数字钟设计报告_南昌大学
- 格式:doc
- 大小:972.71 KB
- 文档页数:18
学号:6100208248 专业班级:通信082班实验日期:2010/11/11实验成绩:实验四数字钟设计一、实验目的1.设计一个数字钟2.掌握动态扫描数码管的工作原理和相关的VHDL程序的编写方法3.掌握分模块设计的方法二、实验内容与要求1.在实验箱上实现动态扫描数码管显示时分秒;2.可以预置为12小时计时显示和24小时计时显示;3.一个调节键,用于调节目标数位的数字。
对调节的内容敏感,如调节分钟或秒时,保持按下时自动计数,否则以脉冲计数;4.一个功能键,用于切换不同的状态;计时、调时、调分、调秒、调小时制式;三、设计思路时、分、秒计数模块可以用计数器实现,时计数分为模12/24进制计数器,分和秒为模60计数器,显示模块用动态扫描数码管实现。
数字钟总的设计框图:图1:数字钟设计框图四、实验程序(程序来源:根据网络上的修改)1.控制模块:控制模块分散在各计数模块的控制引脚2.秒计数模块①VHDL程序:ENTITY SECOND ISPORT ( CLK : IN STD_LOGIC;RESET : IN STD_LOGIC;SETMIN : IN STD_LOGIC;ENMIN : OUT STD_LOGIC;DAOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END ENTITY SECOND;ARCHITECTURE ART OF SECOND ISSIGNAL COUNT : STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL ENMIN_1,ENMIN_2 : STD_LOGIC;BEGINDAOUT<=COUNT;ENMIN_2<=(SETMIN AND CLK);ENMIN<=(ENMIN_1 OR ENMIN_2);PROCESS(CLK,RESET,SETMIN)BEGINIF(RESET='0')THENCOUNT<="00000000";ENMIN_1<='0';ELSIF(CLK'EVENT AND CLK='1')THENIF(COUNT(3 DOWNTO 0)="1001")THENIF(COUNT<16#60#)THENIF(COUNT="01011001")THENENMIN_1<='1';COUNT<="00000000";ELSECOUNT<=COUNT + 7;END IF;ELSECOUNT<="00000000";END IF;ELSIF(COUNT<16#60#)THENCOUNT<=COUNT + 1;ENMIN_1<='0';ELSECOUNT<="00000000";ENMIN_1<='0'; END IF;END IF;END PROCESS;END ART;②封装后的秒计数模块:图2:秒计数模块3.分计数模块①VHDL 程序(与秒计数程序基本相同,略) ②封装后的分计数模块:图3:分计数模块4.时计数模块①VHDL 程序(分为12进制和24进制,与秒计数基本相同,略)②封装后的时计数模块:图4:时计数模块(12进制、24进制、2选1数据选择器)5.显示模块 ①VHDL 程序ENTITY SETTIME ISPORT ( CLK1 : IN STD_LOGIC; RESET : IN STD_LOGIC;SEC,MIN : IN STD_LOGIC_VECTOR(7 DOWNTO 0); HOUR : IN STD_LOGIC_VECTOR(7 DOWNTO 0); DAOUT : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); SEL : OUT STD_LOGIC_VECTOR(2 DOWNTO 0)); END SETTIME;ARCHITECTURE ART OF SETTIME ISSIGNAL COUNT : STD_LOGIC_VECTOR(2 DOWNTO 0); BEGINPROCESS(CLK1,RESET) BEGINIF(RESET='0')THENCOUNT<="000";ELSIF(CLK1'EVENT AND CLK1='1')THENIF(COUNT>="101")THENCOUNT<="000";ELSECOUNT<=COUNT + 1;END IF;END IF;END PROCESS;PROCESS(CLK1,RESET)BEGINIF(RESET='0')THENDAOUT<="0000";SEL<="111";ELSIF(CLK1'EVENT AND CLK1='1')THENCASE COUNT ISWHEN"000"=>DAOUT<=SEC(3 