五年级组合图形
- 格式:ppt
- 大小:1.02 MB
- 文档页数:29
小学数学五年级上册《组合图形的面积》7篇小学数学五年级上册《组合图形的面积》1组合图形面积是学生学习了长方形,正方形,平行四边形,三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。
在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。
在让学生动手操作,自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。
接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),第一,你是怎样分的(分割成两个长方形);第二,长方形的面积公式是怎样的;第三,要计算第一个长方形的面积,长是多少,宽是多少要计算第二个长方形的面积,长是多少,宽是多少在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。
学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。
这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。
因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。
小学数学五年级上册《组合图形的面积》2一分耕耘一分收获。
这次百花奖,让我感受颇深,对于本节课,《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的`面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。
小学五年级数学《组合图形面积的计算》优秀教案一等奖三1、小学五年级数学《组合图形面积的计算》优秀教案一等奖三教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”。
教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学准备:课件、图片等。
教学过程:一、创设情境,引导探索师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。
(指名回答)生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
……师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。
通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。
】二、探索活动,寻求新知师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?课件逐一出示图一、图二、图三,让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
《组合图形》教学设计《组合图形》教学设计(精选9篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
下面是小编整理的《组合图形》教学设计,欢迎大家分享。
《组合图形》教学设计篇1教学目标:1、通过拼图活动,让学生了解组合图形的特点。
2、在自主探索的活动中,理解计算组合图形面积的多种方法。
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题,同时通过各活动培养学生的空间观念。
重点、难点重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:选择有效的方法解决问题。
设计意图:本节课是在学生原有的求基本图形面积基础上,进一步探讨研究组合图形的面积,也是日常生活中经常需要解决的问题。
因此,我设计时主要是让学生自主探索,在实际生活情境中领会转化的数学思想,先把基本图形拼成组合图形,再独立找出计算时所需要的条件,进一步体会、掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法进行计算,从而解决实际问题。
教学过程:一、激发兴趣、复习铺垫学生落座后。
师:今天老师带来了几幅同学们自己创作的作品,想看吗?这是谁的作品,你来介绍一下,(学生回答)你的这幅作品,用到了哪些我们学过的基本图形?学生介绍:这个图案是由xxxxx拼成的。
师:这几幅作品有什么共同的特点呢?(kj出现拼出的图形)生1:都有三角形师:这是你的发现,还有呢?生2:都是拼成的师:还有吗?生3:都是以前学过的图形拼成的生:都是用以前学过的基本图形拼成的,师:说的真好,真是一个善于观察的孩子!师:像这样,由几个简单的基本图形拼成的图形,我们就叫它组合图形。
(显示只有线条的图形)出示课题:组合图形问学生:这是什么图形?(组合图形)为什么?(它是由几个简单的基本图形拼成的)真是个聪明的孩子!谁能说说,这个组合图形是由哪几个基本图形拼成的?(学生回答后,点击课件显示虚线)师:这个组合图形的面积有多大?你会求吗?说说你的想法?生:就是把那几个基本图形的面积加起来师:好,这节课我们就一起来学习(补充课题:)组合图形的面积二、新授出示房屋的图片,再出示侧面墙。
五上常考题:组合图形面积1.计算下边图形的面积。
(单位:厘米)解:10×3+(10+15)×(10-3)÷2=30+25×7÷2=30+87.5=117.5(平方厘米)答:这个图形的面积是117.5平方厘米。
2.求出下面方格中图形的面积。
(小方格的边长为1cm。
)解:如图所示:把这个图形分成了两个三角形和一个梯形,它的面积是:7×2÷2+5×1÷2+(5+7)×5÷2=7×2÷2+5×1÷2+12×5÷2=14÷2+5÷2+60÷2=7+2.5+30=9.5+30=39.5(cm²)3.一张长方形纸如图折叠,求阴影面积。
