人教版七年级数学下册教案同步练习题
- 格式:pdf
- 大小:40.78 MB
- 文档页数:187
第9章不等式与不等式组9.2一元一次不等式班级:姓名:知识点1一元一次不等式的概念1.下列不等式是一元一次不等式的是()A.x2+x>1B.12x+1>2x+33C.x+y>3D.x()1x+2>3x+12.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④3>2.A.1个B.2个C.3个D.4个3.若3x2a+3-9>6是关于x的一元一次不等式,则a=.4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.知识点2解一元一次不等式5.不等式3x≤2(x-1)的解集为()A.x≤-1B.x≤-1C.x≤-2D.x≥-26.3x-7≥4(x-1)的解集为()A.x≥3B.x≤3C.x≥-3D.x≤-37.不等式3x+22<x的解集是()A.x<-2B.x<-1C.x<0D.x>28.不等式3(x-1)+4≥2x的解集在数轴上表示为()9.不等式x-5>4x-1的最大整数解是()A.-2B.-1C.0D.110.解不等式14(2-x)≥5的过程是:去分母,得;移项,得,系数化为1,得.11.不等式y-26≥y3+1的解集为.12.请你写出一个满足不等式2x-1<6的正整数x的13.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.14.解不等式:2(x-1)<x+1,并求它的非负整数解.15.解不等式x-1≤1+x3,并求其正整数解.16.解不等式2x-13≤3x-46,并把它的解集在数轴上表示出来.17.解不等式2x-13-5x+12≤1,并把它的解集在数轴上表示出来.18.x取什么值时,代数式1-5x2的值不小于代数式3-2x3+4的值.19.已知x=3是关于x的不等式3x-ax+22>2x3的解,求a的取值范围.知识点3列一元一次不等式解决实际问题20.CBA篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计2017—2018赛季全部38场比赛中最少得到57分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(38-x)≥57B.2x-(38-x)≥5721.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,则她最多还可以买支笔()A.1B.2C.3D.422.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折23.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.25.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,现安排10辆车,则甲种运输车至少应安排几辆?26.八年级二班的五名同学参加学校组织的数学抽查测试,其中四名同学的考试分数分别为85, 80,82,86,又知他们五人的平均成绩不低于80分,那么第五名同学至少要考多少分?27.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?综合点1一元一次不等式与一元一次方程(组)的综合28.若关于x,y的二元一次方程组{3x+y=1+a,x+3y=3的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<429.当m为何值时,关于x的方程(m+2)x-2=1-m(4-x)有:(1)负数解;(2)不大于2的解.综合点2已知一元一次不等式的解集求字母的值30.不等式mx-2<3x+4的解集为x>6m-3,求m的最大整数值.综合点3列一元一次不等式与方程(组)的综合31.为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A,B 两种型号家用净水器共160台,A型号家用净水350元/台,购进两种型号的家用净水器共用36 000元.(1)A,B两种型号家用净水器各购进了多少台?(2)为使每台B型号的家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,则每台A型号家用净水器的售价至少是多少元?(毛利润=售价-进价)拓展点1阅读题32.阅读理解:我们把a bcd称作二阶行列式,规定它的运算法则为a bcd=ad-bc.如2345=2×5-3×4=-2.如果有23-x1x>0,求x的解集.拓展点2含字母系数的一元一次不等式33.解关于x的不等式:ax-x-2>0.拓展点3方案设计34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A,B两种树苗刚好用去1220元,问购进A,B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.第9章不等式与不等式组9.2一元一次不等式答案与点拨1.B(点拨:A 中含未知数项的最高次数是2,C 中含有两个未知数,D 中式子不全是整式,它们都不是一元一次不等式.)2.B(点拨:①③是一元一次不等式,注意③化简后再判断.)3.-1(点拨:2a+3=1,a=-1.)4.1(点拨:|m|=1且m+1≠0,所以m=1.)5.C6.D7.A(点拨:去分母得3x+2<2x,移项得3x-2x<-2,合并同类项得x<-2.)8.A(点拨:不等式3(x-1)+4≥2x 的解集是x ≥-1,大于应向右画,包括-1时,应用实心圆点表示-1这一点,故选A.)9.A(点拨:解不等式得解集为x<-43,所以最大整数解为-2.)10.2-x ≥20-x ≥20-2x ≤-1811.y ≤-812.1,2,3中任何一个都可(点拨:不等式的解集为x<72,其正整数解为1,2,3.)13.去括号得2x-2-3<1,移项、合并同类项得2x<6,系数化为1得x<3.在数轴上把解集表示出来为:14.去括号,得2x-2<x+1,移项、合并同类项,得x<3.因此不等式的非负整数解是0,1,2.15.去分母得3(x-1)≤1+x,去括号得3x-3≤1+x,移项得3x-x ≤1+3,合并同类项得2x ≤4,系数化为1得x ≤2,符合x ≤2的正整数解有1,2.16.去分母,得2(2x-1)≤3x-4.去括号,得4x-2≤3x-4.移项,合并同类项,得x ≤-2.∴不等式的解集为x ≤-2.该解集在数轴上表示如下:17.去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,得4x-15x ≤6+2+3.合并同类项,得-11x ≤11.系数化为1,得x ≥-1.这个不等式的解集在数轴上表示如下:18.由题意得1-5x 2≥3-2x3+4.去分母,得3(1-5x)≥2(3-2x)+24.去括号、移项、合并同类项,-11x ≥27.系数化为1,得x ≤-2711.∴当x ≤-2711时,1-5x 2≥3-2x 3+4.19.因为x=3是关于x 的不等式3x-ax +22>2x 3的解,所以9-3a +22>2,解得a<4.故a 的取值范围是a<4.21.D(点拨:设可买x支笔,则有3x+4×2≤21,即3x+8≤21,3x≤13,x≤133,所以x可取最大的整数为4,她最多可买4支笔.故选D.)22.B(点拨:设可打x折,则有1200x·0.1≥800(1+0.05),解得x≥7.