超宽镁合金中厚板材和薄板材的产业化开发
- 格式:pdf
- 大小:745.26 KB
- 文档页数:3
中厚板产能提升分析目标:日轧制量达到5000t/日,月均日产稳定在4500t/日以上;月轧制量13.5万吨/月,月商品量大于12万吨。
一、生产能力1、产品结构2、加热轧制能力3、实际生产水平4、产能提升目标二、问题分析中厚板年修及工程技改技措项目投产后,通过中间冷却和轧线自动化系统优化,单块钢的轧制节奏由原来的19.3块/小时提升至23.8块/小时,达到国内平均水平22~24块/小时。
轧机能力略大于加热炉能力,已具备品种钢大于4500吨/天和日产5000吨能力。
影响日产量的因素:板坯单重、轧制节奏、作业率,主要是轧制节奏,关键是轧制计划的集批生产。
1、板坯单重:受坯型限制及品种钢占比增加,板坯单重减小。
1)普板单重较正常水平10.5t/块减小1吨,主要是中厚板产量大于4#铸机产能,普板改用1#和3#铸机补充250*1490坯型,2月份共轧制2万吨;2)风电钢机型增大,钢板厚度、宽度及单件重增加,受坯型限制,在组板设计时可增加的倍尺数量减少,2月份板坯单重小于8.5吨的品种钢共轧制1万吨。
2、轧制节奏:实际轧制节奏小于加热炉和轧机能力。
1)轧制计划未做到集批生产,三炉品种规格不匹配,块与块的间隙时间增加20~30秒,加热轧制节奏降低10%:炼钢未按炉按状态倒运,中厚板P01库堆放混乱,日计划审核把关不严,板坯质量缺陷及改判率;2)轧制模型及生产操作:轧机负荷分配,轧制操作方式,操作工技能水平,设备状态及运行稳定性。
3、作业率:日历作业率和有效作业率偏低。
1)检修模型:每月定修两大两小,16+8+12+8=48小时,国内平均水平每月2次共24小时,多两次共24小时;设备状态不稳定,检修力量不足,影响检修质量和设备状态,被迫以时间换空间。
2)精轧换辊频次:平均换辊吨位5200吨,每月22次,低于目标值1.5天一换,主要影响因素是品种钢宽板占比高和轧制计划未集批生产。
3)故障热停频次:热停频次2.7次/天,最好水平及国内平均1.5次/天,点检质量、生产操作、设备状态、定修质量等影响生产设备运行稳定性。
科学技术部对十三届全国人民代表大会四次会议第4794号建议的答复文章属性•【制定机关】科学技术部•【公布日期】2021.07.06•【文号】国科建议高〔2021〕108号•【施行日期】2021.07.06•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】企业技术进步与高新技术产业化正文对十三届全国人大四次会议第4794号建议的答复国科建议高〔2021〕108号青海代表团:你们提出的《关于支持青海建设全国重要的轻金属合金材料基地的建议》收悉。
经认真研究,现答复如下。
轻金属合金(铝合金、镁合金、钛合金等)因其性能上的独特优势,被广泛应用于涉及国计民生的多个重要领域。
在发展高新技术、改造传统产业、增强综合国力等方面起着重要的作用。
多年来,科技部一直高度重视轻金属合金材料的基础研究与技术创新。
“十三五”期间,国家重点研发计划启动实施了“重点基础材料技术提升与产业化”和“材料基因工程关键技术与支撑平台”重点专项,支持了“低成本高耐蚀钛及钛合金管材与高品质钛带制造技术开发及应用”“高性能铝合金大规格板带材制造与应用技术”“高性能镁/铝合金高品质铸件制备技术”“航空用先进钛基合金集成计算设计与制备”等轻金属合金相关领域项目,并且融合高通量计算/高通量实验/专用数据库三大技术,变革材料研发理论和模式,实现轻金属合金材料的研发向新的智能模式转变。
在“十四五”期间,国家重点研发计划已启动“先进结构与复合材料”重点专项,部署了“轻质高强金属及其复合材料”任务方向,围绕航空航天、军事装备、车辆交通、海洋工程、电子信息等高端装备轻量化制造对轻质高强金属及其复合材料提出的迫切需求,重点发展高强韧、耐高低温、耐蚀钛合金,先进铝合金及其大规格复杂构件制备技术,高性能镁合金,金属基复合材料设计制备与应用,结构复合材料设计成型与应用。
通过“基础研究-关键技术攻关-应用技术研究-典型应用示范”全链条设计,攻克材料成分创新设计、组织-性能协同调控、服役行为及大规格材料先进制备与应用技术等基础理论和关键技术,建立产品工业化批量生产标准和技术规范,建成产学研用紧密结合的从材料研发到工程应用的技术创新体系。