DOWNTO 0);SEL<="000";--秒低位 WHEN"001"=>DAOUT<=SEC(7 DOWNTO 4);SEL<="001";--秒高位 WHEN"010"=>DAOUT<=MIN(3 DOWNTO 0);SEL<="010";--分低位 WHEN"011"=>DAOUT<=MIN(7 DOWNTO 4);SEL<="011";--分高位 WHEN"100"=>DAOUT<=HOUR(3 DOWNTO 0);SEL<="100";--时低位 WHEN"101"=>DAOUT<=HOUR(7 DOWNTO 4);SEL<="101";--时高位 WHEN OTHERS=>DAOUT<="0000";SEL<="111";END CASE;END IF;END PROCESS;END ART;②封装后的动态扫描数码管显示模块图5:显示模块6.顶层文件五、实验步骤①.新建工程。
目录摘要 (I)第1章绪论 (1)1.1设计目的 (1)1.2 设计任务及要求 (1)第2章电子钟的设计方案 (2)2.1设计原理 (2)2.2方案确定 (2)2.2.1设计方案一 (2)2.2.2设计方案二 (3)2.2.3两种方案的比较 (4)2.2.4设计方案的确定 (5)第3章数字电子钟的电路设计 (6)3.1数字钟电路系统的组成框图 (6)3.2 时分秒计数器的设计 (7)3.3 正点报时电路的设计 (8)3.4校时电路的设计 (9)3.5 秒信号发生器的设计 (9)3.6 译码驱动显示电路 (11)3.7 数字电子钟的整体电路 (11)第4章设计电路的计算机模拟仿真与调试 (13)4.1 电路模拟仿真调试 (13)4.2 电路焊接 (13)4.3 实物的实际调试 (14)第5章实验数据和误差分析 (15)5.1 实验数据 (15)5.2 误差分析 (15)第6章元件清单 (16)总结 (17)致谢 (18)参考文献 (19)摘要数字钟是采用数字电路实现对时,分,秒.数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
数字钟是一个将“ 时”,“分”,“秒”显示于人的视觉器官的计时装置。
它的计时周期为24小时,显示满刻度为23时59分59秒。
它主要由振荡器、分频器、计时器、译码显示及扩展电路几部分构成。
具有时间显示、校时校分及闹钟设置、整点报时等扩展功能并且具有走时准确、显示直观、稳定等优点深受人们喜爱。
关键词:振荡器分频器计时器译码显示报时第1章绪论1.1设计目的1.在了解数字钟的原理的前提下,运用刚刚学过的数电知识设计并制作数字钟,而且通过数字钟的制作进一步了解各种在制作中用到的中小规模集成电路的作用及其使用方法。
目录一实验目的-------------------------------------------------------------------------------1 二实验任务及要求----------------------------------------------------------------------1 三实验设计---------------------------------------------------------------------------- --11.设计原理及思路---------------------------------------------------------------------12.单元电路设计------------------------------------------------------------------------2(1)振荡电路-----------------------------------------------------------------------------2(2)计数电路----------------------------------------------------------------------------4(3)译码及显示电路----------------------------------------------------------------- ---7(4)校时电路----------------------------------------------------------------------------9(5)电源适配器电路----------------------------------------------------------------- --9 四电路原理图、PCB图---------------------------------------------------------10 