故选B.)23.14(点拨:根据本次竞赛规则可知竞赛得分=10×答对的题数+(-5)×答错(或不答)的题数,得分要超过100分,列出不等式求解即可.设要答对x道题,则10x+(-5)×(20-x)>100,解得x>1313.∵x是整数,∴x=14.)24.3(点拨:设小宏能买x瓶甲饮料,则买乙饮料(10-x)瓶.根据题意,得7x+4(10-x)≤50,解得x≤31 3 .所以小宏最多能买3瓶甲饮料.)25.设甲种运输车安排x辆,则5x+4×(10-x)≥46,解得x≥6.答:甲种运输车至少应安排6辆.26.设第五名同学要考x分,则85+80+82+86+x≥80×5,解得x≥67.答:第五名同学至少要考67分.27.设购买球拍x个,依题意得:1.5×20+22x≤200.解之得:x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.28.D(点拨:将两个方程相加,得4x+4y=4+a,从而有x+y=4+a4,然后解不等式4+a4<2,得a<4.)29.解方程得x=3-4m2.(1)由3-4m2<0得m>34.(2)由3-4m2≤2得m≥-14.30.2(点拨:由题意得m-3<0,即m<3.)31.(1)设A种型号家用净水器购进了x台,则B种型号的净水器购进了(160-x)台.由题意,得150x+350(160-x)=36000.解得x=100.所以160-x=60.所以A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润为z元,则每台B型号家用净水器的毛利润为2z元.由题意,得100z+60×2z≥11000,解得z≥50.150+50=200(元).所以,每台A型号家用净水器的售价至少为200元.32.由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项、合并同类项得:3x>3,x的系数化为1得:x>1.33.ax-x-2>0,(a-1)x>2.当a-1=0时,ax-x-2>0无解;当a-1>0时,x>2a-1;当a-1<0时,a<2a-1.34.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得17-x<x,解得x>81 2 .购进A,B两种树苗所需费用为80x+60(17-x)=20x+1020.费用最省则需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.。
N B A E O D C B A 七年级下册数学期终复习一.按知识网展开复习.平移判定性质同位角,内错角,同旁内角点到直线的距离垂线及其性质对顶角相等邻补角,对顶角平行公理两三条条 直直线线被所第截两线条相直交平行相交平线 面的 内位两置条关直系 例1.如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M ,N •分别是位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P ,Q 两点的位置.例2.已知:如图,直线AB ,垂线OC 交于点O ,OD 平分∠BOC ,OE 平分∠AOC .试判断OD 与OE 的位置关系.例3.若∠DEC +∠ACB =180°,∠1=∠2,CD ⊥AB ,试问FG 与AB 垂直吗?说明理由.例4.如图,直线AB 、CD 相交于O ,OE ⊥AB ,垂足为O ,∠4的对顶角为 ,∠1的邻补角是 ,∠2的余角是 .1342AB C D E O21B C F G E D AE D O A C B D C 3142B A O AC F B ED 12例5.如图,直线AB 、CD 相交于O ,OF ⊥CD ,OE 平分∠BOD ,∠1+∠2=158°,求∠AOC 的度数.例6.找出∠1与∠2的同位角、内错角、同旁内角.课堂练习一.选择题1.下列说法中,错误的是 ( )A .两直线相交,但不一定垂直B .两直线垂直,但不一定相交C .两直线垂直,对顶角互补D .对顶角互补,两直线垂直2. 邻补角是( )A . 和为180°的两个角B . 有公共顶点且互补的两个角C . 有一条公共边且相等的两个角D . 有公共顶点且有一条公共边,另一边互为反向延长线的两个角3.直线AB 上的一点P 和此直线外的一点Q 的距离为3,则Q 到直线AB 的距离( )A .等于3B .大于或等于3C .大于3D .小于或等于34.如图,直线AB 、CD 相交于O 点,OE 平分∠BOD ,∠AOE =146°,则∠AOC 是( )A .34°B .68°C .102°D .44°5.已知∠1=∠2,要使∠3=∠4,则需( )A .∠1=∠3B .∠2=∠4C .∠1=∠4D .AB ∥CD6.下列条件:①对顶角的平分线;②邻补角的平分线;③平行线的同位角平分线;④平行线的内错角平分线;⑤平行线的同旁内角平分线,其中位置关系互相垂直的是 ( )A .①②B .①⑤C .②⑤D .③④7.已知同一平面内有三条直线l 1、l 2、l 3,如果l 1⊥l 2,l 2∥l 3那么l 1与l 3的位置关系是( )A .平行B . 相交但不垂直C .垂直D .重合8.在同一平面内有直线a 1,a 2,a 3,a 4, …, a 100,若a 1⊥a 2,a 2∥a 3,a 3⊥a 4,a 4∥a 5, …,按此规律进行下去,则a 1与a 100的位置关系是( )A .平行B .相交C .重合D .无法判断二.填空题9.将命题“同角的补角相等”写成“如果…那么…”的形式 ,其中题设为 ,结论为 .。
二元一次方程组同步练习一、单选题1.下列是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩B .212x y x z +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩D .3275x y xy +=⎧⎨=⎩2.解为112x y z =⎧⎪=⎨⎪=⎩的方程组是( )A .4213243x y z x y z x y z ++=⎧⎪+-=⎨⎪+-=-⎩B .--01225x y z x y z x y z =⎧⎪+-=⎨⎪+-=⎩C .456x y y z x z +=⎧⎪+=⎨⎪+=⎩D .23-5422x y z x y z x y z +=⎧⎪++=⎨⎪-+=⎩ 3.已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( ) A .x+y=1 B .x+y=-1C .x+y=9D .x+y=-9 4.已知21x y =⎧⎨=⎩是方程mx+3y=5的解,则m 的值是 ( ) A .2 B .-2 C .-1 D .15.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( )A .13x y -=B .12y x +=C .253x y -= D .213x y --= 6.下列方程组中,属于二元一次方程组的是( )A .1120x y x y +=⎧⎪⎨-=⎪⎩B .2124x y x y ⎧+=⎨+=⎩C .358x y xy +=⎧⎨=⎩D .21340y x y +=⎧⎨-=⎩7.关于x y 、的方程组32mx y n x ny m -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩,则()2m n -等于( )8.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-9.