轧制AZ31镁合金板材的显微组织和力学性能苗青【摘要】以初始晶粒尺寸为250~300 μm、20 mm厚的铸态AZ31镁合金板坯为原材料,对比研究4种轧制方案对轧后板材显微组织和力学性能的影响.结果表明,4种方案终轧板材的平均晶粒尺寸依次为5 μm、18 μm、6.5 μm和4.5 μm,抗拉强度均大于250 MPa,屈服强度均大于140 MPa,延伸率均大于20%.其中最佳方案制得了高塑性镁合金板材,抗拉强度为265 MPa,屈服强度为186 MPa,延伸率达29%,同时,板材沿横向、轧向和45°方向的性能相差较小,各向异性不显著.【期刊名称】《上海电机学院学报》【年(卷),期】2013(016)005【总页数】6页(P240-245)【关键词】AZ31镁合金板材;轧制;显微组织;力学性能【作者】苗青【作者单位】上海电机学院机械学院,上海200240【正文语种】中文【中图分类】TG113镁合金具有高比强度、高比刚度、减振性好等一系列优点,被誉为“21世纪最具潜力的绿色工程材料”。
变形镁合金板材、带材适用于“陆、海、空、天”等交通运载装备的制造[1-2]。
镁合金具有密排六方(HCP)的晶体结构,室温变形条件下塑性较差、加工成形困难,但变形镁合金较之铸造镁合金具有更优良的力学性能和尺寸稳定性。
轧制技术是通过塑性成形工艺生产板、带材最经济有效的方法之一,具有在大规模工业化生产中快速应用、全面推广的价值和空间[3-4]。
因此,研究与开发高性能镁合金板材的轧制工艺具有重要意义。
据文献[5-6]报道,传统的AZ31镁合金热轧工艺,一般均从120mm左右厚的铸锭开始轧制,始轧温度为420~450℃,终轧温度为300~260℃,单道次变形量15%~25%,一般轧制到2~4mm厚的板材需要加热3~5次,总轧制道次为28~30次。
热轧后板材的性能为:抗拉强度≥250MPa,屈服强度≥145MPa,延伸率在12%~21%,轧制后板材的方向性较明显。
铝合金、镁合金在航天器上的应用实例摘要:随着中国航天事业的发展,未来的航天器将朝着长寿命、大型化、高承载、轻量化、高尺寸稳定性,以及耐受复杂空间环境等方向发展,其中离不开材料的发展。
本文就其中应用比较广泛的铝合金和镁合金,对其在航天器中的应用实例进行介绍以及关键的制造技术与发展方向进行介绍。
关键词:铝合金镁合金应用制造技术1引言我国航天事业的未来发展重点包括:载人航天空间站、高分辨率对地观测系统、深空探测、空间科学、在轨服务平台和激光通信卫星等。
这些航天器的特点是:长期在轨运行、体积和质量大幅增加、需要配置更多的载荷和燃料、承受更加复杂的空间环境,对形状精度及其保持能力要求更高。
为满足上述需求,航天器未来将朝着长寿命、大型化、高承载、轻量化、高尺寸稳定性,以及耐受复杂空间环境等方向发展。
[1]长寿命:空间站在轨密封寿命达10年,通信卫星在轨寿命要求12年-15年,星际探测器可能在轨道上飞行20年以上。
大型化:空间站大型舱体结构直径将超过4m,长度15m以上;卫星外包络直径4m以上;未来载人登月舱体外包络直径达到10m以上;另外,对于空间站、大型通信卫星等航天器,需配置大型可展结构,如大型太阳翼、天线等。
高承载:空间站结构承载能力将达25t ;“十二五”期间,大型卫星结构承载能力9t,未来可能达15t;载人登月着陆器承载能力达30t以上。
轻量化:结构占航天器总质量的百分比下降到6%甚至更低。
高尺寸稳定性:要求航天器结构单向变形比达到0.1ppm/℃量级,以减小在空间交变热环境对载荷指向精度的影响。
[2]耐受复杂空间环境:如耐受月面-180℃-150℃的交变温度环境、其它行星表面环境,以及再入和行星进入热环境等。
而材料是形成航天器结构的基础,航天器结构的性能和可靠性在很大程度上取决于材料的性能。
为了降低航天器结构的重量、提高结构的刚度和强度,虽然可以在结构型式、尺寸等方面进行各种设计和改进,但最直接和最有效的途径是选择密度小而弹性模量和强度高的材料。
铝和铝合金薄板及板材ASTM标准号:B209-01本标准以固定的标准号B 209发布;标准号后面的数字是首次采用时的年份,或在经过修订时最后一版的年份。
括号内的数字是前一次重新批准的年份。
上标( )表示自前一次修订或重新批准以来所做的编辑上的变动。
本标准经美国国防部有关部门批准使用。
1. 适用范围1.1 本标准2适用于表2和表3中列出的以合金(注1)和回火状态生产的铝和铝合金平面薄板、成卷薄板和板材,并具有以下产品表面光洁度。
1.1.1 所有合金板材及可热处理合金薄板:精轧表面光洁度1.1.2 不可热处理合金薄板:轧制光洁度、单面轧制压光、标准单面光亮和标准二面光亮。
注1-本标准所采用的术语合金,一般是指铝和铝合金。
注2-踏板见标准B 632。
1.2 合金和回火标志符合ANSI H35.1。
根据实施规范E 527,统一编号中等效的合金标志是表1中前面冠有A 9字样的那些,例如,对铝1100为A 91100。
1.3 与标准B209成为一对的全公制标准-B 209M已经发表,因此,在这个标准中没有与公制的等效对应表示。
1.4 关于新铝和铝合金进入本规范的验收标准,见附件A2。
