LAB04_曲线拟合的最小二乘法实验
- 格式:doc
- 大小:146.00 KB
- 文档页数:6
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。
设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi, yi) i=1, 2,, N。
都对应于 xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。
显然Nm 时,参数不能确定。
在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
实验三 函数逼近与曲线拟合一、问题的提出:函数逼近是指“对函数类A 中给定的函数)(x f ,记作A x f ∈)(,要求在另一类简的便于计算的函数类B 中求函数A x p ∈)(,使 )(x p 与)(x f 的误差在某中度量意义下最小”。
函数类A 通常是区间],[b a 上的连续函数,记作],[b a C ,称为连续函数空间,而函数类B 通常为n 次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。
主要内容有:(1)最佳一致逼近多项式(2)最佳平方逼近多项式(3)曲线拟合的最小二乘法二、实验要求:1、构造正交多项式;2、构造最佳一致逼近;3、构造最佳平方逼近多项式;4、构造最小二乘法进行曲线拟合;5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差;6、探讨新的方法比较结果。
三、实验目的和意义:1、学习并掌握正交多项式的MATLAB 编程;2、学习并掌握最佳一致逼近的MATLAB 实验及精度比较;3、学习并掌握最佳平方逼近多项式的MATLAB 实验及精度比较;4、掌握曲线拟合的最小二乘法;5、最小二乘法也可用于求解超定线形代数方程组;6、 探索拟合函数的选择与拟合精度之间的关系;四、 算法步骤:1、正交多项式序列的生成{n ϕ(x )}∞0:设n ϕ(x )是],[b a 上首项系数a ≠n 0的n 次多项式,)(x ρ为],[b a 上权函数,如果多项式序列{n ϕ(x )}∞0满足关系式⎩⎨⎧=>≠==⎰.,0,,0)()()()(),(k j A k j x d x x x kk j bak j ϕϕρϕϕ则称多项式序列{n ϕ(x )}∞0为在],[b a 上带权)(x ρ正交,称n ϕ(x )为],[b a 上带权)(x ρ 的n 次正交多项式。
1)输入函数)(x ρ和数据b a ,;2)分别求))(),(()),(,(x x x x j j j nϕϕϕ的内积; 3)按公式①)())(),(())(,()(,1)(10x x x x x x x x j n j j jj n nn ϕϕϕϕϕϕ∑-=-==计算)(x n ϕ,生成正交多项式;流程图:开始否是结束2、 最佳一致逼近多项式],[)(b a C x f ∈,若存在n n H x P ∈)(*使得n n E P f =∆),(*,则称)(*x P n 是)(x f 在],[b a 上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。
曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。
x 必须是单调的。
矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
Lab04.曲线拟合的最小二乘法实验【实验目的和要求】1.让学生体验曲线拟合的最小二乘法,加深对曲线拟合的最小二乘法的理解;2.掌握函数ployfit和函数lsqcurvefit功能和使用方法,分别用这两个函数进行多项式拟合和非多项式拟合。
【实验内容】1.在Matlab命令窗口,用help命令查询函数ployfit和函数lsqcurvefit功能和使用方法。
2.用多项式y=x3-6x2+5x-3,产生一组数据(x i,y i)(i=1,2,…,n),再在y i上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)均匀分布随机数),然后对x i和添加了随机干扰的y i用Matlab提供的函数ployfit用3次多项式拟合,将结果与原系数比较。