用加减消元法解方程组28,1,x y x y +=⎧⎨-=⎩①②其解题步骤如下:(1)+①②,得39x =,解得3x =;(2)2-⨯①②,得36y =,解得2y =;所以原方程组的解为3,2.x y =⎧⎨=⎩ 则下列说法正确的是( )A .步骤(1)(2)都不对B .步骤(1)(2)都对C .本题不适宜用加减消元法解D .加减消元法不能用两次 10.已知等腰三角形的两边长x y 、满足方程组13x y x y -=⎧⎨+=⎩,则此等腰三角形的周长为( )A .5B .4C .3D .5或4二、填空题11.若(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,则a 的值是______.12.若()235230x y x y ,-++-+=则x y +的值为______. 13.关于x ,y 的二元一次方程组321x y x y +=⎧⎨-=-⎩,则4x 2﹣4xy+y 2的值为_____. 14.已知关于x 、y 的方程组37ax by bx ay +=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则a +b =_____. 15.若√2x −x 与|x+2y ﹣5|互为相反数,则(x ﹣y )2019=__.16.已知1{1x y ==- 是二元一次方程mx-ny=2的一个解,那么m+n 的值为_________17.若方程(m 2﹣9)x 2﹣(m ﹣3)x ﹣y=0是关于x,y 的二元一次方程,则m=_________18.把一张面值20元的纸币换成1元和5元的两种纸币,则共有________种换法.19.二元一次方程x +y =4有______组解,有_______组正整数解.20.方程组327,20x y x y +=⎧⎨-=⎩的解是__________.21.(1)填表,使上下每对x ,y 的值是方程3x +y =5的解(2)写出二元一次方程3x +y =5的正整数解: .22.已知:方程组2325x y axy +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.23.已知23x y =⎧⎨=⎩是方程组()2121x m y nx y ⎧+-=⎨+=⎩的解,求m +n 的值.参考答案1.C【解析】【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且含未知数项的最高次数是2的整式方程,再对各选项逐一判断,即可求解.【详解】解:A、此方程组的第一个方程是分式方程,故A不符合题意;B、此方程组是三元一次方程组,故B不符合题意;C、此方程组是二元一次方程组,故C符合题意;D、此方程组是二元二次方程组,故D不符合题意故答案为:C【点睛】此题考查二元一次方程组,关键是根据二元一次方程组的定义判断.2.A【解析】【分析】本题将方程的解代入各选项的方程组检验即可.【详解】(1)代入A方程组检验,三个方程均满足左右两边相等,故此选项正确;(2)代入B方程组检验,x−y−z=−2≠0,不满足左右两边相等,故此选项错误;(3)代入C方程组检验,x+y=2≠4,不满足左右两边相等,故此选项错误;(4)代入D方程组检验,2x+3y−z=3≠5,不满足左右两边相等,故此选项错误.因此,本题正确答案为A.【点睛】解决本题的关键突破口是掌握三元一次方程组的解法.本题考查了学生计算的能力.3.C【解析】【分析】将两方程相加即可得到x,y恒有关系式解36x m y m +=⎧⎨-=⎩①②,①+②得x+y=9,故选C.【点睛】此题主要考查加减消元法,解题的关键是熟知二元一次方程组的解法.4.D【解析】【分析】把21x y =⎧⎨=⎩代入方程可得关于m 的方程,解方程即可求得答案. 【详解】把21x y =⎧⎨=⎩代入方程mx+3y=5得 2m+3=5,解得:m=1,故选D.【点睛】本题考查了二元一次方程的解,熟知二元一次方程的解是使二元一次方程两边相等的未知数的值是解题的关键.5.C【解析】【分析】将x =3t +1,y =2t -1联立,消去t 化简即可.【详解】解:依题意得:3121x t y t ⎧⎨⎩=+①=-②, 由②32⨯-⨯①,得:移项,系数化为1,得:253x y -= 故应选C.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.6.D【解析】【分析】根据二元一次方程组的定义依次判断各项后即可解答.【详解】二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1,③每个方程都是整式方程.由此可得,四个选项中只有选项D 符合要求,故选D.【点睛】本题考查了二元一次方程组的定义,熟知二元一次方程组的三个必需条件是解决问题的关键.7.C【解析】【分析】根据方程组的解满足方程组,可得关于n ,m 的方程,根据解方程组,可得m ,n 的值,根据代数式求值,可得答案.【详解】解:∵关于x 、y 的方程组32mx y n x ny m -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩, ∴312m n n m -=⎧⎨+=⎩,解得1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩, 2215()422m n ⎛⎫-=-+= ⎪⎝⎭, 故选:C.【点睛】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于n ,m 的方程组是解题关键.8.C【解析】【分析】将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .9.B【解析】【分析】步骤(1)采用的是加减方程消去y 求出x 的值,正确;步骤(2)采用的是加减方程消去x 求出y 的值,正确.【详解】解:步骤(1)消去y 求得x 的值,步骤(2)消去x 求得y 的值,两步骤都正确, 故选:B .【点睛】此题考查了解二元一次方程组,解方程组时利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.A【解析】【分析】先求解出二元一次方程组的解,再根据等腰三角形的性质进行求解. 【详解】解13 x yx y,-=⎧⎨+=⎩得21 xy=⎧⎨=⎩,∵x,y是等腰三角形的两边长,∴第三边为2,或1,又1+1=2,不符合三角形的构成条件,所以第三边为2故周长为5选A【点睛】此题主要考查二元一次方程组的应用,解题的关键是熟知三角形的三边关系. 11.6【解析】【分析】依据二元一次方程的定义可得到a+6≠0,|a|-5=1,从而可确定出a的值.【详解】解:∵(a+6)x+y|a|﹣5=1是关于x、y的二元一次方程,∴a+6≠0,|a|-5=1.解得:a=6.故答案为:6.【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.12.-3【解析】【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x+y的值.【详解】∵(3x-y+5)2+|2x-y+3|=0,∴3x-y+5=0,2x-y+3=0,∴x= -2,y= -1.∴x+y= -3.【点睛】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.13.4【解析】【分析】先解出x,y,再把要求的代数式因式分解,再代入x,y进行求解.