2. 引用文件2.1 在材料定购期内有效的下列文件,除非另有声明,应作为本标准的一部分,列于此处供参考:2.2 ASTM标准:B 548 压力容器用铝合金板材超声波检验方法B 557 锻造和铸造铝及镁合金产品抗拉检验试验方法B 594 航空航天应用的铝合金锻制产吕超声波检验实施规范B 597 铝合金热处理实施规范B 660 铝和镁产品装箱/包装实施规范B 666/B 666 M 铝和镁产品标识标记实施规范E3 金相检验试样制备方法E 29 为确定与标准一致性,在试验数据中使用有效数字的实施规范E 34 铝及镁基合金化学分析试验方法E 55 为确定化学成分,有色金属和铝锻件取样的实施规范E 227 对铝及铝合金用点到面技术进行光发射光谱分析的试验方法E 290 金属材料延展性半导向弯曲试验的试验方法E 407 金属和合金的微蚀试验方法E 527 金属和合金编号实施规范(UNS)E 607 用点到面技术,在氮气中进行铝和铝合金光发射光谱分析的试验方法E 716 铝和铝合金光谱分析取样实施规范E 1004 电磁(涡流)测量电导率的试验方法E 1251 用氩气,点到面,无极性自启动电容放电技术进行铝和铝合金光发射光谱分析的试验方法G 34 7XXX系列含铜铝合金对剥离腐蚀敏感性的试验方法(EXCO试验)G 47 确定高强度铝合金产品对应力腐蚀破坏敏感性的试验方法G 66 用视觉评估5XXX系列铝合金对剥离腐蚀敏感性的试验方法(Asset试验)2.3 ANSI标准:H 35.1 铝的合金与回火标志系统H 35.2 铝轧制产品的尺寸误差2.4 AMS规范AMS 2772 铝合金原材料的热处理3. 术语3.1 定义3.1.1 薄板-一种轧制的产品,其截面为矩形,厚度小于0.250 英寸,但不小于0.006英寸,带有切开、剪开或锯开的边缘。
镁合金冷轧薄板及工艺陈荣石,吴迪,闰宏,罗骏,韩恩厚,柯伟中国科学院金属研究所,沈阳市文萃路62号,1l0016:e—mai l:rsc hen@i mr.ac.cn摘要:本文初步探讨了采用冷轧工艺制备镁合金薄板的可行性,发现高塑性镁合金(注册商标SuperDucMg)比传统Az31镁合金板材具有更为优异的冷轧性能,冷轧单道次压下量可达30%:冷轧薄板可以通过后续的退火处理进一步调控其力学性能。
多道次冷轧累积总压下量45%,并经300℃30min退火后薄板的屈服强度可达257艘a,抗拉强度318MPa,断裂伸长率12.5%,综合力学性能显著优于6063等铝合金板材。
关键词:镁合金:薄板:冷轧;力学性能;Po ss i bi l it y of Pr oducin g Magnesium Al l o y Sheets b y col d r oU in gAbs tr ac t The fe as ibi li锣of c01d rolled Magnesium all oy s he ct s were imr est ig ate d in this paper.It w 硒found tIlat the SuperDucMgalloy show much better cold mll—abil时thaJl the traditiona l Az3l alloy.The ma)(imum reduction in one pass could reach30%a nd m e mecha士l ical pr open ies of cold rolle d sh ee ts co uld be tajlored by heat仃ea恤en_ts.The min sh ee ts p rod uc ed tllr ou g h multi.pa ss to totalreduction of45%a11d仃eated at300℃for30min sho、ved eXcellent mechan ica l pmperties,which were 257M P a in yield stren甜h,3 l8Mpa in ul ti mat e tcnsile s仃e n垂h alld 12.5%i nwords magnesium alloy;thi n she et;co ld mlling;mechanical propertieselongation.key1.概述镁合金比重约为铝合金的三分之二,具有质轻、比强度高、优良的阻尼减震效果、电磁屏蔽性能、机械切屑加工性能等一系列优点。