再作2或4次多项式拟合,分析所得结果。
3.用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为τt eVVVtv ---=)()(,其中V0是电容器的初始电压,τ是充电常数。
对于下面的一组t,v数据,用Matlab提供的函数lsqcurvefit确定V和τ。
【实验仪器与软件】1.CPU主频在1GHz以上,内存在128Mb以上的PC;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师:年月日Lab04.曲线拟合的最小二乘法实验1.在Matlab命令窗口,用help命令查询函数ployfit和函数lsqcurvefit功能和使用方法。
在MATLAB中,用polyfit函数来求得最小二乘拟合多项式的系数,polyfit函数的调用格式为:[P,S]=polyfit(X,Y,m)。
函数根据采样点X和采样点函数值Y,产生一个m次多项式P及其在采样点的误差向量S。
其中X,Y是两个等长的向量,P是一个长度为m+1的向量,P的元素为多项式系数,得到的多项式为降序。
同样可以用lsqcurvefit函数来求得最小二乘拟合多项式的系数,调用格式为:x = lsqcurvefit(fun,x0,xdata,ydata)。
matlab最小二乘法拟合matlab最小二乘法拟合是一种常用的拟合方法,它属于非线性最小二乘拟合,其可以用来拟合任意数据。
matlab最小二乘法拟合主要包括以下几个步骤:一、准备数据1、准备数据阶段:包括收集数据,整理数据,观察数据;2、设计拟合模型:根据观察到的特性确定拟合模型方程;3、计算函数参数:根据拟合模型对原始数据进行曲线拟合,计算出模型参数;二、参数估计1、最小二乘法拟合:将所有点拟合到曲线上,使每个点到曲线上的距离之和最小;2、非线性最小二乘拟合:根据多元非线性模型参数的变化范围,构造最小二乘拟合的曲线,应用非线性拟合和最小二乘法拟合找出最佳拟合曲线;3、外推预测:根据拟合后的参数预测特定值。
三、评价拟合结果1、残差平方和:根据拟合模型和所得数据,计算拟合结果和拟合误差;2、自由度:自由度 = 总数据点数- 拟合模型参数的个数;3、复杂度检验:考虑拟合模型的复杂度对拟合效果的影响;4、对数校正残差:考虑拟合结果的稳定性,比较数据的分布与真实数据的分布;5、误差统计检验:通过统计分析评估拟合结果的可靠性。
四、模型预测1、均方根误差(RMSE):评估预测模型拟合准确性,值越小,模型越有效;2、均方误差(MSE):反映预测值与真实值之间的平均差异;3、绝对均差(MAE):反映预测值与真实值之间的绝对均值差异;4、平均绝对平方偏差(MAHAPE):反映模型拟合精度平均差距,值越接近0,模型越精确;5、杰拉德系数(R):反映预测值与真实值之间的线性联系,值越接近1,模型越有效。
以上是matlab最小二乘法拟合的原理和应用,它不仅可以拟合任意数据,而且具有较强的适用性和准确性。
此外,matlab最小二乘法拟合还可以用来评估拟合结果的准确性,方便对数据进行分析处理。
数值分析曲线拟合的最小二乘法实验报告数值分析曲线拟合的最小二乘法实验报告篇一:数值分析设计曲线拟合的最小二乘法曲线拟合的最小二乘法一、目的和意义在科学实验的统计方法研究中,往往要从一组实验数据?xi,yi??i?0,1,2,?,m?中,寻找自变量x与因变量y之间的函数关系y?F?x?。
由于观测数据往往不准确,因此不要求y?F?x?经过所有点?xi,yi?,而只要求在给定点xi上误差而只要求所在所有给定点xi上的误差?i?F(xi)?yi ?i?0,1,2,?,m?按某种标准最小。
若记????0,?1,?2,?,?m?,就是要求向量?的范数如果用最大范数,计算上困难较大,通常采用欧式范数?最小。
2T 作为误差度量的标准。
F?x?的函数类型往往与实验的物理背景以及数据的实际分布有关,它一般含有某些待定参数。
如果F?x?是所有待定参数的线性函数,那么相应的问题称为线性最小二乘问题,否则称为非线性最小二乘问题。
最小二乘法还是实验数据参数估计的重要工具。
这是因为这种方法比其他方法更容易理解,即使在其他方法失效的情况下,用最小二乘法还能提供解答,而且从统计学的观点分析,用该方法求得各项估计具有最优统计特征,因此这一方法也是系统识别的重要基础。