【详解】解321x yx y+=⎧⎨-=-⎩得5343xy⎧=⎪⎪⎨⎪=⎪⎩∴4x2﹣4xy+y2=(2x-y)2=(2×53-43)2=22=4【点睛】此题主要考查代数式的求值,解题的关键是熟知二元一次方程组的求解.14.10 3【解析】【分析】把方程组的解代入方程组可得到关于a、b的方程组,再利用加减法可求得答案.【详解】∵方程组37ax bybx ay+=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,∴2327a bb a+=⎧⎨+=⎩①②,①+②可得:3a+3b=10,∴a+b103=.故答案为:103.【点睛】本题考查了方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题的关键.【解析】【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与x的值,代入原式计算即可得到结果.【详解】∵√2x−x与|x+2x−5|互为相反数,∴√2x−x+|x+2x−5|=0,∴{2x−x=0①x+2x=5②,①×2+②得:5x=5,解得:x=1,把x=1代入②得:x=2,则原式=−1.故答案为:−1.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.2【解析】【分析】根据二元一次方程的解的定义即可求出答案.【详解】将11xy=⎧⎨=-⎩代入mx-ny=2,∴m+n=2,故答案为:2.【点睛】本题考查二元一次方程,解题的关键是熟练运用二元一次方程解的定义,本题属于基础题型.17.-3【分析】从二元一次方程满足的条件:含有2个未知数和最高次项的次数是1这两个方面考虑.【详解】解:∵方程(m2-9)x2-(m-3)x-y=0是关于x,y的二元一次方程,∴m2-9=0,即m=±3,又∵m-3≠0,即m≠3.∴m=-3.【点睛】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.18.3【解析】【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【详解】设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20-5y,当y=1,x=15;y=2,x=10;y=3,x=5,则共有3种换法,故答案为:3.【点睛】此题考查了二元一次方程的应用,弄清题意是解本题的关键.19.无数; 3.【解析】【分析】二元一次方程的解有无数组,将x看做已知数求出y,确定出方程的正整数解即可.【详解】解:方程x+y=4的解有无数组,方程变形得:y=4-x ,∴当x=1时,y=3;当x=2时,y=2; 当x=3时,y=1.则方程的正整数解有3组,【点睛】此题考查了解二元一次方程的解,解题的关键是将x 看做已知数求出y .20.12x y =⎧⎨=⎩【解析】【分析】用代入消元法即可解出答案.【详解】327,20,x y x y +=⎧⎨-=⎩①② 由②,得y =2x ③,把③代入①,得3x +2×2x =7,解得x =1把x =1代入③,得y =2,∴原方程组的解是1,2.x y =⎧⎨=⎩【点睛】此题主要考查二元一次方程组的解法,解题的关键是熟知代入消元法与加减消元法的应用.21.(1)见解析;(2)x =1、y =2【解析】【分析】(1)当已知x 的值时,把x 的值代入解得到一个关于y 的方程,解方程求得y 的值;当已知y 的值时,把y 的值代入即可得到一个关于x 的方程,解方程求得对应的x 的值.据此计算补全表格;(2)根据方程的解的概念求解可得.【详解】(1)当x=-2时,-6+y=5,解得y=11;当x=0.4时,1.2+y=5,解得y=3.8;当y=0时,3x=5,解得x=53; 当y=3时,3x+3=5,解得x=23; 补全表格如下:(2)二元一次方程3x+y=5的正整数解:x=1、y=2,【点睛】本题考查了二元一次方程的解,正确解二元一次方程是关键. 22.(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【解析】【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a =+⎧⎨=-⎩(2)根据题意,得 120130a a +<⎧⎨->⎩ 解不等式组,得,12a <-所以a的取值范围是:12a<-.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.m+n=-23.【解析】【分析】将23xy=⎧⎨=⎩分别代入方程组()2121x m ynx y⎧+-=⎨+=⎩的两个方程,求得m、n的值,即可求得m+n的值.【详解】将23xy=⎧⎨=⎩代入2x+(m-1)y=2,得2×2+(m-1)×3=2,所以m=13.同理2n+3=1,所以n=-1,所以m+n=-23.【点睛】本题考查了二元一次方程组的解,熟知方程组的解是能使方程组的每一个方程两边相等的未知数的值是解决问题的关键.赠送:七年级上册寒假复习专项训练(三)一、基础过关(22分)1.默写(10分)细读孔子的《论语》,你会体会到一种原创的活力和睿智。
第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
海陵中学初一数学练习(090418) 班级 姓名一.精心选一选!你一定能选对!(每小题3分,共18分)1.方程3y +5x =27与下列的方程所组成的方程组的解是34x y =⎧⎨=⎩的方程是( )A .4x +6y =-6B .4x +7y -40 = 0C .2x -3y =13D .以上答案都不对答案:D2.二元一次方程组2527x y kx y k +=⎧⎨-=⎩ 的解满足方程53x -2y =5,则k 为 ( )A .57 B .-5 C .13 D .1答案:A3.若,,22212=-+=-+z y x z y x 则z y x -+的值等于 ( )A .0B .1C .2D .无法求出答案:B4.(2011年四川凉山)下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得22a b ->-C .由a b >,得a b ->-D .由a b >,得22a b -<-答案:B5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是 ( )A .0B .-3C .-2D .-1答案:D6.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有6个,则a 的取值范围是 ()A . -5≤a ≤-4B .-5≤a <-4C .-5<a ≤-4D .-5<a <-4答案:D二.耐心填一填!一定能填对!(每小题4分,共28分)7.在方程y x 413-=5中,用含x 的代数式表示y 为:y = .答案:1220x -8.若5444-+y x b a 与x y b a 2+-是同类项,则x = ,y = .答案:-1、19.关于x 的方程2x +3(m -1)=x +1的解是正数,则m 的取值范围是_________. 答案:43m < 10.不等式3231<+≤-x 的负整数解是___________。