五元器件清单-------------------------------------------------------------------12 六电路制板及焊接---------------------------------------------------------------------13七实物调试----------------------------------------------------------------------14 八实验自我评估及体会--------------------------------------------------------15 九小组成员分工安排-----------------------------------------------------------15一实验目的1.在了解数字钟的原理的前提下,运用刚刚学过的数电知识设计并制作数字钟,而且通过数字钟的制作进一步了解各种在制作中用到的中小规模集成电路的作用及其使用方法。
数字闹钟设计报告目录1. 设计任务与要求 (2)2. 设计报告内容2.1实验名称 (2)2.2实验仪器及主要器件 (2)2.3实验基本原理 (3)2.4数字闹钟单元电路设计、参数计算和器件选择…………………………3-72.5数字闹钟电路图 (8)2.6数字闹钟的调试方法与过程 (8)2.7设计与调试过程的问题解决方案 (8)3.实验心得体会……………………………………………………………………9、101. 设计任务与要求数字闹钟的具体设计任务及要求如下:(1) 有“时”、“分”十进制显示, “秒”使用发光二极管闪烁表示。
(2) 以24小时为一个计时周期。
(3) 走时过程中能按预设的定时时间(精确到小时)启动闹钟, 以发光二极管闪烁表示, 启闹时间为3s~10s。
2. 设计报告内容2.1实验名称数字闹钟2.2实验仪器及主要器件(1)CD4511( 4片)、数码管(4片)(2)74LS00(6片)(3)74LS138(2片)(4)74LS163(6片)(5)LM555(1片)(6)电阻、电容、导线等(若干)(7)面包板(2片)、示波器等2.3数字闹钟基本原理要想构成数字闹钟, 首先应选择一个标准时间源——即秒信号发生器。
可以采用LM555构成多谐振荡器, 通过改变电阻来实现频率的变化, 使之产生1HZ的信号。
计时的规律是: 60秒=1分, 60分=1小时, 24小时=1天, 就需要对计数器分别设计为60进制和24进制的, 并发出驱动信号。
各计数器输出信号经译码器到数字显示器, 按“时”、“分”顺序将数字显示出来, 秒信号可以通过数码管边角的点来显示。
数字闹钟要求有定时响闹的功能, 故需要提供设定闹时电路和对比起闹电路。
设时电路应共享译码器到数字显示器, 以便使用者设定时间, 并可减少电路的芯片数量;而对比起闹电路提供声源, 应具有人工止闹功能, 止闹后不再重新操作, 将不再发生起闹等功能。
数字电子钟的逻辑框图如图所示。
数字钟实验报告5篇范文第一篇:数字钟实验报告数字钟实验报告班级:电气信息i类112班实验时间:实验地点:指导老师:目录一、实验目的-----------------3二、实验任务及要求--------3三、实验设计内容-----------3(一)、设计原理及思路3(二)、数字钟电路的设计--------------------------4(1)电路组成---------4(2)方案分析---------10(3)元器件清单------11四、电路制版与焊接---------11五、电路调试------------------12六、实验总结及心得体会---13七、组员分工安排------------19一、实验目的:1.学习了解数码管,译码器,及一些中规模器件的逻辑功能和使用方法。
2.学习和掌握数字钟的设计方法及工作原理。
熟悉集成电路的引脚安排,掌握各芯片的逻辑功能及使用方法了解面包板结构及其接线方法。
3.了解pcb板的制作流程及提高自己的动手能力。
4.学习使用protel软件进行电子电路的原理图设计、印制电路板设计。
5.初步学习手工焊接的方法以及电路的调试等。
使学生在学完了《数字电路》课程的基本理论,基本知识后,能够综合运用所学理论知识、拓宽知识面,系统地进行电子电路的工程实践训练,学会检查电路的故障与排除故障的一般方法锻炼动手能力,培养工程师的基本技能,提高分析问题和解决问题的能力。
二、实验任务及要求1.设计一个二十四小时制的数字钟,时、分、秒分别由二十四进制、六十进制、六十进制计数器来完成计时功能。
2.能够准确校时,可以分别对时、分进行单独校时,使其到达标准时间。