解:8-3=5(厘米)5×10÷2=50÷2=25(平方厘米)10×8-25×2=80-50=30(平方厘米)4.下图是两个正方形,求阴影部分的面积。
解:6×6+4×4=36+16=52(平方厘米)6×6÷2=36÷2=18(平方厘米)4+6=10(厘米)10×4÷2=40÷2=20(平方厘米)52-18-20=34-20=14(平方厘米)5.如图,将这个图形贴满彩纸,买这些彩纸一共用去25.92元钱,这种彩纸的价格是每平方米多少元?解:2.4×1.5+2.4×1.5÷2=3.6+3.6÷2=3.6+1.8=5.4(平方米)25.92÷5.4=4.8(元)答:这种彩纸的价格是每平方米4.8元。
6.选择合适条件计算下面每个图形的面积。
(1)(2)(3)(1)解:15×8=120(平方米)(2)解:(4+7)×8÷2=11×8÷2=88÷2=44(平方分米)(3)解:12×16+20×9÷2=192+180÷2=192+90=282(平方厘米)7.计算下面图形的面积。
组合图形的面积【2 】1.根本平面图形特点及面积公式特点面积公式正方形①四条边都相等.②四个角都是直角.③有四条对称轴.S=a2长方形①对边相等.②四个角都是直角.③有二条对称轴.S=ab平行四边形①两组对边平行且相等.②对角相等,相邻的两个角之和为180°③平行四边形轻易变形.S=ah三角形①双方之和大于第三条边.②双方之差小于第三条边.③三个角的内角和是180°.④有三条边和三个角,具有稳固性.S=ah÷2梯形①只有一组对边平行.②中位线等于高低底和的一半.S=(a+b)h÷22.根本解题办法:由两个或多个简略的根本几何图形组合成的组合图形,要盘算如许的组合图形面积,先依据图形的根本关系,再应用分化.组合.平移.割补.添帮助线等几种办法将图形变成根本图形分离盘算.1.已知右面的两个正方形边长分离为6分米和4分米,求图中暗影部分的面积.2.右图是两个雷同的直角三角形叠在一路,求暗影部分的面积.(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内暗影部分的面积.4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分离为6厘米.4厘米,DF的长是若干厘米?5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求暗影部分的面积.6.右图是一块长方形公园绿地,绿地长24米,宽16米,中央有一条宽为2米的道路,求草地(暗影部分)的面积.7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E.F分离是AF.BC的中点,那么暗影部分的面积是若干?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中央有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(暗影部分)的面积有多大?9.如图,一个三角形的底长5米,假如底延伸1米,那么面积就增长2平方米.问本来的三角形的面积是若干平方米?1米组合图形的面积功课1.在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方形ABCD的边长为15厘米,DF的长是若干厘米?2.如图,ABCD是一个长12厘米,宽5厘米的长方形,求暗影部分三角形ACE的面积.3.已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中暗影部分的面积是若干?4.如图,A.B两点是长方形长和宽的中点,那么暗影部分占长方形的面积是若干?5.如图,在平行四边形ABCD中,E.F分离是AC.BC的三等分点,且平行四边形的.面积为54平方厘米,求S△BEF6.盘算右边图形的面积.(至罕用3种办法)(单位:米)。
组合图形的面积知识集结知识元组合图形的面积知识讲解1.1、各图形面积公式:2、组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。
3、计算组合图形的面积:(1)分割法,即将这个图形分割成几个基本的图形。
分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。
(2)添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。
5.计算组合图形阴影部分的面积:等于组合图形的面积减去空白部分的面积。
例题精讲组合图形的面积例1.'求下图中涂色部分的面积。
(单位:cm)求阴影部分面积。
如图,小正方形ABCD的边长是5cm,大正方形CEFG的边长是10cm,求图中阴影部分面积。
'例3.'在一块梯形菜地里,有一条宽约1m的小路(如图),每平方米产菜4.5kg,这块菜地共产菜多少千克?'例4.'如图是某工艺品的展开图。
它的面积是多少?(单位:cm)'例5.'图4由3个边长是6的正方形组成,则图中阴影部分的面积是________。
计算如图阴影部分的面积.(单位:厘米)'例7.'如图,2个大正方形、2个中正方形和1个小正方形紧挨着排在一起,其中大中小正方形的边长分别为3、2、1,那么阴影部分的面积是多少?'例8.'如图,三角形ABC的面积为10,AD与BF交于点E,且AE=ED,BD=CB,求图中阴影部分的面积和.'例9.'求图形中阴影部分的面积.(单位:dm)例10.'如图中,ADEF是一个长8CM,宽5CM的长方形,ABCD为直角梯形,BEF为直角三角形,图中阴影部分的面积是多少?'探索活动:成长的脚印知识讲解计算不规则图形的面积:估计、计算不规则图形面积的内容主要是以方格图作为背景进行估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。