第8章二元一次方程组8.1二元一次方程组班级:姓名:知识点1二元一次方程的概念1.下列四个方程中,是二元一次方程的是()A.x-3=0B.2x-z=5C.3xy-5=8D.3x-2y=12.已知下列方程,其中是二元一次方程的是(填序号).①3x+2=2y;②2x+y=a;③x 2+y=2;④1x+3-2y;⑤x +2y3=1;⑥3x=1.3.若方程2x 2m+3+3y 5n-9=4是关于x,y 的二元一次方程,求m 2+n 2的值.4.判断下列各式是否是二元一次方程:(1)x+2y=2;(2)xy+y=2-x;(3)7-x+5y=0;(4)7x+2y=z;(5)8x-y;(6)5x+2y=7;(7)x+π=3;(8)x-2y 2=3.不是的请说明理由.知识点2二元一次方程组的概念5.下列方程组中是二元一次方程组的是()A.{xy =1,x +y =2B.{5x -2y =3,1x+y =3C.{2x +z =0,3x -y =15D.{x =5,x 2+y3=76.x,y 是未知数,下列方程组中,不是二元一次方程组的有()A.{x +1=0,y +4=0 B.{x -2y =3,y =-1C.{x +2y =-1,3x -2y =1D.{xy=1,x -y =37.下列方程组①{3x =2y +3,x +y =3x -7;②{x +y =-1,3x +z =5;③{x 2+y =1,4x -y =2;④{x +2=0,y -3=0中,是二元一次方程组的是(填序号).8.小明有1元和5角的硬币共9枚,小明能买到单价为1.5元的圆珠笔4支,若设一元的硬币有x 枚,5角的硬币有y 枚,根据题意可列出方程组,这是一个方程组.知识点3二元一次方程的解的概念9.二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A.{x =0,y =-12B.{x =1,y =1C.{x =1,y =0D.{x =-1,y =-110.二元一次方程3x+2y=11()A.只有一个解B.只有两个解C.任何一对有理数都是它的解D.有无数个解11.若{x =1,y =2是关于x,y 的二元一次方程ax-3y=1的解,则a 的值为()A.-5B.-1C.2D.712.在方程2x+4y=7中,用含x 的代数式表示y,则y=.用含y 的代数式表示x,则x=.13.写出二元一次方程2x+3y=15的两组解:、.知识点4二元一次方程组的解的概念14.二元一次方程组{x -y =4,x +y =2的解是()A.{x =3,y =-7B.{x =1,y =1C.{x =7,y =3D.{x =3,y =-115.已知一个二元一次方程组的解是{x =-1,y =-2则这个方程组是()A.{x +y =-3x -y =-2 B.{x +y =-3x -2y =1C.{2x =y x +y =-3D.{x +y =03x -y =516.已知{x =12,y =-1是二元一次方程组{ax +y =1,2x -by =3的解,则a=,b=.17.下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组{3x -2y =11,2x +3y =16的解?为什么?①{x =1,y =-4;②{x =5,y =2;③{x =7,y =23;④{x =15,y =6.综合点1二元一次方程组与求代数式的值的综合应用18.已知方程x 2m-1-2y 3n+4=100是二元一次方程,则(m+n)2013的值为.19.若{x =a ,y =b是方程3x-2y=2的一个解,求12a-8b+3的值.20.若{x =-1,y =2是方程2x+3y=m 和5x+2y=n 的解,求m 2-n 的值.21.甲、乙两同学共同解关于x,y 的方程组{ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a,得到方程组的解为{x =-3,y =-1,乙看错了方程②中的b,得到方程组的解为{x =5,y =4,求a 2009+()-110b2008的值.综合点2列二元一次方程(组)22.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =7823.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能用二元一次方程组表示题中的数量关系吗?24.根据下列条件,设适当的未知数列出二元一次方程或二元一次方程组.(1)甲数的8%与乙数的11%的和是甲、乙两数和的10%;(2)有父子两人,已知10年前父亲的年龄是儿子年龄的3倍,现在父亲的年龄是儿子年龄的2倍;(3)某同学到书店去买甲、乙两种书共用去39元,其中购甲种书的钱比购乙种书的钱多1元.拓展点1由解写方程或方程组25.请写出一个以x,y 为未知数的二元一次方程组,且同时满足下列条件:①由两个二元一次方程组成;②方程组的解为{x =2,y =3.这样的方程组可以是.26.请你用方程组{x +y =38,2x -y =1编写一道具有实际背景的题,使列出的方程组为上述方程组.拓展点2二元一次方程的整数解27.求方程3x+2y=10的正整数解.28.求方程3y=9-6x 的非负整数解.第8章二元一次方程组8.1二元一次方程组答案与点拨1.B(点拨:x-3=0是一元一次方程;2x-z=5是二元一次方程;3xy-5=8是二元二次方程;3x-2y=1不是整式方程.故选B.)2.①⑤(点拨:根据二元一次方程的定义判定.②含有三个未知数,不是二元一次方程;③中x 2的次数是2,不是二元一次方程;④中1x不是整式,所以不是二元一次方程;⑥中只有一个未知数,不是二元一次方程.只有①⑤符合二元一次方程的定义.)3.由题意可得:{2m +3=1,5n -9=1,解得{m =-1,n =2.由此可得m 2+n 2=(-1)2+22=5.4.二元一次方程有(1),(3);因为(2),(8)含未知数的项有2次,故它们不是二元一次方程;(4)含有3个未知数;(5)不是方程;(6)不是整式方程;(7)中的π不是未知数,它是一元一次方程,所以它们都不是二元一次方程.5.D(点拨:选项A 第一个方程中的xy 是二次的;选项B 的第二个方程有1x,不是整式方程;选项C 含有3个未知数;选项D 符合二元一次方程组的定义.故选D.)6.D(点拨:二元一次方程组的每一个方程都是二元一次方程(或一元一次方程).)7.①④(点拨:②是三元一次方程组,③是二元二次方程组.)8.{x +0.5y =6,x +y =9二元一次9.B(点拨:把四个选项逐一代入二元一次方程x-2y=1,选项B 不能使方程成立.)10.D(点拨:由二元一次方程的解的特性求解.)11.D(点拨:把{x =1,y =2代入方程ax-3y=1中即可求出a 的值,即a-3×2=1,解得a=7.)12.7-2x 4或()74-12x7-4y 2或()72-2y (点拨:表示y(x)则把x(y)看作常数,解方程即可.)13.{x =3,y =3{x =6,y =1(点拨:用一个未知数x(或y)表示出另一个未知数y(或x),然后给x(或y)一个值,求出y(或x)就可得到一组解.答案不唯一.)14.D(点拨:把{x =3,y =-1代入方程组{x -y =4,x +y =2,成立.)15.C(点拨:把{x =-1,y =-2分别代入方程组,使方程组成立即可.)16.42(点拨:把x,y 的值代入方程组得12a-1=1,1+b=3.)17.①②是方程3x-2y=11的解,②③是方程2x+3y=16的解.②是方程组{3x -2y =11,2x +3y =16的解.因为方程组的解必须是方程组中两个方程的公共解.18.0(点拨:由二元一次方程的定义可得2m-1=1,3n+4=1.解得m=1,n=-1.把m=1,n=-1的值代入(m+n)2013可得(m+n)2013=(1-1)2013=0.)19.