3.能够准确计时,以数字形式显示时、分,发光二极管显示秒。
4.根据经济原则选择元器件及参数;5..小组进行电路焊接、调试、测试电路性能,撰写整理设计说明书。
三、实验设计内容1、设计原理及思路 3.1数字钟的构成数字钟一般由振荡器、分频器、计数器、译码器、显示器、较时电路、报时电路等部分组成,这些都是数字电路中应用最广的基本电路3.2原理分析数字钟实际上是一个对标准频率(1hz)进行计数的计数电路。
数字钟设计实验报告专业:工程技术系班级:电信0901班姓名:XX学号:XXXXXX数字钟的设计目录一、前言 (3)二、设计目的 (3)三、设计任务 (3)四、设计方案 (3)五、数字钟电路设计原理 (4)(一)设计步骤 (4)(二)数字钟的构成 (4)(三)数字钟的工作原理 (5)六、总结 (9)七、附录 (10)一、前言数字钟是采用数字电路实现对时、分、秒数字显示的计时装置,以其显示的直观性、走时准确稳定而受到人们的欢迎,广泛用于个人家庭、车站、码头、办公室等公共场所,给人们的生活、学习、工作、娱乐带来了极大的方便,已成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体与 555 振荡器的广泛应用,使得数字钟的精度远远超过老式钟表,钟表的数字化给人们生产生活带来了极人的方便,而目大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、通断动力设备、以及各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
二、设计目的1.掌握数字钟的设计方法。
2熟悉集成电路的使用方法。
3通过实训学会数字系统的设计方法;4通过实训学习元器件的选择及集成电路手册查询方法;5通过实训掌握电子电路调试及故障排除方法;6熟悉数字实验箱的使用方法。
三、设计任务设计一个可以显示时、分、秒的数字钟。
要求:1、24小时为一个计数周期;2、具有校时功能;3、具有整点报时功能;4、主要采用中小规模集成电路完成设计;5、电源电压+5V。
四、设计方案一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器和定时器组成。
干电路系统由秒信号发生器、“时、分、秒、”计数器、译码器及显示器、电路组成。
首先构成一个由32768Hz的石英晶体振荡器和由CD4060构成的分频器构成的产生震荡周期为一秒的标准秒脉冲,由74LS161采用清零法分别组成六十进制的秒计数器、六十进制分计数器、二十四进制时计数器和七进制的周计数器。
一.设计题目数字时钟仿真设计二.设计目的和要球1)目的掌握数字时钟的工作原理和设计方法,学会用Multisim10软件操作实验内容,掌握设计性试验的实验方法。
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的应用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。
而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。
且由于数字钟包括组合逻辑电路和时序电路。
通过它可以进一步学习和掌握各种组合逻辑电路与时序电路的原理和方法。
2)要求(1)设计一个具有时、分、秒的十进制数字显示的计时器。
(2)具有手动校时、校分的功能。
(3)通过开关能实现小时的十二进制和二十四进制转换。
(4)具有整点报时的功能,应该是每个整点完成相应点数的报时,如3点钟响3声。
三.设计原理1)总体方案设计数字时钟由振荡器、分频器、计数器、译码现实、报时等电路组成。
其中,振荡器和分频器组成标准信号发生器,直接决定计时系统的精度。
由不同进制的计数器、译码器和显示器组成计时系统。
将标准秒信号送入采用六十进制的“秒计数器”,每累计60s就发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用六十进制计数器,每累计60min,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用二十四进制或十二进制计时器,可实现对一天24h 或12h 的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态通过六位七段译码器显示器显示出来,可进行整点报时,计时出现误差时,可以用校时电路校时、校分。
数字时钟的原理框图如图1所示。
2)单元电路设计1.秒脉冲产生电路秒脉冲产生电路用一个1Hz 的秒脉冲时钟信号源代替。
电子课程设计题目:数字时钟数字时钟设计实验报告一、设计要求:设计一个24小时制的数字时钟。
要求:计时、显示精度到秒;有校时功能。