权利要求书1.一种用于镁合金中厚板及带卷坯生产的轧制装置,包括轧机、张力辊、换向辊、卷取机、辊道加热保温炉、卷取加热保温炉,辊道(2)和(9)分别设置在轧机(6)的两侧,其特征在于,辊道上安装辊道加热保温炉(1)和(10),卷取机(5)和(7)分别设置在轧机(6)的两侧以及辊道(2)和(9)的下方,并同时分别安装在卷取加热保温炉(3)和(8)内,辊道加热保温炉(1)和(10)中分别装有张力辊(14)和(13),在辊道(2)和(9)上方分别安装有换向辊(15)和(12),在卷取加热保温炉(3)和(8)的进口处分别安装有卷取导辊(16)和(11),在卷取加热保温炉(3)和(8)的内壁装有3~4个成型辊(4)。
2.如权利要求1所述的用于镁合金中厚板及带卷坯生产的轧制装置,其特征在于,辊道加热保温炉的外形为长方形,其宽度与轧机的轧辊辊宽相同,炉内高度大于辊道下表面至张力辊抬升到最高处高度的10-50mm,;3.如权利要求1所述的用于镁合金中厚板及带卷坯生产的轧制装置,其特征在于,卷取加热保温炉的外形为长方形或垂直面上为圆型的圆柱形,卷取加热保温炉的宽度与轧机的轧辊辊宽相同,其炉内直径根据所轧板卷的最大重量确定。
4.如权利要求1所述的用于镁合金中厚板及带卷坯生产的轧制装置,其特征在于,卷取机的宽度与轧机的轧辊辊宽相同,卷筒的外径为300~600mm。
5.如权利要求1、2、3或4所述的用于镁合金中厚板及带卷坯生产的轧制装置,其特征在于,轧机(6)是单机架或多机架。
说明书技术领域本实用新型涉及镁合金轧制,特别涉及镁合金中厚板及带卷坯轧制装置。
背景技术镁合金是最轻的金属结构材料,具有优异的特性,在汽车、3C、建筑、航空航天等领域受到业界的广泛关注,并得到一定应用。
我国有丰富的镁资源,是镁产量大国,也是镁出口大国。
但多年来我国的镁都是以廉价的原材料镁出口,很少有高附加值的镁深加工件出口或大批应用。
传统的镁合金板带材因其长加工周期、低成材率、较高的加工成本及较低的力学性能,使用范围受到很大限制。
收稿日期:2005-08-06第一作者简介:陈 林(1982-),男,安徽宣城人,重庆大学材料学院硕士研究生,主要研究方向为变形镁合金冲压成形研究。
AZ31B 镁合金板材冲压成形性能研究陈 林,汪凌云,卢志文(重庆大学材料科学与工程学院,重庆400044)摘要:由于镁合金板材的冲压产品具有较好的力学性能和表面质量而成为镁合金材料应用的一个趋势。
然而,目前它的许多成形性能参数尚未研究,这也影响了镁合金冲压成形工艺的设计。
为了研究镁合金薄板的冲压成形性能,试验得到了一些成形性能参数,并为镁合金冲压成形的有限元模拟提供了重要的试验参数。
关键词:镁合金;冲压成形性能;应变强化指数;厚向异性系数中图分类号:TG1467.22 文献标识码:A 文章编号:1007-7235(2006)01-0031-04Research to property of AZ 31B magnesium alloy sheet drawingC HEN Lin,WA NG Ling 2yun,LU Zhi 2wen(College of Ma ter ials Science and Engineering,Chongqing University,Chongqing 400044,China)Abstr act :Product of drawn magnesium allo y sheet will be a trend of the use of it because o f i t .s excellent mechanic pro perty.How 2ever ,many parameter of forming property of o f magnesiu m haven .t been researched,and it impede seriously the stamping forming en 2geering.In this paper,so me typical experiment w as studied and so me importan t parameters have been concluded.These result can al 2so be the essential parameters that used in finite element simulatio n of s tamping forming o f magnesium alloy.Key wor ds :mag nesi um alloy;stamping formability;wo rk-hardening exponential;the coefficien t of normal aniso rtopy镁合金是结构材料中密度最低的金属,具有比强度高、刚度好、电磁界面防护性强等特点,被誉为/21世纪绿色工程金属结构材料0,在航空航天,汽车、电子信息、民用家电等领域均已得到广泛的应用,并且具有广阔的应用前景和开发潜力。