
-
x,Z
x∈且]4,1
[-
∈
x,则)
(x
f的定义域是,
7.已知
)
(x
f=
()
()
2
2
11
11
x x
x x
⎧-≥
⎪
⎨
-<
⎪⎩
,则
=
)
3
3
(f
8.设
3
()1
f x x
=+,求)]}
0(
[
{f
f
f的值。