采用中小规模集成电路设计。
发挥:增加闹钟功能。
二、设计方案:由秒时钟信号发生器、计时电路和校时电路构成电路。
秒时钟信号发生器可由振荡器和分频器构成。
计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。
校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。
三、电路框图:时计数分计数秒计数图一数字时钟电路框图四、电路原理图:(一)秒脉冲信号发生器秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。
由振荡器与分频器组合产生秒脉冲信号。
振荡器: 通常用555定时器与RC构成的多谐振荡器,经过调整输出1000Hz脉冲。
分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz标准秒脉冲。
其电路图如下:图二秒脉冲信号发生器(二)秒、分、时计时器电路设计秒、分计数器为60进制计数器,小时计数器为24进制计数器。
60进制——秒计数器秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。
当计数到59时清零并重新开始计数。
秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。
个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。
利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。
其电路图如下:图三 60进制--秒计数电路60进制——分计数电路分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。
数字钟课程设计报告(正文)课程设计报告课题名称:电子技术课程设计学生学号:专业班级:学生姓名:指导教师:目录一、设计目的 (2)二、设计所需元件器材 (2)三、原理框图 (2)四、各功能模块图 (3)五、设计出现的问题及心得 (9)六、思考题 (10)七、课程设计说明书 (12)一、设计目的数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
因此,我们此次设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时序电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.二、设计所需元件器材1.555定时器1片2.74LS90集成块6片3.CD4511集成块6片4.共阴极7段数码管6个5.面包板1个(型号SYB-118)6.10uf电解电容1个7.0.1uf瓷片电容1个8.68k电阻一个9.15k电阻一个10.单股线8m左右11.镊子12.剪刀13.斜口钳14.74LS14一片15.74LS20一片16.按键两个17.电阻1k 3个18.电阻 100欧6个19.5伏电源三、原理框图基本原理为555定时器产生基准秒脉冲,将信号送到60进制秒计数器,秒计数器60一循环,会产生进位信号,同时将这信号送到60进制分计数器,分计数器循环也会产生进位信号,送到24进制时计数器。
每级计数器都有译码器与之相对,将计数器送出的4位信号转变成数码管的十进制信号,这样就能显示出具体时间。
四、各功能模块图1.555定时器555定时器是一种集模拟、数字于一体的中规模集成电路,其应用极为广泛。
555定时器内部结构如图4-1-1所示。
数字钟设计报告学生姓名:学号:专业班级:目录一、绪论1.1 课程认知数字钟是采用数字电路实现对时、分、秒,数字显示的计时装置。
早已成为人们日常生活中不可少的必需品,给人们的生活、学习、工作、娱乐带来极大的方便。
由于数字集成电路技术的发展,数字钟的设计已经是个课程的基础。
由电子电路实现一个自动数字钟,完成秒分时自动调节及其相关功能,加强学生手动实践能力成为合适首选的方案之一。
数字钟是现代计时器,也可用作时间控制的时钟源。
数字钟由于其具有走时准,显示直观,款式新颖,附加功能多等优点而受到人们的欢迎。
设计一个具有整点报时,可对时的数字钟。
由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
如闹铃、按时自动打铃、等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
以数字电子为基础,分别对1S时钟信号输出、秒计时显示、分计时显示、小时计时显示、整点报时等进行设计,然后将它们组合,来完成功能。