把{x=a,y=b代入方程3x-2y=2得3a-2b=2,①又因为12a-8b+3=4(3a-2b)+3,②把①式代入②式可得12a-8b+3=4×2+3=11.20.把{x=-1,y=2代入方程可得{2×(-1)+3×2=m,5×(-1)+2×2=n,∴m=4,n=-1,则可得m2-n=42-(-1)=17.21.由于甲看错了①,则{x=-3,y=-1符合4x-by=-2,则可得4×(-3)-b×(-1)=-2,③由于乙看错了②,则{x=5,y=4符合ax+5y=15.则可得5a+20=15,④由③④可得b=10,a=-1.把a=-1,b=10代入a2009+()-110b2008=(-1)2009+(-1)2008=-1+1=0.22.D(点拨:根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵数+女生种树的总棵数=78棵,根据等量关系列出方程组即可.)23.本题的等量关系可表示为:钢笔的单价=笔记本的单价+2元,10支钢笔的价钱+15本笔记本的价钱= 100元-5元.设钢笔每支为x元,笔记本每本为y元,根据题意得{x=y+2,10x+15y=100-5.24.(1)设甲数为x,乙数为y,8%x+11%y=(x+y)10%.(2)设今年父亲x岁,儿子y岁,{x-10=3(y-10),x=2y.(3)设购甲种书用x元,购乙种书用y元,{x+y=39,x-y=1.25.答案不唯一,如{x+y=5,2x-2y=-226.小明昨天上街买了一支钢笔和一个书夹共花去38元钱,已知两个书夹比一支钢笔贵1元,问钢笔和书夹的单价各是多少?(答案不唯一)27.由3x+2y=10,得y=5-32x.设x=2k,则y=5-3k.故3x+2y=10的整数解为{x=2k,y=5-3k.(k为整数)又∵x>0,y>0,∴{2k>0,5-3k>0,则0<k<53.∴k=1,则{x=2,y=2.28.∵3y=3(3-2x),∴y=3-2x.又∵y≥0,x≥0,∴0≤x≤32,x为整数,∴x=0或1.则非负整数解为{x=0,y=3;{x=1,y=1.。
青岛人教版七年级数学同步教案下册...7.1.2平面直角坐标系基础闯关全练1.下列选项中,平面直角坐标系的画法正确的是( )A B C D2.在平面直角坐标系中,有序数对(3,9)所对应的点有_____个;每个确定的点所对应的有序数对有_____个,即坐标平面内的点与有序数对是_____的,3.根据如图所示的平面直角坐标系,写出点A、B、C、D、E、F、O的坐标。
4.在平面直角坐标系中,点(1,5)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A.(-2,1) B.(2,3) C.(3,-5) D.(-6,-2)6.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.点P( m+1,m+3)在x轴上,则点P的坐标是( )A.(-2,0)B.(4,0)C.(2,0)D.(0,-4)8.已知A(a,1),B(-3,b).若AB∥x轴,则a_____,b_____;若AB//y轴,则a_____,b____.9.写出如图所示的六边形ABCDEF各个顶点的坐标,并回答下列问题:(1)线段BC的位置有什么特点?(2)线段CE的位置有什么特点?(3)坐标轴上的点的坐标有什么特点?能力提升全练1.已知点P(0,a)在y轴的负半轴上,则点Q(-a2-1,-a+1)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在平面直角坐标系中,点P( 2m+3,3m-1)在第一、三象限的角平分线上,则点P的坐标为( )A.(4,4) B.(3,3) C.(11,11) D.(-11,-11)3.在平面直角坐标系中,若点M(1,2)与点N(x,2)之间的距离是5,则x的值是____________.4.已知点P坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则P的坐标是________________.5.在平面直角坐标系中描出下列各点:A(1,1),B(5,1),C(3,3),D(-3,3),E(1,-2),F(1,4),G(3,2),H(3,-2),I(-1,-1),J(-1,1).(1)连接AB、CD、EF、GH、IJ,写出它们的中点坐标;(2)将上述中点横坐标和纵坐标分别与对应线段的两个端点的横坐标和纵坐标进行比较,你发现它们之间有什么关系?写出你的发现.三年模拟全练一、选择题1.在下列所给出坐标的点中,在第四象限的是( )A.(3,5) B.(-3,5) C.(-3,-5) D.(3,-5)2.若点A(a,3)在y轴上,则点B(a-3,a+2)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题3.已知点A(-4,0),AB//y轴,且AB=3,则点B的坐标为____________________.4.点P位于y轴右侧,距y轴3个单位长度;并且位于x轴下方,距x轴4个单位长度,则点P的坐标为________________.三、解答题5.在平面直角坐标系中,点4的坐标是(3a-5 ,a+1).(1)若点A在y轴上,求a的值及点A的坐标:(2)若点A到x轴的距离与到y轴的距离相等,且点A在x轴的上方,求a的值及点A的坐标.五年中考全练一、选择题1.在平面直角坐标系中,点(-3,2)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在平面直角坐标系的第二象限内有一点M,点M到戈轴的距离为3,到y轴的距离为4,则点M的坐标是( ) A.(3,-4) B.(4,-3) C.(-4,3) D.(-3,4)3.已知点P(0,m)在y轴的负半轴上,则点M( -m,-m+1)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题4.如图,在平面直角坐标系中,点A的坐标是____________.5.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为___.6.若第二象限内的点P(x,y)满足lxl=3,y2= 25,则点P的坐标是__________.核心素养全练如图,在直角坐标系中,第一次将△AOB变换成△OA?B?,第二次将△OA?B?变换成△OA?B?,第三次将△OA?B?变换成△OA?B?,已知A(1,3),A?(3,3),A?(5,3),A?(7,3);B(2,0),B?(4,0),B?(8,0),B?(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律将△OA?B?变换成△OA?B?,则A?的坐标是_______,B?的坐标是____;(2)若按(1)找到的规律将△OAB进行了n(n≥1,且n为整数)次变换,得到△OAnBn,比较每次变换中三角形顶点有何变化,找出规律,推测An的坐标是____,Bn的坐标是____.7.1.2平面直角坐标系基础闯关全练1.B A中两条坐标轴不是互相垂直的;C中的横轴正方向标示不对,正方向应取向右;D中没有标出正方向.2.答案1;1;一一对应3.解析A(3,4),B(-6,4),C(-5,-2),D(3,-3),E(0,3),F(2,0),O(0,0).4.A 点(1,5)的横、纵坐标均为正,所以在第一象限,故选A.5.C由题图可知小猫位于坐标系中的第四象限,所以小猫遮住的点位于第四象限,故选C.6.D m+(1-2m)=0,解得m=1,所以点P的坐标为(1,-1).