线性最小二乘问题可以借助多元微分学知识通过求解法方程组得到解答。
用最小二乘法求拟合曲线时,首先要确定S?x?的形式。
这不单纯是数学问题,还与所研究问题的运动规律以及所得观测数据?xi,yi?有关;通常要从问题的运动规律以及给定数据描图,确定S?x?的形式,并通过实际计算选出较好的结果。
为了使问题的提法更有一般性,通常把最小二乘法中的? 22 都考虑为加权平方和22 ? ????xi???S?xi??f?xi??? i?0 m 2 这里??xi??0是?a,b?上的加权函数,它表示不同点?xi,f?xi?处的数据比重不同。
?二、计算方法在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y与时间t的拟合曲线。
Lab04.曲线拟合的最小二乘法实验
【实验目的和要求】
1.让学生体验曲线拟合的最小二乘法,加深对曲线拟合的最小二乘法的理解;
2.掌握函数ployfit 和函数lsqcurvefit 功能和使用方法,分别用这两个函数进行多项式拟合和非多项式拟合。
【实验内容】
1.在Matlab 命令窗口,用help 命令查询函数ployfit 和函数lsqcurvefit 功能和使用方法。
2.用多项式y =x 3-6x 2+5x-3,产生一组数据(x i ,y i )(i =1,2,…,n),再在y i 上添加随机干扰(可用rand 产生(0,1)均匀分布随机数,或用randn 产生N(0,1)均匀分布随机数),然后对x i 和添加了随机干扰的y i 用Matlab 提供的函数ployfit 用3次多项式拟合,将结果与原系数比较。
再作2或4次多项式拟合,分析所得结果。
3.用电压V =10伏的电池给电容器充电,电容器上t 时刻的电压为τt e V V V t v ---=)()(0,其中V 0是电容器的初始电压,τ是充电常数。
对于。
【实验仪器与软件】
1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ;
2.Matlab 6.0及以上版本。
实验讲评:
实验成绩:
评阅教师:
200 年 月 日
Lab04.曲线拟合的最小二乘法实验
一、查询函数ployfit和函数lsqcurvefit功能和使用方法
启动MATLAB后在命令窗口输入命令:
答:polyfit函数的调用格式为:[P,S]=polyfit(X,Y,m)。
函数根据采样点X和采样点函数值Y,产生一个m次多项式P及其在采样点的误差向量S。
其中X,Y是两个等长的向量,P是一个长度为m+1的向量,P的元素为多项式系数,得到的多项式为降序。
调用格式为:x = lsqcurvefit(fun,x0,xdata,ydata)。
其中,fun为自定义的函数,函数中的未知量即为要求的多项式的系数;x0为系数的初值;xdata与ydata是给定的数据构成的向量,且xdata与ydata的长度相等。
二、多项式拟合
1.用多项式y=x3-6x2+5x-3,产生一组数据(x1,y i)
y=x.^3-6*x.^x=1:0.5:10;
2+5*x-3;
2.对数据(x i,y i)添加随机干扰生成数据(x2,y2)
y0=y+rand;
3.对数据(x2,y2)进行2、3、4次多项式拟合
4.作图进行拟合效果比较
二、非多项式拟合
编写程序如下:
t=[0.5 1 2 3 4 5 7 9];
v1=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];
y=log(10- v1);
f=polyfit(t,y,1)
t0=-1/f(1)
v0=10-exp(f(2))
v2=10-(10-v0)*exp(-t/t0);
plot(t,v1,'rx',t,v2,'k:')
grid on
xlabel('时间t(s)'),ylabel('充电电压(V)');
title('电容器充电电压与时间t的曲线');
程序运行输出结果如下:
f =-0.2835 1.4766
t0 = 3.5269 v0 =5.6221
即电容器的初始电压为 v0 =5.6221,τ=3.5629。
三、总结
运行后,得出图形可知,比较拟合后多项式和原式的系数,发现四次多项式系数与原系数比较接近,四次多项式的四次项系数很小。
说明了经过适当的多次拟合系数与原答案系数更接近。