并通过本次设计加深对数字电子技术的理解以及更熟练使用计数器、触发器和各种逻辑门电路的能力。
电路主要使用集成计数器,例如74LS161,译码集成电路,例如74LS48,数码管,分频器电路,例如CD4060,及各种门电路和基本的触发器等,方便快捷,很适合在日常生活中使用。
1.2 设计任务设计一个数字钟,数字钟具有基本记时和校时功能。
以数字形式显示时、分、秒的时间和校时功能。
在电路中,其要用到振荡电路提供的1Hz脉冲信号。
在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。
要用数码管显示时、分、秒,各位均为两位显示。
实验设计目的:掌握各芯片的逻辑功能及使用方法;掌握数字钟的设计方法和计数器相互级联的方法;进一步掌握数字系统的设计和数字系统功能的测试方法;熟悉集成电路的使用方法。
1.3 功能要求设计一个高精度、高稳定度的时钟信号源。
用秒脉冲作信号源,数字钟具有显示时、分、秒的24小时制功能和显示星期的功能。
数字钟具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间。
计时过程具有整点报时功能。
可设定夜间某个时段不报时,上电后从“00:00”开始显示。
二、电路设计2.1 设计方案根据设计要求首先建立了一个多功能数字钟电路系统的组成框图,框图如图1所示。
由图1可知,电路的工作原理是:振荡器产生的高脉冲信号作为数字钟的振源,再经分频器输出标准秒脉冲。
秒计数器计满60后向分计数器个位进位,分计数器计满60后向小时计数器个位进位并且小时计数器按照“24翻1”的规律计数。
计数器的输出经译码器送显示器。
计时出现误差时电路进行校时、校分、校秒。
时显示器分显示器秒显示器时译码器分译码器秒译码器时计数器分计数器秒计数器校时电路振荡器分频器2.2 单元电路设计数字电子钟的设计方法很多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等。
在本次设计,电路是由许多单元电路组成的,因此首先必须对各个单元电路进行设计。
下面总体进行各个部分介绍。
1.晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。
此外还有一校正电容可以对温度进行补偿,以提高频率准确度和稳定度,可保证数字钟的走时准确及稳定。
不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。
2.分频器电路分频器电路将32768Hz的高频方波信号经32768次分频后得到1Hz的方波信号供秒计数器进行计数。
分频器实际上也就是计数器。
3.计数器电路计数电路由秒个位和秒十位计数器、分个位和分十位计数器、时个位和时十位计数器电路构成。
有了时间标准“秒”信号后,就可以根据60秒为1分、60分为1小时、24小时为1天的计数周期,分别组成两个六十进制(秒、分)、一个二十四进制(时)的计数器。
其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,时个位和时十位计数器为24进制计数器。
将这些计数器适当连接,就可以构成秒、分、时的计数,实现计时功能。
4.译码显示电路译码显示电路是将数字钟的计时状态直观清晰地反映出来,被人们的视觉器官所接受。
在译码显示电路输出信号的驱动下,显示出清晰、直观的数字符号。
译码显示电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。
5.校时电路实际的数字钟电路由于秒信号的精确性和稳定性不可能做到完全准确无误,加之电路中其它原因,数字钟总会产生走时误差的现象。
因此,电路中就应该有校准时间功能的电路。
6.报时电路当数字钟显示整点时,应能报时。
要求当数字钟的“分”和“秒”计数器计到59分59秒时,正好报整点。
2.2.1振荡电路数字电路中的时钟是由晶体振荡器产生的,振荡器是数字钟的核心。
振荡器的稳定度及频率的精度决定了数字钟计时的准确程度,一般来说,振荡器的频率越高,计时精度越高。
它利用某种反馈方式产生时钟信号。
对数字电路来说,振荡器的输出的幅度范围为0v—5v的方波信号而不是锯齿波、三角波或其他形式。
方案一:采用集成定时电路555与RC组成的多谐振荡器,该振荡器的频率为,其中调整R1,R2与C可让振荡器输出1K赫兹的信号再经分频得到1赫兹的秒钟信号。
方案二:采用晶体振荡器电路,常取晶振的频率为32768Hz,因此需要外加15级2分频电路就可以正好得到1Hz的标准脉冲。