则点P在第四象限,故选D.7.A ∵点P在x轴上,∴m+3=0,解得m=-3,∴m+1=-3+1=-2.∴点P的坐标是(-2,0).8.答案≠-3;=1;=-3;≠1解析若AB∥x轴,则b=1,a≠-3.若AB//y轴,则a=-3,b≠1.9.解析A(-2,0),B(0,-3),C(3,-3),D(5,0),E(3,3),F(0,3).(1)线段BC平行于x轴(纵坐标相同的点的连线与x轴平行(或重合)).(2)线段CE平行于y轴(横坐标相同的点的连线与y轴平行(或重合)).(3)x轴上的点的纵坐标为0,y轴上的点的横坐标为0.能力提升全练1.B -a2-1<0,∵点P(0,a)在y轴的负半轴上,∴a<0.∴-a+1>0,∴点Q在第二象限.故选B.2.C由题意得2m+3= 3m-1,∴m=4.∴2m+3= 2×4+3= 11,∴点P的坐标为(11,11).故选C.3.答案-4或6解析M、N两点纵坐标相同,由题意知|x-1| =5.则x-1=±5,解得x=6或x= -4.4.答案(3,3)或(6,-6)解析由题意知2-a= 3a+6或2-a=-(3a+6),解得a=-1或a= -4.∴P的坐标是(3,3)或(6,-6).5.解析如图所示:(1)AB中点坐标为(3,1);CD中点坐标为(0,3);EF中点坐标为(1,1);GH中点坐标为(3,0);IJ中点坐标为(-1,0).(2)中点的横坐标是对应线段两个端点的横坐标和的21,中点的纵坐标是对应线段两个端点的纵坐标和的21.三年模拟全练一、选择题1.D第四象限内的点的坐标特征是(+,-),选项中,符合这一特征的点是(3,-5).2.B ∵点A(a,3)在y轴上,∴a=0.∴B(-3,2),∴点B在第二象限.故选B.二、填空题3.答案(-4,-3)或(-4,3)解析因为AB∥’,轴,所以点A、B的横坐标相同,又因为A(-4,0),所以点B的横坐标为-4,又因为AB=3,所以点B的坐标为(-4,-3)或(-4,3).4.答案(3,-4)解析由P位于y轴右侧,z轴下方,得点尸的横坐标大于零,纵坐标小于零.由距y轴3个单位长度,距x轴4个单位长度,得点P的坐标为(3,-4).三、解答题5.解析(1)∵点A 在y 轴上,∴3a-5 =0,解得35=a .∴381=+a ,∴点A 的坐标为)38,0(.(2)∵点4到x 轴的距离与到y 轴的距离相等,且点A 在x 轴上方,∴①3a-5= a+1,解得a=3,则点A 的坐标为(4,4);②3a-5=-(a+1),解得a=1,则点4的坐标为(-2,2).所以a=3.点A 的坐标为(4,4)或a=1,点A 的坐标为(-2,2).五年中考全练一、选择题1.B 点(-3,2)的横坐标为负,纵坐标为正,所在的象限是第二象限,故选B .2.C 设点M 的坐标为(x ,y)∵点M 在第二象限内.∴x<0,y>0,又∵点M 到x 轴的距离为3,到y 轴的距离为4,∴x= -4,y=3,∴点M 的坐标为(-4,3).故选C .3.A 因为点P(0,m)在y 轴的负半轴上,所以m<0,所以-m>0,- m+1>0,所以点M( -m ,-m+1)在第一象限,故选A .二、填空题4.答案(-2,3)解析南坐标系可得点A 的横坐标为-2.纵坐标为3,所以点A 的坐标是(-2,3). 5.答案(-2,-2)解析根据“相”和“兵”的坐标画出平面直角坐标系,然后根据“卒”的位置确定其坐标,如图,“卒”的坐标为(-2,-2).6.答案(-3,5)解析由lxl=3.y 2=25,得x=±3,y=±5,因为点P 在第二象限,所以x<0,y>0,则x=-3,y=5,则点P 的坐标为(-3,5).核心素养全练答案(1)(9,3);(32,0) (2)(2n+1,3);(2??1,0)解析已知A(1,3),A ?(3,3),A ?(5,3),A ?(7,3);B(2,0),B ?(4,0),B ?(8,0),B ?(16,0). 观察A ?,A ?,…,An 的坐标,发现An 的横坐标为2n+1(n ≥1,且n 为整数),纵坐标为3;观察B ?,B ?,…,Bn 的坐标,发现Bn 的横坐标为2??1(n ≥1,且n 为整数),纵坐标为0. 由以上规律可知:(1)A ?的坐标是(9,3),B ?的坐标是(32,0).(2)An 的坐标是(2n+1,3),Bn 的坐标是(2??1,0).赠送:七年级上册寒假复习专项训练(三)一、基础过关(22分) 1.默写(10分)细读孔子的《论语》,你会体会到一种原创的活力和睿智。
新人教版七年级下册初中数学全册资料汇编课时练(一课一练)5.1.1 相交线一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.大小相等的两个角互为对顶角B.有公共顶点且相等的两个角是对顶角C.两角之和为180°,则这两个角互为邻补角D.—个角的邻补角可能是锐角、钝角或直角2.如图,直线AB,CD相交于点O,所形成的∠1、∠2、∠3和∠4中,一定相等的角有()A.0对B.1对C.2对D.4对4.如图,直线AB,CD相交于点O,若∠1+80°=∠BOC,则∠BOC等于()A.130°B.140°C.150°D.160°二、填空题:请将答案填在题中横线上.5.如图,AB与CD相交所成的四个角中,∠1的邻补角是__________,∠1的对顶角是__________.6.如图是一把剪刀,其中∠1=40°,则∠2=_________,其理由是_________.三、解答题:解答应写出文字说明、证明过程或演算步骤.7.如图,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数.8.如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,求∠BOD的度数.9.探究题:(1)三条直线相交,最少有_________个交点;最多有_________个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有_________个交点;最多有_________个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有_________个交点;最多有_________个交点,对顶角有_________对,邻补角有_________对.5.1.2 垂线一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都有可能2.过点P向线段AB所在直线引垂线,正确的是()A.B.C.D.3.如图,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是()A.过两点有且只有一条直线B.过一点只能作一条直线C.在同一平面内,经过一点有且只有一条直线与已知直线垂直D.垂线段最短二、填空题:请将答案填在题中横线上.4.如图,直线AB与直线CD的位置关系是__________,记作__________,此时,∠AOD=∠__________=∠__________=∠__________=90°.5.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=__________,∠BOC 的补角为__________度.三、解答题:解答应写出文字说明、证明过程或演算步骤.6.如图,已知钝角∠AOB,点D在射线OB上.(1)作直线DE⊥OB;(2)作直线DF⊥OA,垂足为F.参考答案1.D2.C3.C4.垂直AB⊥CD DOB BOC COA5.72°162 6.