方案比较:振荡器是数字电路的核心,振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度,555定时器构成的多谐振荡器与迟滞比较器虽然构成简单但是稳定度与精确度都不高,且不易与调试,而晶振不但具有其它方案的优点:构成简单,而且稳定度与精确度高,易于调试。
所以本实验采用晶体振荡器。
通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频。
本电路由谐振频率为32768Hz的石英晶体震荡器及分频器组成集成电路CD4060和D触发器74LS74组成。
其中使用的CD4060的10、11脚之间并接石英晶体和反馈电阻与其内部的反相器组成一个石英晶体振荡器。
电路产生的32768Hz的信号经过内部十四级分频后由3脚,输出脉冲频率为2Hz,再通过一个二分频器分频就得到了1Hz的时钟信号,也就是1S。
采用CD4060来构成分频电路。
CD4060在数字集成电路中可实现的分频次数最高,而且CD4060还包含振荡电路所需的非门,使用更为方便。
分频器采用D触发器来完成分频功能输出秒脉冲。
原理图如下图所示:在如上图中所示,CD4060只使用其16、12、11、10、8、3脚,其中16脚接电源正极12脚与8脚接地,10脚与11脚之间接石英晶体。
电路产生的2Hz脉冲由3脚输出。
74LS74为D触发器,其中1、4脚接高电平,2脚得到6脚的反馈,从而通过CD4060给的2HZ输入后实现二分频功能。
电路中的微调电容C2为频率校准电容,用来校准因各种因素造成的震荡频率偏差使电路输出准确的“秒”信号,另外CD4060的6脚5脚分别可以输出为512Hz和1024Hz,为报时电路提供音频信号。
2.2.2 电路设计计数器是一种计算输入脉冲的时序逻辑网络,被计数的输入信号就是时序网络的时钟脉冲,它不仅可以计数而且还可以用来完成其他特定的逻辑功能,如测量、定时控制、数字运算等等。
数字钟的计数电路是用两个六十进制计数电路和“24翻1”计数电路实现的。
数字钟的计数电路的设计可以用反馈清零法。
当计数器正常计数时,反馈门不起作用,只有当进位脉冲到来时,反馈信号将计数电路清零,实现相应模的循环计数。
以六十进制为例,当计数器从00,01,02,……,59计数时,反馈门不起作用,只有当第60个秒脉冲到来时,反馈信号随即将计数电路清零,实现模为60的循环计数。
所以下面介绍“60进1”和“24进1”计数原理2.2.2.1二十四进制电路设计首先将每片74LS90构成十进制计数器;然后级联组成100进制计数器;最后采用“整体反馈清零”方法实现:0 - 1- 2- ……- 23 00000000 – 00000001 - …………00100011(00100100为过渡状态)即用十位的QB 和个位的QC送R0(1) 和 R0(2),这样,计数范围变为 00~24即24进制计数器。
74LS90的真值表:输入输出功能清0 置9 时钟QDQ C Q BQ AR0(1)、R0(2) S9(1)、S9(2) CP1 CP21 1 0××××0 0 0 0 清00 ×× 01 1 × × 1 0 0 1 置 9 0 × × 00 × × 0↓ 1 Q A 输 出 二进制计数 1 ↓Q D Q C Q B 输出 五进制计数 ↓ Q A Q D Q C Q B Q A 输出8421BCD 码 十进制计数 Q D ↓ Q A Q D Q C Q B 输出5421BCD 码 十进制计数 1 1不 变保 持电路中,74LS90作为十位计数器,在电路中采用六进制计数;74LS90作为个位计数器在电路中采用十进制计数。
当74LS90的14脚接振荡电路的输出脉冲1Hz 时74LS90开始工作,它计时到10时向十位计数器74LS92进位。
下面对电路中所用的主要元件及功能介绍。
十进制计数器 74LS9074LS90是二—五—十进制计数器,它有两个时钟输入端CPA 和CPB 。
其中,CPA 和0Q 组成一位二进制计数器;CPB 和321Q Q Q 组成五进制计数器;若将0Q 与B CP 相连接,时钟脉冲从A CP 输入,则构成了8421BCD 码十进制计数器。
74LS90有两个清零端R0(1)、R0(2),两个置9端R9(1)和R9(2)。
2.2.2.2六十进制电路设计同样用2片74LS90的元件构成60进制的计数器,其构成图如下:2.2.3校时电路的设计校时电路的作用是:当数字钟接通电源或者出现误差时,校正时间。
校时是数字钟应具有的基本功能。
一般电子表都具有时、分、秒等校时功能。
为了使电路简单,在此设计中只进行分和小时的校时。
只要将2个开关接74LS90的A端和Q D端即可。
(图中第一块为24进制的第二块74LS90)2.2.4 译码和显示电路可以用译码器加数码管连接构成。
其实我们可以看到这里为共阴极大数码管,在数码管接地处接上一个470电阻,但是其实这样是不够稳定的。