如图.5.1.3 同位角、内错角、同旁内角一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,以下说法正确的是()A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角2.如图,下列说法错误的是()A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角3.∠1与∠2不是同位角的是()A.B.C.D.4.如图,属于内错角的是()A.∠1和∠2 B.∠2和∠3C.∠1和∠4 D.∠3和∠45.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是()A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定二、填空题:请将答案填在题中横线上.6.如图,如果∠2=100°,那么∠1的同位角等于__________,∠1的内错角等于__________,∠1的同旁内角等于__________.7.如图,∠ABC与__________是同位角;∠ADB与__________是内错角;∠ABC与__________是同旁内角.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.如图,∠A与哪个角是内错角,与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截形成的?9.如图,(1)找出直线DC,AC被直线BE所截形成的同旁内角;(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角;(3)试找出图中与∠DAC是同位角的所有角.10.如图,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.参考答案1.C2.D3.B4.D5.D6.80° 80° 100° 7.∠EAD∠DBC和∠EAD∠DAB和∠BCD8.A∠是内错角,它是直线AB,DE被直线AC所截形成的;∠与ACD∠是同旁内角,它是直线AB,BC被直线AC所截形成的;∠与ACBA∠是同旁内角,它是直线AB,CD被直线AC所截形成的;A∠与ACE∠是同旁内角,它是直线BC,AC被直线AB所截形成的.∠与BA9.10.∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3和∠4互补,所以与∠1互补的角有∠3和∠4.5.2.1 平行线知识点1 认识平行1. 点P,Q都是直线l外的点,下列说法正确的是( )A. 连接PQ,则PQ一定与直线l垂直B. 连接PQ,则PQ一定与直线l平行C. 连接PQ,则PQ一定与直线l相交D. 过点P能画一条直线与直线l平行2. 在同一平面内的两条不重合的直线的位置关系( )A. 有两种:垂直或相交B. 有三种:平行,垂直或相交C. 有两种:平行或相交D. 有两种:平行或垂直3. 在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b_____;(2)a与b有且只有一个公共点,则a与b_____;(3)a与b有两个公共点,则a与b____.4. 如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:______,_____.知识点2 平行公理及其推论6. 在同一平面内,下列说法,错误的是( )A. 过两点有且只有一条直线B. 过一点有无数条直线与已知直线平行C. 过直线外一点有且只有一条直线与已知直线平行D. 过一点有且只有一条直线与已知直线垂直7. 若直线a∥b,b∥c,则a∥c的依据是( )A. 平行公理B. 等量代换C. 等式的性质D. 平行于同一条直线的两条直线互相平行8. 如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是____________________.9. 如图,P,Q分别是直线EF外两点.(1)过P画直线AB∥EF,过Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?参考答案1.D2.C3.(1)平行(2)相交(3)重合4. CD∥MN GH∥PN5.解: (1)如图.(2)EF∥AB,MC⊥CD.6.B7.D8. 过直线外一点有且只有一条直线平和已知直线平行9.解: (1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.5.2.2 平行线的判定一、选择题1. 如图,下列说法错误的是()A. ∵∠1=∠2,∴∥B. ∵∠3=∠4,∴∥C. ∵∠1=∠3,∴∥D. ∵∠2=∠3,∴∥2. 如图,若∠1与∠2互补,∠2与∠4互补,则()A. ∥B. ∥C. ∥D. ∥3. 如图,以下条件能判定GE∥CH的是()A. ∠FEB=∠ECDB. ∠AEG=∠DCHC. ∠GEC=∠HCFD. ∠HCE=∠AEG4. 如图,已知直线BF、CD相交于点O,∠D=40°,下面判定两条直线平行正确的是()A. 当∠C=40°时,AB∥CDB. 当∠A=40°时,AC∥DEC. 当∠E=120°时,CD∥EFD. 当∠BOC=140°时,BF∥DE5. 已知:如图,下列条件中,不能判断直线∥的是()A. ∠1=∠3B. ∠2=∠3C. ∠2=∠4D. ∠4+∠5=180°二、填空题6. 如图:(1)如果∠1=∠B,那么_______∥_______,根据是___________________________. (2)如果∠3=∠D,那么_______∥_______,根据是___________________________. (3)如果要使BE∥DF,必须∠1=∠_______,根据是___________________________. 7. 如图,(1)如果AB∥CD,必须具备条件∠______=∠________,根据是____________________;(2)要使AD∥BC,必须具备条件∠______=∠________,根据是____________________.8. 一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B =140°,那么,∠C应是____________.9. 如图,给出了过直线外一点作已知直线的平行线的方法,其依据是____________.10. 观察图形,回答问题:若使AD∥BC,需添加什么条件?(要求:至少找出4个条件)答:①______________________;②______________________;③______________________;④______________________.11. 已知直线a、b、c,若a∥b,b∥c,则a_____c,若a⊥b,b⊥c,则a_____c,若a∥b,b⊥c,则a______c.三、解答题12. 如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∥BE.证明:∵DF平分∠ADE(已知),∴__________=∠ADE().∵∠ADE=60°(已知),∴_________________=30°().∵∠1=30°(已知),∴____________________(),∴____________________().13. 如图,点B在DC上,BE平分∠ABD,∠DBE=∠A,则BE∥AC,请说明理由。